15 research outputs found

    Asymptotically Optimal Sequence Sets With Low/Zero Ambiguity Zone Properties

    Full text link
    Sequences with low/zero ambiguity zone (LAZ/ZAZ) properties are useful for modern wireless communication and radar systems operating in mobile environments. This paper first presents a new family of ZAZ sequence sets by generalizing an earlier construction of zero correlation zone (ZCZ) sequences arising from perfect nonlinear functions. We then introduce a second family of ZAZ sequence sets with comb-like spectrum, whereby the local Doppler resilience is ensured by their inherent spectral nulls in the frequency-domain. Finally, LAZ sequence sets are obtained thanks to its connection with a novel class of mapping functions. These proposed unimodular ZAZ and LAZ sets are cyclically distinct and asymptotically optimal with respect to the existing theoretical bounds

    Low Ambiguity Zone: Theoretical Bounds and Doppler-Resilient Sequence Design in Integrated Sensing and Communication Systems

    Get PDF
    In radar sensing and communications, designing Doppler resilient sequences (DRSs) with low ambiguity function for delay over the entire signal duration and Doppler shift over the entire signal bandwidth is an extremely difficult task. However, in practice, the Doppler frequency range is normally much smaller than the bandwidth of the transmitted signal, and it is relatively easy to attain quasi-synchronization for delays far less than the entire signal duration. Motivated by this observation, we propose a new concept called low ambiguity zone (LAZ) which is a small area of the corresponding ambiguity function of interest defined by the certain Doppler frequency and delay. Such an LAZ will reduce to a zero ambiguity zone (ZAZ) if the maximum ambiguity values of interest are zero. In this paper, we derive a set of theoretical bounds on periodic LAZ/ZAZ of unimodular DRSs with and without spectral constraints, which include the existing bounds on periodic global ambiguity function as special cases. These bounds may be used as theoretical design guidelines to measure the optimality of sequences against Doppler effect. We then introduce four optimal constructions of DRSs with respect to the derived ambiguity lower bounds based on some algebraic tools such as characters over finite field and cyclic difference sets

    Design and Evaluation of Stochastic Processes as Physical Radar Waveforms

    Get PDF
    Recent advances in waveform generation and in computational power have enabledthe design and implementation of new complex radar waveforms. Still despite these advances, in a waveform agile mode where the radar transmits unique waveforms for every pulse or a nonrepeating signal continuously, effective operation can be difficult due the waveform design requirements. In general, for radar waveforms to be both useful and physically robust they must achieve good autocorrelation sidelobes, be spectrally contained, and possess a constant amplitude envelope for high power operation. Meeting these design goals represents a tremendous computational overhead that can easily impede real-time operation and the overall effectiveness of the radar. This work addresses this concern in the context of random FM waveforms (RFM) that have been demonstrated in recent years in both simulation and in experiments to achieve low autocorrelation sidelobes through the high dimensionality of coherent integration when operating in a waveform agile mode. However, while they are effective, the approaches to design these waveforms require optimization of each individual waveform, making them subject to costly computational requirements. This dissertation takes a different approach. Since RFM waveforms are meant to be noise like in the first place, the waveforms here are instantiated as the sample functions of an underlying stochastic process called a waveform generating function (WGF). This approach enables the convenient generation of spectrally contained RFM waveforms for little more computational cost than pulling numbers from a random number generator (RNG). To do so, this work translates the traditional mathematical treatment of random variables and random processes to a more radar centric perspective such that the WGFs can be analytically evaluated as a function of the usefulness ofthe radar waveforms that they produce via metrics such as the expected matched filter response and the expected power spectral density (PSD). Further, two WGF models denoted as pulsed stochastic waveform generation (Pulsed StoWGe) and continuouswave stochastic waveform generation (CW-StoWGe) are devised as means to optimize WGFs to produce RFM waveform with good spectral containment and design flexibility between the degree of spectral containment and autocorrelation sidelobe levels for both pulsed and CW modes. This goal is achieved by leveraging gradient descent optimization methods to reduce the expected frequency template error (EFTE) cost function. The EFTE optimization is shown analytically using the metrics above, as well as others defined in this work and through simulation, to produce WGFs whose sample functions achieve these goals and thus produce useful random FM waveforms. To complete the theory-modeling-experimentation design life cycle, the resultant StoWGe waveforms are implemented in a loop-back configuration and are shown to be amenable to physical implementation

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication provides archival reports on developments in programs in space communications, radio navigation, radio science, and ground-based radio and radar astronomy. It reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standardization activities at the Jet Propulsion Laboratory for space data and information systems

    Generalized linear-in-parameter models : theory and audio signal processing applications

    Get PDF
    This thesis presents a mathematically oriented perspective to some basic concepts of digital signal processing. A general framework for the development of alternative signal and system representations is attained by defining a generalized linear-in-parameter model (GLM) configuration. The GLM provides a direct view into the origins of many familiar methods in signal processing, implying a variety of generalizations, and it serves as a natural introduction to rational orthonormal model structures. In particular, the conventional division between finite impulse response (FIR) and infinite impulse response (IIR) filtering methods is reconsidered. The latter part of the thesis consists of audio oriented case studies, including loudspeaker equalization, musical instrument body modeling, and room response modeling. The proposed collection of IIR filter design techniques is submitted to challenging modeling tasks. The most important practical contribution of this thesis is the introduction of a procedure for the optimization of rational orthonormal filter structures, called the BU-method. More generally, the BU-method and its variants, including the (complex) warped extension, the (C)WBU-method, can be consider as entirely new IIR filter design strategies.reviewe

    Journal of Telecommunications and Information Technology, 2003, nr 2

    Get PDF
    kwartalni

    Research on Cognitive Radio within the Freeband-AAF project

    Get PDF

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression
    corecore