
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Foundations of Active Control - Active Noise Reduction Helmets

Elmkjær, Torsten Haaber Leth; Jacobsen, Finn; Sjøstrøm, Svend Olof

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Elmkjær, T. H. L., Jacobsen, F., & Sjøstrøm, S. O. (2008). Foundations of Active Control - Active Noise
Reduction Helmets.

http://orbit.dtu.dk/en/publications/foundations-of-active-control--active-noise-reduction-helmets(a926b179-292d-4239-a0b7-d8e9c1aa3a9a).html


 

Torsten H. Leth Elmkjær 

Foundations of Active Control 
- Active Noise Reduction 
Helmets  
 
PhD thesis, November 2008 
 



Foundations of Active Control

Active Noise Reduction Helmets

Torsten H. Leth Elmkjær

Terma AS
Hovmarken 4
DK-8520 Lystrup
Denmark
tln@terma.com/

Ørsted, DTU
Ørsteds Plads, Acoustic Technology, Bldn.
352
DK-2800 Lyngby
Denmark

tln@terma.com/




Foundations of Active Control

Active Noise Reduction Helmets





Foundations of Active Control

Active Noise Reduction Helmets

Torsten H. Leth Elmkjær

Ph.D. Dissertation

Skødstrup, November 7, 2008

Terma AS
Hovmarken 4
DK-8520 Lystrup
Denmark
tln@terma.com/

Ørsted, DTU
Ørsteds Plads, Acoustic Technology, Bldn.
352
DK-2800 Lyngby
Denmark

tln@terma.com/


Technical University of Denmark Press

Publication Data:
Torsten H. Leth Elmkjær
Foundations of Active Control
Active Noise Reduction Helmets
ISBN 978-87-911-8485-7

Copyright © 2008 Elmkjær



This work is dedicated — Alma, Othilie and Marianne —





ABSTRACT

This Ph.D. thesis includes fundamental considerations about topologies, algorithms, implementa-
tions, methods etc., that can enter in the next generation of active control (AC) systems.

Specifically, a new variant of feedforward control referred to as confined feedforward active control
(CFFAC) is proposed. This topology is constituted from a set of reference sensors that are
positioned on a surface that completely confines the desired zones of quite. A set of performance
sensors monitors the achieved noise reduction. This CFFAC topology in turn is embedded in a
multiple-input and multiple-output (MIMO) system that facilitates both feedforward and feedback
control. The general system is then referred to as hybrid MIMO confined-feedforward feedback
(HMIMOCFFFB) active noise reduction (ANR) system. The investigation of a multi-channel

ANR system with hybrid feedforward and feedback topologies is motivated by requirements of
high ANR attenuation in extreme noise environments as typically experienced onboard airborne
military platforms. Noise recordings acquired on such platforms reveal very high sound pressure
levels often exceeding 140 dB re. 20 µPa. Moreover, these noise signals exhibit large temporal
as well as spatial variations. Inherent limitations are related to the use of stand-alone feedback
AC implementation commonly applied in modern ANR headset. In such systems the anti-noise
signal is notoriously behind the primary disturbance in time. Accordingly, in demanding military
applications requirements on more advanced and effective ANR system designs prevail.

The achievable ANR performance in a feedforward system (FFS) is to a large extent determined
by the degree of coherence between the set of reference sensors and the set of error sensors (or
performance sensors). Accordingly, this thesis includes a number of coherence analysis that are
based on diffuse sound field measurements in a reverberant chamber and measurements conducted
onboard a CH-47D Chinook helicopter. From these coherence analysis it can be concluded
that the CFFAC system with 10 reference sensors applied to pilot helmets potentially provides
approximately 25 dB noise reduction at 100 Hz decreasing to approximately 10 dB attenuation
at 900 Hz. Moreover, there is no apparent sign of saturation of the noise reduction with an
increasing number of reference sensors. Accordingly, by using more reference sensors the spatial
sampling rate is increased which in turn most likely also will lead to an increased ANR bandwidth.
The hybrid system is also constituted from a continuous-time feedback system (FBS) and a
discrete-time FBS. The continuous-time FBS is primarily responsible for additional broadband
noise reduction, whereas the discrete-time FBS primarily is responsible for the attenuation of
periodic signals.

Owing to the requirement on causal operation of a physical AC system time delays will also to a
large extent determine the achievable performance in FFS design and in particular in FBS design.
A quantity referred to as the spatially-weighted-averaged acquisition lead time is introduced to
represent the averaged time-advance obtained by each reference sensor relative to each perfor-
mance sensor involved in the proposed CFFAC system. A problem exist when one attempts to
model a physical spatially distributed system with no obvious input and output channel defi-
nition by a finite lumped-elements multi-channel system. Usually, no unique transfer function
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exist as the system is not point-wise excited, but excited over an area as in the case of diffuse
sound field illumination.

A new method for acoustical signal processing that is referred to as joint-channel residual spectral
analysis (JCRSA) is developed. The JCRSA method is used for the extraction of joint signal
information from different observation positions in space. The idea is to separate each spectrum
in a coherent spectrum and a residual spectrum. The contents of the coherent spectrum can be
obtained from a linear superposition of the other signals, whereas the residual spectrum bears
information that is unique to each specific channel. In a specific example a system consisting of
10 reference sensors flush-mounted on a Gentex HGU-55/P helmet that in turn is mounted on a
head and torso simulator (HATS), is exposed to diffuse sound field illumination. By applying the
JCRSA method the spatially-weighted-averaged acquisition lead times provided by the reference
sensors relative to the performance sensors are estimated to be as much as 800-900µs.

The thesis also includes a detailed description of a new idea for a computational efficient imple-
mentation of a multi-channel system in which the adaptive filters for adaptive control as well as
the adaptive filters used for plant modeling are allowing to take different lengths.

A new and more general variant of the affine projection algorithm has been developed. This
adaptive filter algorithm that is denoted by multiple-channel-αγΠε-affine projection algorithm
includes parameters for both weight-driven and control-effort-driven leakage, adaptive tap-weight
regularization as well as numerical regularization. A simplification of this algorithm leads to the
MC-αγΠε-NLMS algorithm that is an extended variant of the NLMS algorithm.

Off-line simultaneous system identification capabilities of a complex system involving a total 4
secondary paths, 20 feedback paths and 4 control-performance paths is demonstrated. Different
adaptive filters and parameterizations hereof are examined.

A novel and general multi-rate adaptive filter for adaptive AC has been developed. Specifically,
a system involving 3 different sampling rates has been implemented and the results hereof are
presented. In this multi-rate system conversion take place at highly oversampled rates in order to
reduce the delays in the secondary paths. The non-adaptive control is performed at a somewhat
lower rate. Hereby, a compromise between delays related to the generation of the anti-noise
signal and the computational load involved is ensured. Finally, the adaptive control that might
be computational intensive takes place at an even slower sampling rate hereby relaxing the
requirements on a high bandwidth. It is demonstrated that computational savings as high as
40% can be achieved in a 192, 24, 3 kHz triple-rate system as compared with a 24 kHz single-rate
system without sacrificing the ANR performance.

It is common engineering practice to apply an assumption of Gaussian distributed signals. How-
ever, many phenomena encountered in daily life fall into a generalization of the normal distri-
bution that is referred to as α-stable distributions. Noise sources encountered in the domain of
AC are sometimes best fitted to the family of α-stable distributions. This thesis includes a brief
technical introduction to the stable distributions and description of the adaptive filter that can
be used for AC.

Large parts of the HMIMOCFFFB system including the developed methods and algorithms have
been implemented in a real-time environment (RTE) that includes a signal processor. Test on the
helmet system will continue and a dedicated reference test unit (RTU) for AC is currently being
designed.



RESUMÉ (IN DANISH)

Denne Ph.D. afhandling omfatter fundamentale betragtninger omkring topologier, algoritmer,
implementeringer, metoder etc., der kan indg̊a i næste generation af aktive kontrol systemer.

Specifikt foresl̊as der en variant af feedforward kontrol refereret til som indesluttet feedforward
aktiv kontrol forkortet IFFAK. I denne topologi indg̊ar et sæt reference sensorer, der er positioneret
p̊a en overflade, der fuldt ud indeslutter de ønskede stille-zoner, hvori et sæt performance sensor-
er monitorerer den opn̊aede støjreduktion. Denne indesluttet-feedforward aktiv kontrol (IFFAK)
topologi er indlejret i et mange-input-mange-output (MIMO) system, der omfatter b̊ade feedfor-
ward og feedback kontrol. Det totale system er refereret til som et hybrid MIMO indesluttet-
feedforward FBS (HMIMOIFFFBS).

Undersøgelsen af et komplekst multi-kanals aktiv støjreduktion (ASR) system med hybrid feed-
forward og feedback topologier er motiveret ud fra krav om høj aktiv støjdæmpning i ekstreme
støjmiljøer, som f.eks. opleves ombord p̊a luftb̊arne militære platforme. Støjoptagelser erhvervet
ombord p̊a s̊adanne fartøjer afslører lydtryk, der ofte overstiger 140 dB re. 20 µPa. Endvidere
udviser disse støjsignaler store tidslige s̊avel som spatiale variationer. Naturlige begrænsninger
i feedback baserede aktiv kontrol (AK) systemer som typisk anvendes i moderne ASR støjværn,
hvor modstøjssignalet notorisk er forsinket i forhold til den primære forstyrrelse, sætter en øvre
grænse for, hvor stor en aktiv dæmpning, der kan opn̊aes. S̊aledes, hersker der i krævende militære
applikationer et krav om nye mere avancerede og effektive ASR løsninger.

Den opn̊aelige ASR i et FFS er i stor udstrækning bestemt af kohærensen mellem sættet af reference
sensorer og sættet af fejl- eller performance sensorer. S̊aledes omfatter denne afhandling en del
kohærensundersøgelser baseret p̊a diffustfeltsmålinger i et støjkammer samt målinger, der er
foretaget i en CH-47D Chinook helikopter. Fra disse kohærensanalyser kan det konkluderes, at
IFFAK systemet anvendt p̊a pilothjælme giver mulighed for ca. 25 dB støjreduktion ved 100 Hz
faldende til ca. 10 dB dæmpning ved 900 Hz. Endvidere, er der ikke nogen umiddelbare tegn p̊a
en mætning med stigende antal reference sensorer. S̊aledes vil et større antal reference sensor
forventeligt kunne øge den øvre ASR frekvensgrænse for systemet, der bestemmes af den rumlige
samplingstæthed. I hybridsystemet indg̊ar der b̊ade et kontinuerlig-tids FBS og et diskret-tids
FBS. Disse vil bidrage med yderligere støjreduktion primært overfor bredb̊andet støj henholdsvis
overfor periodiske signaler.

Tidsforsinkelser udgør en anden bestemmende faktor for den opn̊aelige effekt i et FFS design,
men specielt i et FBS design, eftersom fysiske systemer altid opererer kausalt. For at vurdere
størrelsesordenen af det tidsforspring som hver reference sensor giver i forhold til hver fejlsensor i
det foresl̊aede IFFAK system indføres en størrelse, der betegnes som den spatialt-vægtet middeltids-
gevinst. Der eksisterer imidlertid et problem, n̊ar man forsøger at modellere et fysisk system med
en endelig rummelig udstrækning og hvor der s̊aledes ikke er nogen indlysende input-output def-
inition med et endeligt-element multi-kanals system. Som regel eksisterer der ikke nogen unik
overføringsfunktion eftersom systemet ikke bliver punktvist stimuleret, men derimod stimuleret
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over et areal som for eksempel under diffustfelts belysning.

En ny akustisk signalbehandlingsmetode, der betegnes som samlet kanal residual spektral analyse
(SKRSA) er udviklet. Denne metode benyttes til ekstraktion af fælles signal information fra forskel-
lige observationspunkter i rummet. Ideen er at separere hvert spektrum i et kohærent spektrum
og et residual spektrum. Indholdet i det kohærente spektrum kan opn̊aes som en linear kombina-
tion af spektrene fra de andre kanaler, hvorimod indholdet af det residuale spektrum er unikt for
den p̊agældende kanal. I et specifikt eksempel, belyses et system best̊aende af et sæt reference
sensorer monteret p̊a en Gentex HGU-55/P hjælm, der igen er p̊amonteret en hoved og torso sim-
ulator med et diffust lydfelt. Under anvendelse af SKRSA metoden estimeres den spatialt-vægtet
middeltidsgevinst til at være i størrelsesorden 800-900µs.

Afhandlingen omfatter ogs̊a en detaljeret beskrivelse af en ny idé til en beregningsmæssig effektiv
implementering af et multi-kanals system, hvor b̊ade de adaptive filtre, der indg̊ar i den aktive
kontrol s̊avel som de adaptive filtre, der indg̊ar til modellering af systemoverføringsfunktionerne
kan antage individuelle længder.

En ny og mere generel variant af APA algoritmen er udviklet. Denne adaptive filter algoritme
inkluderer parametre for b̊ade wægt-styret og kontrol-effekt-styret lækage, adaptiv tap-vægte
regulering s̊avel som numerisk regulering og betegnes MC-αγΠε-APA. En simplificering af denne
algoritme, fører til MC-αγΠε-NLMS algoritmen, der er en udbygget variant af NLMS algoritmen.

Systemets evne til off-line simultant at kunne identificere et complex system best̊aende af ialt 28
enkelt systemgrene bliver demonstreret. Forskellig adaptive filtre samt parametering heraf bliver
udforsket.

Et nyt og generelt multi-hastigheds systemkoncept for aktiv kontrol er udviklet. Specifikt im-
plementeres og testes et system, hvor der i alt samples med tre forskellige hastigheder. P̊a
multi-hastighedsniveau 0 benyttes en meget høj samplingsfrekvens med henblik p̊a at reduc-
ere forsinkelser i konverteringstrinene, der indg̊ar i de sekundære grene. Den ikke adaptive kon-
trol udføres p̊a det lavere multi-hastigheds niveau 1. Herved tilsikres et kompromis imellem
forsinkelser til afgivelse af modstøjssignaler og krav til en endelig system b̊andbredde. Sluttelig
foreg̊ar den adaptive kontrol ved det lavere multi-hastigheds niveau 2. Herved begrænses den ofte
beregningsmæssige tunge adaptive filter opdatering til en s̊a lav samplingsfrekvens som muligt.

I et specifikt eksempel demonstreres, at en beregningsmæssig besparelse p̊a ca. 40% kan opn̊as
under opretholdelse af samme ASR ved nedsampling fra multi-hastighedsniveau 1 p̊a 24 kHz til
multi-hastighedsniveau 2 p̊a 3 kHz.

Det er en almindelig ingeniørpraksis at foretage en antagelse om Gaussisk fordelte signaler. Imi-
dlertid, er mange fænomener i dagligdagen bedst modelleret med s̊akaldte alfa-stabile fordelings
funktioner. Dette gælder ogs̊a for støjsignaler, der ønskes undertrykt ved hjælp af et aktivt
støjdæmpningssystem. Afhandlingen indholder en kort teknisk beskrivelse af de stabile fordel-
ingsfunktioner samt adaptive filter algoritmer for disse type signaler.

Store dele af HMIMOIFFFB systemet samt de udviklede metoder og algoritmer er implementeret i
et realtids miljø, der inkluderer en signal processor. I første omgang vil disse blive aftestet p̊a en
til formålet designet aktive kontrol testenhed.



ACKNOWLEDGEMENTS

I am grateful to my employer, Terma AS, for formulating and sponsoring this project. In par-
ticular I wish to appreciate my colleague Torben Jørgensen who originally proposed the Ph.D.

project for his enthusiasm and engagement in making avionics audio system a business area at
Terma.

My supervisor Finn Jacobsen is acknowledged for in the first place for daring to take the role
as a supervisor for an antenna specialist in the field of acoustics and signal processing and in
the second place for dealing with management issues during the course of the project. I am also
thankful for his critical review of this manuscript and for providing good comments that have
improved the overall readability of the report.

I am also indebted to Jacob Krogh Kristoffersen who has contributed in many practical contexts
during the project especially in the development of the Terma noise chamber facility and the DSP

implementation of part of the ACSV simulator pertinent for the RTE. Jacob Krogh Kristoffersen
is also acknowledged for reviewing Part II and Part III of this report.

I also wish to thank Jakob Krogh-Mayntzhusen1 for his DSP hardware board design and together
with Torben Jørgensen for their assistance during the F-16 noise measurements and rehearses.

My thanks also go to Chlinton Møller Nielsen for many fruitful discussions in the field of signal
processing and for taking over the responsibilities related to the transducer selection and test.
Moreover, Chlinton Møller Nielsen is thanked for his and Jakob Krogh-Mayntzhusen hard work
effort in connection with the Chinook CH-47D helicopter noise recordings. Birger Fauerholt
Nielsen is acknowledged for his work on real-time environment (RTE) implementation of the
adaptive filter algorithms.

Hans-Jørgen Bjerre is acknowledged for his workmanship in producing the mechanical fixture for
the recording system.

Librarian Inge Merete Jensen and Bitten Marie Welling are greatly thanked for their assistance
in the acquisition of most of the material listed in the Bibliography.

Mogens Ohlrich is thanked for his engagement as section leader at the institute and teaching me
in the field of in structure-borne sound. Finn Agerkvist and Knud Rasmussen are acknowledged
for fruitful discussions concerning the choice and design of electroacoustics transducers and rec-
ommendations of manufactures. Torben Poulsen is thanked for helpful discussions related to the
psychoacoustic part and related to standard test procedures for hearing protection devices.

I am also greatly indebted to Tom Petersen for his assistance with miscellaneous software instal-
lations.

The Danish Flight Command is thanked for the cooperation in connection with the F-16 noise
measurements. Special thanks shall be given to flight Captain Kasper B. Nielsen (PEL) for his

1Formerly known as Jakob Krogh-Sørensen.



xiv

enthusiastic effort during the planning of the measurement and for flight. I also grateful for DTU-
Ørsted for in the initial phase of the project to lend us one of their PULSE recording systems.
The Engineering College of Aarhus is for providing the head and torso simulator (HATS).

I also appreciate the hospitality by the ANR people at Thayer’s School of Engineering Dartmouth
College, NH, USA during my summer stay 2005. In particular I express my gratefulness to Bob
Collier for hosting me and for encouraging us to make joint active noise reduction (ANR) efforts.

Finally, I am deeply indebted to my wife Marianne Astrid Elmkjær, who so generously accepted
the extra responsibilities that her husband neglected while authoring this report.



PREFACE

This report is submitted in partial fulfillment of the requirements of the Danish Ph.D. degree.
The work has financially supported by Terma and conducted under the supervision of Asso-
ciate Professor Finn Jacobsen at the Section of Acoustic Technology at Ørsted ·DTU, Technical
University of Denmark.



xvi



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Brief Technical Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Passive HPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.2 Active HPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Organization of Volume I of the Thesis . . . . . . . . . . . . . . . . . . . . 10

1.5.2 Organization of Volume II of the Thesis . . . . . . . . . . . . . . . . . . . 13

Part I Active Control of Fields 15

2. Coherence Functions and Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Imperfect Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 MIMO channel power spectral density matrix . . . . . . . . . . . . . . . . 21

2.2.3 Ordinary Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Partial Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Multiple Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Joint-Channel-Residual Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Joint-Channel-Residual Spectral Analysis Matrix Formulation . . . . . . . 30

2.3.2 Joint-Channel-Residual Spectral Analysis Iterative Procedure . . . . . . . 31

2.3.3 Joint-Channel-Residual Spectral Analysis MIMO System . . . . . . . . . . 31

2.4 System Identification of Primary Pathes . . . . . . . . . . . . . . . . . . . . . . . 32



xviii Contents

2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 System Identification of Primary Pathes Gj,m
ex . . . . . . . . . . . . . . . . 34

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.A Multiple-Channel Signal Detection and Generalized Coherence . . . . . . . . . . 102

3. Causality Constraints and Spectral Factorization . . . . . . . . . . . . . . . . . . . . . 105

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.2 Spectral Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.2.1 z-Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.2.2 Spectral Factorization Definition . . . . . . . . . . . . . . . . . . . . . . . 107

3.2.3 Spectral Factorization in Active Control . . . . . . . . . . . . . . . . . . . 110

3.3 Decomposition of Reference Signals and Disturbance Signals . . . . . . . . . . . . 135

3.4 Causality Constraints in a Closed-Back Headset System . . . . . . . . . . . . . . 146

3.4.1 Vibro-Acoustical Model Helmet Closed-Back Headset System . . . . . . . 146

3.4.2 Causality Constraints Closed-Back Headset System, 2 Reference Sensors . 157

3.5 Spectral Factorization Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

3.5.1 Cepstral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

3.5.2 Multi-Channel Prediction Error Filter Spectral Factorization Method . . 206

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

3.A Spectral Factorization of a Pink Noise Signal . . . . . . . . . . . . . . . . . . . . 231

Part II Active Noise Controller 237

4. System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

4.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

4.2 Hybrid Continuous-Time Discrete-Time Topology . . . . . . . . . . . . . . . . . . 239

4.3 Continuous-Time Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

4.4 Discrete-Time Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

4.5 Hybrid Feedforward-Feedback Control . . . . . . . . . . . . . . . . . . . . . . . . 242

4.6 Internal Model Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

4.7 Adaptive Inverse Plant Correction . . . . . . . . . . . . . . . . . . . . . . . . . . 245



Contents xix

5. Multirate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

5.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

5.2 Multirate System Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

5.3 Sensed Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5.4 Actuated Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

5.5 Group Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5.5.1 Decomposition of Group Delays . . . . . . . . . . . . . . . . . . . . . . . . 260

5.5.2 Examples of Group Delays . . . . . . . . . . . . . . . . . . . . . . . . . . 261

5.A Group and Phase Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

5.A.1 Anti-Aliasing and Decimation/Interpolation Filter Constraints . . . . . . 269

Part III Adaptive Filters for Active Noise Control 271

6. Adaptive Filtering for Active Control of Sound and Vibration . . . . . . . . . . . . . . 273

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

6.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

6.2 Accommodation of Plants for Adaptive Filters . . . . . . . . . . . . . . . . . . . 274

6.3 Family of Filtered-x Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.3.1 Ordinary Filtered-x Method . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.3.2 Modified Filtered-x Method . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.4 Family of Filtered-Error Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

6.4.1 Adjoint LMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

6.4.2 Secondary Path Equalization . . . . . . . . . . . . . . . . . . . . . . . . . 278

6.4.3 Hybrid FeLMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

6.5 Solutions to Acoustic or Structural Feedback . . . . . . . . . . . . . . . . . . . . 280

6.6 System Identification: Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

6.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

6.6.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

6.7 Active Control using IIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

6.8 Bibliographic Notes on Nonlinear Active Control . . . . . . . . . . . . . . . . . . 284

7. Hybrid Multiple-Input-Multiple-Output Feedforward Feedback System . . . . . . . . . 291

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291



xx Contents

7.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

7.2 Feedback Controller - Adaptive Filter Topology . . . . . . . . . . . . . . . . . . . 292

7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

7.2.2 Error Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

7.2.3 Disturbance Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

7.2.4 Unfiltered and Filtered Reference Signals . . . . . . . . . . . . . . . . . . 296

7.2.5 Tap-Weight Update Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 298

7.2.6 Control Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

7.2.7 Rejection Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

7.2.8 Performance Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

7.2.9 Tap-Weight Estimates Copying . . . . . . . . . . . . . . . . . . . . . . . . 301

7.2.10 Feedback Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . . . 301

7.2.11 Feedback Algorithm Computational Considerations . . . . . . . . . . . . . 302

7.3 Feedforward Controller - Adaptive Filter Topology . . . . . . . . . . . . . . . . . 303

7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

7.3.2 Error Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

7.3.3 Disturbance Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

7.3.4 Unfiltered and Filtered Reference Signals . . . . . . . . . . . . . . . . . . 305

7.3.5 Tap-Weight Update Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 307

7.3.6 Control Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

7.3.7 Rejection Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

7.3.8 Feedback Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

7.3.9 Performance Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

7.3.10 Tap-Weight Estimates Copying . . . . . . . . . . . . . . . . . . . . . . . . 312

7.3.11 Feedforward Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . . 312

7.3.12 FeedForward Algorithm Computational Considerations . . . . . . . . . . . 313

7.4 Feedforward Feedback Controller - Adaptive Filter Topology . . . . . . . . . . . 314

7.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

7.4.2 Error Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

7.4.3 Disturbance Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

7.4.4 Unfiltered and Filtered Reference Signals . . . . . . . . . . . . . . . . . . 316

7.4.5 Tap-Weight Update Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 317

7.4.6 Control Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317



Contents xxi

7.4.7 Rejection Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

7.4.8 Feedback Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

7.4.9 Performance Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

7.4.10 Feedforwardback Algorithm Summary . . . . . . . . . . . . . . . . . . . . 319

7.5 Feedforwardback Integrated Communication Controller - ADFT . . . . . . . . . . 320

7.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

7.5.2 Error Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

7.5.3 Disturbance Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

7.5.4 Unfiltered and Filtered Reference Signals . . . . . . . . . . . . . . . . . . 322

7.5.5 Tap-Weight Update Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 323

7.5.6 Combined Control and Signal Source Output . . . . . . . . . . . . . . . . 324

7.5.7 Rejection Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

7.5.8 Feedback Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

7.5.9 Performance Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

7.5.10 Feedforwardback Algorithm Summary . . . . . . . . . . . . . . . . . . . . 325

7.6 Feedforwardback Integrated Com. Controller On-Line System ID - ADFT . . . . 326

7.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

7.6.2 Reference Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

7.6.3 Desired Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

7.6.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

7.6.5 Error Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

7.6.6 Tap-Weight Update Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 331

7.6.7 Identification Signal Cross Terms . . . . . . . . . . . . . . . . . . . . . . . 331

7.6.8 Plant Estimates Copying . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

7.6.9 System Identification Algorithm Summary . . . . . . . . . . . . . . . . . . 333

7.7 System Identification of Secondary Pathes . . . . . . . . . . . . . . . . . . . . . . 333

7.7.1 Reference Plants for System Identification . . . . . . . . . . . . . . . . . . 334

7.7.2 System Identification of Secondary Pathes gl,m
ey . . . . . . . . . . . . . . . 334

7.7.3 System Identification of Feedback Pathes gl,j
xy . . . . . . . . . . . . . . . . 354

7.8 Active Control Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

7.A Array Description of Feedforward Feedback System . . . . . . . . . . . . . . . . . 364

8. Adaptive Filtering Algorithms for Linear Time-Variant Systems . . . . . . . . . . . . . 371

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371



xxii Contents

8.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

8.2 Modes of Adaptive Filtering Operation . . . . . . . . . . . . . . . . . . . . . . . . 373

8.3 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

8.3.1 Time-Domain Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . 374

8.3.2 Frequency-Domain Cost Functions . . . . . . . . . . . . . . . . . . . . . . 377

8.3.3 Weight-Driven Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

8.3.4 Control Output-Driven Leakage . . . . . . . . . . . . . . . . . . . . . . . . 382

8.3.5 Tap-Weight Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 384

8.4 Wiener Optimal Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

8.4.1 Time-Domain Causality-Finite-Order-Constrained Wiener Filter . . . . . 386

8.4.2 z-Domain Causality-Finite-Order-Constrained Wiener Filter . . . . . . . . 387

8.5 Method of Steepest Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

8.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

8.5.2 Method of Steepest Descent in the Time Domain . . . . . . . . . . . . . . 388

8.5.3 Method of Steepest Descent in the Frequency Domain . . . . . . . . . . . 389

8.5.4 Linear-Least-Mean-Squares Estimation . . . . . . . . . . . . . . . . . . . . 389

8.5.5 Numerical Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

8.5.6 Variant of the Method of Steepest Descent . . . . . . . . . . . . . . . . . 394

8.5.7 Linear Least-Mean-Mixed-Even-Order Estimation . . . . . . . . . . . . . 395

8.5.8 Initial Tap-weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

8.6 Stochastic Gradient Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

8.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

8.6.2 Fundamentals of Stochastic Gradient Algorithms . . . . . . . . . . . . . . 396

8.6.3 αγΠε-Affine Projection Algorithm . . . . . . . . . . . . . . . . . . . . . . 398

8.6.4 Affine Projection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 400

8.6.5 Least-Mean-Square Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 402

8.6.6 The Family of Least Mean Mixed-Even-Order Adaptive Algorithms . . . 402

8.6.7 Finite Precision Environment . . . . . . . . . . . . . . . . . . . . . . . . . 403

8.7 Transform Domain Adaptive Filtering . . . . . . . . . . . . . . . . . . . . . . . . 403

8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

8.A H2/H∞ Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

8.A.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

8.B Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409



Contents xxiii

8.B.1 Sayed Notation versus Classic Notation . . . . . . . . . . . . . . . . . . . 409

8.B.2 APA Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

8.B.3 Complex Gradient Differentiation Rules . . . . . . . . . . . . . . . . . . . 412

9. αγΠε-APA Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

9.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

9.1.2 Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

9.1.3 Algebra of Weighted Norms . . . . . . . . . . . . . . . . . . . . . . . . . . 420

9.1.4 Algebra of Kronecker Products . . . . . . . . . . . . . . . . . . . . . . . . 421

9.2 Linear Estimation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

9.2.1 Error Quantities in Stochastic Gradient Methods . . . . . . . . . . . . . . 425

9.2.2 Convergence of Stochastic Gradient Methods . . . . . . . . . . . . . . . . 426

9.2.3 Remarks on Linear Estimation Model . . . . . . . . . . . . . . . . . . . . 426

9.3 Transient Analysis of MC-αγΠε-APA . . . . . . . . . . . . . . . . . . . . . . . . . 427

9.3.1 Transient Analysis of MC-αγΠε-APA, Mean Relation . . . . . . . . . . . . 430

9.3.2 Transient Analysis of MC-αγΠε-APA, Weighted Energy Relation . . . . . . 431

9.3.3 Transient Analysis of MC-αγΠε-APA, Weighted Variance Relation . . . . . 433

9.4 Stability Analysis of MC-αγΠε-APA . . . . . . . . . . . . . . . . . . . . . . . . . . 436

9.4.1 Stability Analysis of MC-αγΠε-APA Time-Variant State Transition Matrix 436

9.4.2 Stability Analysis of MC-αγΠε-APA, Slowly Varying State Transition Mat 437

9.4.3 Stability Analysis of MC-αγΠε-APA, State Space Description . . . . . . . 439

9.4.4 Transient Analysis of MC-αγΠε-APA, State Space Description . . . . . . . 444

9.4.5 Mean and Mean-Square Performance of MC-αγΠε-APA . . . . . . . . . . . 450

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

9.A Miscellaneous Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

9.A.1 Transient Analysis of MC-αγΠε-APA, Mean Relation . . . . . . . . . . . . 453

9.A.2 Transient Analysis of MC-αγΠε-APA, Weighted Energy Relation, Deriv . . 458

9.A.3 Transient Analysis of MC-αγΠε-APA, Weighted Variance Relation, Deriv . 460

Part IV Electroacoustical and Vibroacoustical Environment 469

10. Hearing Protector: Passive Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . 471

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471



xxiv Contents

10.2 Brief Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

10.3 Lumped Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

10.3.1 Parameter Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

11. Hearing Protector: Active Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

11.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

11.2 Acoustical and Electroacoustical Environment . . . . . . . . . . . . . . . . . . . . 482

11.2.1 Primary Sound Pressure Field . . . . . . . . . . . . . . . . . . . . . . . . 482

11.2.2 Secondary Sound Pressure Field . . . . . . . . . . . . . . . . . . . . . . . 482

11.2.3 Residual Sound Pressure Field . . . . . . . . . . . . . . . . . . . . . . . . 482

11.2.4 Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

11.3 Terma Earcup Audio System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

11.4 Lumped Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

11.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

11.5 System Identification of Secondary Pathes . . . . . . . . . . . . . . . . . . . . . . 489

11.5.1 System Identification of Secondary Pathes gl,m
ey . . . . . . . . . . . . . . . 496

11.5.2 System Identification of Feedback Pathes gl,j
xy . . . . . . . . . . . . . . . . 508

11.5.3 System Identification of Performance Pathes gl,k
py . . . . . . . . . . . . . . 508

12. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

12.1 Major Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

12.2 Other Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

12.3 Present Research and Development Activities . . . . . . . . . . . . . . . . . . . . 522

12.4 Future Research and Development Activities . . . . . . . . . . . . . . . . . . . . 523

Appendix 527

A. Active Noise Control Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

A.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

A.2 ANC Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

A.2.1 ANC Attenuation Time-Frequency Domain . . . . . . . . . . . . . . . . . . 530

A.2.2 ANC Attenuation Time Domain . . . . . . . . . . . . . . . . . . . . . . . . 531



Contents xxv

A.2.3 ANC Attenuation Frequency Domain . . . . . . . . . . . . . . . . . . . . . 532

A.3 Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

A.3.1 Delays in Secondary Signals Generation . . . . . . . . . . . . . . . . . . . 532

A.3.2 Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

B. Random Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

B.1 Signals and Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

B.1.1 Signal Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

B.1.2 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

B.1.3 Signal Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

C. Statistical Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

C.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

C.2 Modified Periodogram Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

C.3 Estimation Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

C.3.1 Autospectral Density Estimate . . . . . . . . . . . . . . . . . . . . . . . . 542

C.3.2 Ordinary Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

C.3.3 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

C.3.4 Multiple Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

C.3.5 Partial Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

C.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

D. Analysis of Noise Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

D.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

D.1.1 Appendix Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

D.2 Preparation of Helmets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

D.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

D.2.2 Flight Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

D.2.3 Measurement Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

D.3 F-16/B Fighting Falcon Noise Recordings . . . . . . . . . . . . . . . . . . . . . . 553

D.3.1 Installation in F-16/B Cockpit . . . . . . . . . . . . . . . . . . . . . . . . 553

D.3.2 Data Acquisition and Processing . . . . . . . . . . . . . . . . . . . . . . . 555

D.3.3 Measurement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

D.3.4 Scenario at 85% Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

D.3.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567



xxvi Contents

D.4 Chinook CH-47D Helicopter Noise Recordings . . . . . . . . . . . . . . . . . . . . 567

D.4.1 Measurement Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

D.4.2 Scenario with Engines and Auxiliary Power Unit (APU) turned off . . . . 576

D.4.3 Scenario Flight at Constant Altitude and High Speed . . . . . . . . . . . 583

E. Random Noise Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

E.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

E.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

E.2 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

Part V Active Control of Fields II 617

F. Acoustic, Electromagnetic and Elastic Field Theory . . . . . . . . . . . . . . . . . . . 619

F.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

F.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

F.2 General Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

F.2.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

F.2.2 Field Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

F.2.3 Constitutive Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

F.2.4 Taylor Expansion of Field Variables . . . . . . . . . . . . . . . . . . . . . 622

F.2.5 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

F.2.6 Time-Domain Frequency-Domain . . . . . . . . . . . . . . . . . . . . . . . 624

F.3 Field Theory of Fluid Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

F.3.1 Thermodynamical Considerations . . . . . . . . . . . . . . . . . . . . . . . 626

F.3.2 Material Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

F.3.3 Reynolds Transport Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 640

F.3.4 Dilatation Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

F.3.5 Conservation of Fluid Mass . . . . . . . . . . . . . . . . . . . . . . . . . . 642

F.3.6 Continuity in Fluid Moment Density . . . . . . . . . . . . . . . . . . . . . 643

F.3.7 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

F.3.8 Entropy Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

F.3.9 Equation of State (Constitutive Relation) . . . . . . . . . . . . . . . . . . 648

F.3.10 Attenuation of Sound Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 653

F.3.11 Acoustical Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654



Contents xxvii

F.3.12 Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

F.3.13 Acoustic Energy Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

F.4 Solid Mechanics Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

F.5 Electromagnetic Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

F.6 Discussion of Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

F.6.1 Continuity Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

F.6.2 Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

F.6.3 Curvilinear Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

F.6.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

F.6.5 Scalar and Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

F.6.6 Integral Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

F.7 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

F.8 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

F.9 Pressure and Velocity Fields from Volume Integrals . . . . . . . . . . . . . . . . . 675

F.10 Pressure and Velocity Fields from Surface Integrals . . . . . . . . . . . . . . . . . 676

F.11 Vector Helmholtz Equation (L,M,N) Vector Eigenfunction Decomposition . . . 679

F.11.1 Vector Eigenfunction (L,M,N) Separable Coordinates . . . . . . . . . . . 680

F.12 Spherical Time-Domain Expansions . . . . . . . . . . . . . . . . . . . . . . . . . 681

F.A Material Derivative Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

F.B Reynolds Transport Theorem Derivation . . . . . . . . . . . . . . . . . . . . . . . 685

F.C Specific Entropy Rate of Change Derivation . . . . . . . . . . . . . . . . . . . . . 686

F.D Pressure and Velocity Fields from Surface Integrals; Derivation . . . . . . . . . . 687

F.D.1 Pressure Field from Surface Integrals; Derivation . . . . . . . . . . . . . . 687

F.D.2 Velocity Field from Surface Integrals; Derivation . . . . . . . . . . . . . . 689

F.E Miscellaneous Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

F.E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

F.E.2 Functions of Retarded Time . . . . . . . . . . . . . . . . . . . . . . . . . . 691

F.E.3 Pressure and Velocity Fields from Volume Integrals; Derivation . . . . . . 696

F.F Time-Dependent Potential Functions . . . . . . . . . . . . . . . . . . . . . . . . . 698

F.F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

F.F.2 Kellogg’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

F.F.3 First-order Derivatives of Spacial Potential Functions . . . . . . . . . . . 700

F.F.4 Second-order Derivatives of Spacial Potential Functions . . . . . . . . . . 702



xxviii Contents

F.F.5 First-order Derivatives of Space-Time Potential Functions . . . . . . . . . 706

G. Spherical Near-Field Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

G.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

G.2 Spherical Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

G.3 Scalar Homogeneous Helmholtz Equation in Spherical Coordinates . . . . . . . . 708

G.3.1 Scalar Homogeneous Helmholtz Equation Radial Function . . . . . . . . . 710

G.3.2 Scalar Homogeneous Helmholtz Equation Polar Function . . . . . . . . . 711

G.3.3 Scalar Homogeneous Helmholtz Equation Azimuthal Function . . . . . . . 711

G.3.4 Scalar Homogeneous Helmholtz Equation Summary . . . . . . . . . . . . 712

G.4 Vector Homogeneous Helmholtz Equation in Spherical Coordinates . . . . . . . . 712

G.4.1 Field Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

G.4.2 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

G.4.3 Translation of Spherical Waves . . . . . . . . . . . . . . . . . . . . . . . . 715

G.5 Fast Spherical Fourier Transform Techniques . . . . . . . . . . . . . . . . . . . . 716

H. Applied Active Control of Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

H.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

H.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720

H.2 Reference Test Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720

H.3 Non-stationary Primary, Secondary Source and Control Volume Positions in Space 722

H.3.1 Moving Primary Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . 722

H.3.2 Moving Control Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . 722

H.3.3 Moving Secondary Noise Sources . . . . . . . . . . . . . . . . . . . . . . . 722

Part VI Adaptive Filters for Active Noise Control II 727

I. Adaptive Filter Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

I.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

I.2 Adaptive Finite-Duration Impulse Response Filters . . . . . . . . . . . . . . . . . 730

I.3 Adaptive Infinite-Duration Impulse Response Filters . . . . . . . . . . . . . . . . 732

J. Adaptive Filtering Fast Algorithms Linear Time-Variant Systems . . . . . . . . . . . . 737

J.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737



Contents xxix

J.2 General Order-Update Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

J.3 Fast RLS array algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

J.A Efficient RLS Algorithm Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 742

J.A.1 Order Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

J.A.2 Time-Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

J.A.3 General Order Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

J.B Leaky Recursive Least-Squares Algorithm . . . . . . . . . . . . . . . . . . . . . . 751

J.B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751

J.B.2 Leaky Exponentially-Weighted Regularized RLS Algorithm . . . . . . . . . 753

J.B.3 Exponentially-Weighted Regularized RLS Algorithm . . . . . . . . . . . . 754

J.B.4 Leaky-Exponentially-Weighted Sliding Window RLS Algorithm . . . . . . 754

J.B.5 Exponentially-Weighted Sliding Window RLS Algorithm . . . . . . . . . . 757

K. Orthonormal Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

K.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

K.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

K.2 Orthonormal Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

K.3 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

K.4 Kautz Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

K.5 Laguerre Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

K.6 Mixed Kautz Laguerre Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

K.7 Optimization of Free Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

K.7.1 Gradient Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 765

K.7.2 Suboptimal Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

K.8 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

L. Alpha-Stable Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

L.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

L.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774

L.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774

L.3 Symmetric Alpha-Stable Distributions . . . . . . . . . . . . . . . . . . . . . . . . 777

L.3.1 Sub Gaussian Symmetric Alpha-Stable Distributions . . . . . . . . . . . . 778

L.4 Positive Alpha-Stable Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 779

L.5 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779



xxx Contents

L.5.1 Parameter Estimation Symmetric α-Stable Distributions . . . . . . . . . . 779

L.6 Signal Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

L.7 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

L.8 Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

L.9 Future Research Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

M. Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

M.1 Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

M.1.1 Continuous-Time Fourier Transforms . . . . . . . . . . . . . . . . . . . . . 787

M.1.2 Discrete-Time Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . 788

N. Signal Aliasing Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

N.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

N.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792

N.2 Decomposition of Signals into Aliased and Unaliased Components . . . . . . . . 792

N.2.1 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792

N.2.2 Unaliased, Aliased and Cross Aliased-Unaliased Correlation Functions . . 793

N.2.3 Unaliased, Aliased and Cross Aliased-Unaliased Power Spectra . . . . . . 797

N.2.4 Anti-Aliasing and Decimation Filters . . . . . . . . . . . . . . . . . . . . . 801

N.2.5 Periodic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

N.2.6 Random Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802

N.3 Active Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

N.3.1 Aliasing Reference Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

N.3.2 Aliasing Error Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804

N.3.3 Aliasing Performance Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 805

N.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

O. Mathematical Model Dynamical System . . . . . . . . . . . . . . . . . . . . . . . . . . 807

O.0.1 Dynamical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807

P. Terma Noise Chamber Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809

P.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809



LIST OF FIGURES

1.1 ANR System Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Gentex HGU-55/P, BK 4949, BK 4128 C HATS, LHS view . . . . . . . . . . . . . . 33

2.2 Gentex HGU-55/P, BK 4949, BK 4128 C HATS, BS view . . . . . . . . . . . . . . . 34

2.3 BK 4949 flush-mounted on a Gentex HGU-55/P on mannequin . . . . . . . . . . . 35

3.1 Scenario Coordinate System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.1 Hybrid Continuous-Time Discrete-Time Controller. . . . . . . . . . . . . . . . . . 241

4.2 Hybrid Feedforward-Feedback Controller . . . . . . . . . . . . . . . . . . . . . . . 243

4.3 Internal Model Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

4.4 Adaptive Inverse Plant Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

5.1 Plant Receive Part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

5.2 Plant Transmit Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

7.1 FBS - ADFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

7.2 FFS - ADFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

7.3 FFFBS - ADFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

7.4 FFFBICS - ADFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

7.5 FFFBICIDS - ADFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

9.1 Data Model in Adaptive Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . 424

11.1 Terma Earcup System Exploded View . . . . . . . . . . . . . . . . . . . . . . . . 484

D.1 SUN Workshop Airbase Skrydstrup . . . . . . . . . . . . . . . . . . . . . . . . . . 548

D.2 SUN workshop assembling of Helmets . . . . . . . . . . . . . . . . . . . . . . . . . 549

D.3 Customization of HGU 55/P Gentex Helmet . . . . . . . . . . . . . . . . . . . . 550

D.4 Noise Recording Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552



xxxii List of Figures

D.5 Installation in Hangar Airbase Skrydstrup . . . . . . . . . . . . . . . . . . . . . . 553

D.6 Flight Captain PEL Informed by Torsten Leth Elmkjær . . . . . . . . . . . . . . 554

D.7 HATS Installed in F-16/B Airbase Skrydstrup . . . . . . . . . . . . . . . . . . . . 555

D.8 Check of F-16/B setup by Jakob Krogh Sørensen . . . . . . . . . . . . . . . . . . 556

D.9 Final inspection of F-16/B setup by Torsten Leth Elmkjær . . . . . . . . . . . . 557

D.10 Flight Captain PEL Ready for take-off . . . . . . . . . . . . . . . . . . . . . . . . 557

D.11 Noise Recordings Analysis Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

D.12 CH-47, HATS, BK PULSE Chlinton . . . . . . . . . . . . . . . . . . . . . . . . . . 573

D.13 CH-47, HATS, BK PULSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

D.14 CH-47, HATS, BK PULSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

G.1 Cartesian and Spherical Coordinate Systems, Space and UUT. . . . . . . . . . . . 709

H.1 RTU in Noise Chamber Facility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

H.2 RTU in Noise Chamber Facility. Measurement of transmission loss. . . . . . . . . 723

I.1 Adaptive Finite-Duration Impulse Response Filter. . . . . . . . . . . . . . . . . . 731

I.2 Adaptive Infinite-Duration Impulse Response Filter. . . . . . . . . . . . . . . . . 733

K.1 Adaptive Kautz Filter Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

K.2 Adaptive Orthonormal Filter Topology . . . . . . . . . . . . . . . . . . . . . . . 765

N.1 Plant Receive Part Sensor Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . 794



LIST OF TABLES

1.1 Ph.D. Thesis Chapter Priority Level Volume I. . . . . . . . . . . . . . . . . . . . . 12

1.2 Ph.D. Thesis Chapter Priority Level Volume II. . . . . . . . . . . . . . . . . . . . 14

2.1 System Identification of Primary Pathes Gj,m
ex , Stable parameters . . . . . . . . . 38

2.2 System Identification of Primary Pathes Gj,m
ex , Normal parameters . . . . . . . . 38

2.3 System Identification of Primary Pathes Gj,m
ex , Sound Pressure Levels . . . . . . 38

2.4 System Identification of Primary Pathes Gj,m
ex , Acquisition Lead Times . . . . . . 77

2.5 System Identification of Primary Pathes Gj,m
ex , Acquisition Lead Times . . . . . . 77

2.6 System Identification of Primary Pathes Gj,k
px , Acquisition Lead Times . . . . . . 82

3.1 Quality Measures of Spectral Factorization, Transfer Functions. . . . . . . . . . . 218

5.1 Group Delay Decomposition MRS, Terma Earcup Audio System . . . . . . . . . . 266

5.2 Group Delay Decomposition SRS, Terma Earcup Audio System . . . . . . . . . . 266

9.1 αγΠε-APA mean-square weight-error vector update moments . . . . . . . . . . . . 461

D.1 F-16/B Scenario with Engines and APU turned off . . . . . . . . . . . . . . . . . . 559

D.2 F-16 Scenario at 85% Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

D.3 CH-47D Scenario with Engines and APU turned off . . . . . . . . . . . . . . . . . 576

D.4 Scenario with Engines and APU turned off . . . . . . . . . . . . . . . . . . . . . . 576

D.5 Scenario Flight at Constant Altitude and High Speed . . . . . . . . . . . . . . . . 595

F.1 Miscellaneous Elasticity Parameter Relations. . . . . . . . . . . . . . . . . . . . . 663

F.2 Sources, Fields, Constitutive Parm. in Acoustics, Elasticity and Electromagnetics 667

F.3 3-D Coordinate Systems Separable to Laplace and Helmholtz Equations. . . . . . 670

F.4 Surface sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679



xxxiv List of Tables



LIST OF MATLAB® SIMULATIONS

2.4.1 pdfs: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 pdfs: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . . . . . 37
2.4.3 ASDFs: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . . . 39
2.4.4 CSDFs: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . . . . 40
2.4.5 OCOSFs-sd: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . 41
2.4.6 OCOSFs Att.-sd: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . 42
2.4.7 OCOSFs 0611: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 43
2.4.8 OCOSFs Att. 0611: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . 44
2.4.9 OCOSFs 0811: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 46
2.4.10OCOSFs Att. 0811: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . 47
2.4.11TFs-sd: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . . . 48
2.4.12TFs-sd: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . . . 49
2.4.13ACFs: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . . . . 51
2.4.14CCFs: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . . . . 52
2.4.15IRFs: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . . . . . 53
2.4.16MMSCOFs-sd: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 54
2.4.17MMSCOFs Att.-sd: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . 55
2.4.18MMSCOFs 11: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 56
2.4.19MMSCOFs Att. 11: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . 57
2.4.20ASDFs JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 59
2.4.21CSDFs JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 60
2.4.22OCOSFs-sd JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . 61
2.4.23OCOSFs Att.-sd JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . 62
2.4.24OCOSFs 0611 JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . 63
2.4.25OCOSFs Att. 0611 JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . 64
2.4.26OCOSFs 0811 JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . 65
2.4.27OCOSFs Att. 0811 JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . 66
2.4.28OCOSFs 0611 JCRSA: SDA: SysIDPPath/20070204T181457 . . . . . . . . . . . . . 67
2.4.29TFs-sd JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . 69
2.4.30TFs-sd JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . 70
2.4.31ACFs JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 71
2.4.32ACFs JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 72
2.4.33CCFs JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 73
2.4.34CCFs JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 74
2.4.35CCFs JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 75
2.4.36CCFs JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 76
2.4.37CCFs JCRSA: SDA: SysIDPPath/20070204T143126 . . . . . . . . . . . . . . . . . 78
2.4.38CCFs JCRSA: SDA: SysIDPPath/20070204T143126 . . . . . . . . . . . . . . . . . 79
2.4.39CCFs JCRSA: SDA: SysIDPPath/20070204T143126 . . . . . . . . . . . . . . . . . 80
2.4.40CCFs JCRSA: SDA: SysIDPPath/20070204T143126 . . . . . . . . . . . . . . . . . 81



xxxvi LIST OF MATLAB® SIMULATIONS

2.4.41IRFs JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . 83
2.4.42GPDs JCRSA: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . 84
2.4.43GPDs Att.: SDA: SysIDPPath/20070204T112036 . . . . . . . . . . . . . . . . . . 85
2.4.44MMSCOFs-sd: SDA: SysIDPPath/20070203T142219 . . . . . . . . . . . . . . . . . 86
2.4.45MMSCOFs Att.-sd: SDA: SysIDPPath/20070203T142219 . . . . . . . . . . . . . . 87
2.4.46MMSCOFs 11: SDA: SysIDPPath/20070203T142219 . . . . . . . . . . . . . . . . . 88
2.4.47MMSCOFs Att. 11: SDA: SysIDPPath/20070203T142219 . . . . . . . . . . . . . . 89
2.4.48MMSCOFs-sd: SDA: SysIDPPath/20070203T142219 . . . . . . . . . . . . . . . . . 90
2.4.49MMSCOFs Att.-sd: SDA: SysIDPPath/20070203T142219 . . . . . . . . . . . . . . 91
2.4.50MMSCOFs 11: SDA: SysIDPPath/20070203T142219 . . . . . . . . . . . . . . . . . 92
2.4.51MMSCOFs Att. 11: SDA: SysIDPPath/20070203T142219 . . . . . . . . . . . . . . 93
2.4.52ASDFs: SDA: SysIDPPath/20070203T151206 . . . . . . . . . . . . . . . . . . . . 95
2.4.53CSDFs: SDA: SysIDPPath/20070203T151206 . . . . . . . . . . . . . . . . . . . . . 96
2.4.54CSDFs: SDA: SysIDPPath/20070203T151206 . . . . . . . . . . . . . . . . . . . . . 97
2.4.55OCOSFs: SDA: SysIDPPath/20070203T151206 . . . . . . . . . . . . . . . . . . . . 98
2.4.56OCOSFs Att.: SDA: SysIDPPath/20070203T151206 . . . . . . . . . . . . . . . . . 99
3.2.1 Scenario Signal Simulator; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . . . 116
3.2.2 Scenario Signal Simulator; SDA: MMSCOFs-sd . . . . . . . . . . . . . . . . . . . . 117
3.2.3 Scenario Signal Simulator; SDA: CCFs . . . . . . . . . . . . . . . . . . . . . . . . 118
3.2.4 MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.2.5 MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.2.6 MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.2.7 MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.2.8 MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.2.9 MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2.10MSinNoise TD: Eval. Comb.

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.2.11Scenario Signal Simulator; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . . . 129
3.2.12Scenario Signal Simulator; SDA: MMSCOFs-sd . . . . . . . . . . . . . . . . . . . . 130
3.2.13Scenario Signal Simulator; SDA: CCFs . . . . . . . . . . . . . . . . . . . . . . . . 131
3.2.14MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.2.15MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.2.16MSinNoise TD: Eval. Comb.

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.3.1 MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.3.2 MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.3.3 MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.3.4 MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.3.5 MSinNoise TD: Eval. Comb.

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.3.6 MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.3.7 MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.3.8 MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.3.9 MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.3.10MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.3.11MSinNoise TD: Eval. Comb.

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.3.12MSinNoise WH; SDA: TFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.3.13MSinNoise WH; SDA: TFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.3.14MSinNoise WH; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.3.15MSinNoise WH; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.3.16MSinNoise TD: Eval. Comb.

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.4.1 Scenario Signal Simulator; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . . . 158



LIST OF MATLAB® SIMULATIONS xxxvii

3.4.2 Scenario Signal Simulator; SDA: MMSCOFs-sd . . . . . . . . . . . . . . . . . . . . 159
3.4.3 Scenario Signal Simulator; SDA: MMSCOFs Att.-sd . . . . . . . . . . . . . . . . . 160
3.4.4 Scenario Signal Simulator; SDA: CCFs JCRSA . . . . . . . . . . . . . . . . . . . . 161
3.4.5 Scenario Signal Simulator; SDA: CCFs JCRSA . . . . . . . . . . . . . . . . . . . . 162
3.4.6 Scenario Signal Simulator; SDA: MMSCOFs-sd . . . . . . . . . . . . . . . . . . . . 164
3.4.7 Scenario Signal Simulator; SDA: MMSCOFs Att.-sd . . . . . . . . . . . . . . . . . 165
3.4.8 MSinNoise TD: Eval. Comb.

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.4.9 MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.4.10MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.4.11MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.4.12MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.4.13MSinNoise WH; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
3.4.14MSinNoise WH; SDA: TFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
3.4.15MSinNoise TD: Eval. Comb.

�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3.4.16MSinNoise TD: Eval. Comb.
�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 175

3.4.17MSinNoise TD: Eval. Comb.
�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 176

3.4.18MSinNoise TWs. Conv. WH
�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 177

3.4.19MSinNoise TWs. Conv. WH
�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3.4.20MSinNoise TWs. Conv. αγΠε-NLMS
�
w1,1: . . . . . . . . . . . . . . . . . . . . . 179

3.4.21MSinNoise TWs. Conv. αγΠε-APA
�
w1,1: . . . . . . . . . . . . . . . . . . . . . . 180

3.4.22MSinNoise TWs. Conv. FARLS
�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . 181

3.4.23MSinNoise WH; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
3.4.24MSinNoise WH; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3.4.25MSinNoise WH; SDA: TFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
3.4.26MSinNoise TD: Eval. Comb.

�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 186

3.4.27MSinNoise TD: Eval. Comb.
�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 187

3.4.28MSinNoise TD: Eval. Comb.
�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 188

3.4.29MSinNoise TD: Eval. Comb.
�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 189
3.4.30MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 190
3.4.31MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.4.32MSinNoise WH; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
3.4.33MSinNoise WH; SDA: TFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
3.4.34MSinNoise TD: Eval. Comb.

�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 195

3.4.35MSinNoise TD: Eval. Comb.
�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 196

3.4.36MSinNoise TD: Eval. Comb.
�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 197

3.4.37MSinNoise WH; SDA: TFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
3.4.38MSinNoise TD: Eval. Comb.

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 199
3.4.39MSinNoise TWs. Conv. WH

�

w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 201
3.4.40MSinNoise TWs. Conv. WH

�

w2,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 202
3.4.41MSinNoise WH; SDA: TFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
3.4.42MSinNoise TD: Eval. Comb.

�
w1,1: . . . . . . . . . . . . . . . . . . . . . . . . . . 204

3.4.43MSinNoise WH; SDA: TFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
3.5.1 Linear Prediction Error Filter; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . 208
3.5.2 Linear Prediction Error Filter; SDA: CSDFs: . . . . . . . . . . . . . . . . . . . . . 209
3.5.3 Linear Prediction Error Filter; SDA: CSDFs: . . . . . . . . . . . . . . . . . . . . . 210
3.5.4 Linear Prediction Error Filter; SDA: CSDFs: . . . . . . . . . . . . . . . . . . . . . 211



xxxviii LIST OF MATLAB® SIMULATIONS

3.5.5 Linear Prediction Error Filter; SDA: ACFs . . . . . . . . . . . . . . . . . . . . . . 212
3.5.6 Linear Prediction Error Filter; SDA: CCFs . . . . . . . . . . . . . . . . . . . . . . 213
3.5.7 Linear Prediction Error Filter; SDA: CCFs . . . . . . . . . . . . . . . . . . . . . . 214
3.5.8 Linear Prediction Error Filter; SDA: OCOSFs . . . . . . . . . . . . . . . . . . . . . 215
3.5.9 Wiener Hopf Modeling Filter; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . 219
3.5.10Wiener Hopf Modeling Filter; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . 220
3.5.11Wiener Hopf Modeling Filter; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . 221
3.5.12Wiener Hopf Modeling Filter; SDA: ASDFs: . . . . . . . . . . . . . . . . . . . . . 222
3.5.13Wiener Hopf Modeling Filter; SDA: CSDFs: . . . . . . . . . . . . . . . . . . . . . 223
3.5.14Wiener Hopf Modeling Filter; SDA: CSDFs: . . . . . . . . . . . . . . . . . . . . . 224
3.5.15Wiener Hopf Modeling Filter; SDA: ACFs . . . . . . . . . . . . . . . . . . . . . . 225
3.5.16Wiener Hopf Modeling Filter; SDA: OCOSFs . . . . . . . . . . . . . . . . . . . . . 226
3.5.17Wiener Hopf Modeling Filter; SDA: CCFs . . . . . . . . . . . . . . . . . . . . . . 227
3.5.18Wiener Hopf Modeling Filter; SDA: TFs . . . . . . . . . . . . . . . . . . . . . . . 229
3.5.19Wiener Hopf Modeling Filter; SDA: TFs . . . . . . . . . . . . . . . . . . . . . . . 230
5.5.1 TFs: SDA: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
5.5.2 GPDs: SDA: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
5.5.3 TFs: SDA: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
5.5.4 GPDs: SDA: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.7.1 SysID TWs. Conv. WH ĝ1,1

ey : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.7.2 SysID TWs. Conv. WH ĝ1,1
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xy : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
7.7.4 SysID TWs. Conv. WH ĝ1,1
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xy : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
7.7.23SysID TD: Eval. Comb. ĝ1,1
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NOTATION

The present report is multi-disciplinary involving contributions from many different technology
fields. Tentatively, variables should have an unambiguous identity. This goal has partially been
achieved. However, in order not to deviate from defacto standards in different communities some
reuse of identities has been considered necessary. For example, in signal processing community
the symbol λ is used to designate wavelength or an eigenvalue both is also used to designate
the so-called forgetting factor in the family of recursive least-squares. However, in the specific
context no practical ambiguity will prevail.

We will used bold fonts to designate random variables as opposed to dummy variables designated
by plain characters. For scalar quantities the time index is set in parenthesis. A subscript is
used to designate the time index of a vector or matrix quantity.

Formally, the tap-weight vector is an estimate of a tap-weight vector subject to a specified cost
function. Hence, as in [1] we arguably ought to indicate this, e.g., by applying accent caret to
w, that is, ŵ. However, in order to reduce the notational burden and also be compatible with,
e.g., [4] we will suppress the caret and let the estimation process implicitly be understood.

Moreover, in [4] the usual concept of considering the observation vector u as a column vector is
abandoned and is instead defined as a row vector. In our formulation we will employ the column
vector definition of the observation vector.

Index origin zero or one. In most programming languages like C or FORTRAN it is customary
to use 0 (zero) as index origin in matrix or vector indexing. However, in MATLAB®2 1 (one)
has (unfortunately) been selected. Moreover, for some quantities, e.g., eigenvalues, poles, zeros
the counting always start at 1.

Preferably each symbol should have a unique meaning throughout the report. However, different
de facto standards among technical communities represented here add some complication to this.
Instead of introducing new symbols or adding subscripts or superscripts to existing symbols,
the choice has been made to follow de facto standards and thus allow reuse of symbols for
different purposes in this report. For example, a symbol like λ is used for different purposes
in different contexts. Moreover, in the Nomenclature every such representation of a symbol is
listed. However, it should in most cases from the actual context be clear what is actual meaning
of a symbol is.

In the domain of fluid theory, but also to some extent in the domain of elasticity theory the
nomenclature from [3] has been used. In the Nomenclature a list of almost every symbol used
in this report. This list includes a description of the symbol, a reference to the page where it is
defined and for convenience the unit of measurement. Throughout the report, we have applied
the Système International d’Unités (SI).

2MATLAB® is a trademark of MathWorks Inc.
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1. INTRODUCTION

1.1 Background

Terma A/S, Ørsted-Technical University of Denmark (TUD) and the Engineering College of
Aarhus (ECA) have initiated a joint research project in the field of active noise reduction. Terma
specializes in development and production of systems for Electronic Warfare Integration and
Control, Tactical Reconnaissance, and Environmental Surveillance. Terma is also involved in
the design of the next generation of pilot helmets referred to as joint helmet mounted cuing
systems (JHMCS), which includes 3-D audio. Existing fighter helmets, e.g., Gentex HGU 55/P
yield insufficient low-frequency attenuation. As a consequence, the pilots are exposed to a low-
frequency residual sound pressure which typically totals 90 dBA. Therefore, in order to improve
the pilot’s situational awareness a demand for additional noise countermeasures exists. Simi-
larly in military helicopters the pilot and the crew are exposed to extreme sound pressure levels,
that under normal operation condition exceeds 130− 140 dB prevail. For such applications the
designers are facing a very challenging task that potentially requires man-years of research and
development effort.

1.2 Brief Technical Discussion

In this section a brief technical discussion related to hearing protection devices (HPDs), active
control (AC) and active noise reduction (ANR) headsets is provided. Readers unfamiliar with
the scientific field of AC are strongly recommended to consult some of the excellent textbooks
available, e.g., [1–3, 10].

1.2.1 Passive hearing protection device

Hearing protection devices have been used widely for 5-6 decades. A fundamental description of
the physical principles was established in the late 1950s by Shaw and Thiessen in their classical
papers [8, 9]. The HPD has successfully been modeled as a 2nd order compliance-resistance-mass
system. This mechanism is referred to as passive attenuation as it involves no active components.
In summary, the passive performance of a circumaural HPD is limited by:

1. Hearing Protector Vibration (Non-deformative normal and lateral movements of earcup)

2. Air Leaks (at the interface between the users head and the ear cushion)

3. Material Transmission. (Deformation of earcup, frequency > 1 kHz)

4. Bone and Tissue Conduction
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Since the late 1950s the performance has gradually been improved primarily due to the choice
of a better material for the ear cushion and the earcups. A comprehensive physical modeling of
HPDs was made by Schröter in his Ph.D. [5]. The main results of this work can be found in [6, 7].
In summary, from this work passive HPD usually provide a relative flat attenuation response
of 8− 12 dB in the low-frequency range from 20 Hz to somewhere between 50− 250 Hz where
a resonance might be experienced. Above the resonance frequency the attenuation increases
by 10 dB/octave until approximately 35 dB beyond which other signal pathes such as bone
conduction become more significant and therefore determines the perceived attenuation. Hence,
in many applications where the noise is dominated by a high or sometimes an extreme low-
frequency content passive HPDs simply provide insufficient attenuation capabilities.

1.2.2 Active hearing protection device

In modern HPD design the advantages of active noise control (ANC) have been accommodated in
the more expensive range of units. Basically, ANC refers to the technique of:

• Acquisition of a signal with a high coherence with the disturbance, e.g., by a microphone

• Determination of a cancelation response (adaptive filtering, signal processing)

• Activation of the secondary (cancelation) signal, e.g., by a loudspeaker

The field of ANC dates back to the patent claimed by Olson and May [1953] [4]. Active noise
cancelation inherently involves a controller. It is well known that the achievable performance has
been very dependent on the quality of the system model, which in control theory terminology is
referred to as the plant model. The plant basically includes the paths from the controller output
terminal(s) to the controller input terminal(s) including the transformations from the digital
domain to the acoustical domain. In the case of a ANR headset the plant will cover:

• Digital to analogue components

• Loudspeaker(s)

• Acoustical environment experienced by the set of transducers

• Microphone(s)

• Analogue to digital stages

The topology of active noise control systems falls into two categories:

• Feedback

• Feedforward

One of the drawbacks of a feedback system (FBS) is the limitation on control bandwidth, which
also is referred to as the “waterbed effect”. Basically, the waterbed effect, which stems from
the Bode sensitivity integral, when applied to our case postulates that attenuation over some
frequency ranges necessarily implies amplification over the other frequency ranges. Moreover,
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in the field of AC stability plays a very significant role in particular in feedback system (FBS)
design. Owing to the waterbed effect and the simultaneous requirement of stability in feedback
system (FBS) design a trade off between performance, that is, attenuation and robustness to
plant uncertainties therefore always will exists. The feedback system (FBS) performance is largely
determined by the time-lag that exist between an observation is made by the error sensor and
until an appropriately dosed rejection signal is available at the same position.

In contrary, in a feedforward system (FFS) the possibility of upstream signal acquisition exists.
Accordingly, a quantity that will be referred to as an acquisition lead time can obtained. On
the other hand reference sensors positioned down stream relative to the propagation direction
only provide reference signals with an acquisition lag time. Feedforward implementations, on the
other hand, require a high correlation between the so-called reference signals that are sensed by
the reference sensors and the disturbance signals that in turn are sensed by the error sensors. In
both feedback system (FBS) and feedforward system (FFS) the error signals provide performance
feedback to the (adaptive) controller.

The vast majority of AC applications involve the H2- and the H∞-norms. The symbol H des-
ignates the Hardy space. More precisely H2 signifies the Hardy space of transfer functions with
bounded 2-norm, that is, stable and strictly proper transfer functions. Similarly, H∞ denotes
Hardy space of transfer functions with bounded ∞-norm, that is, stable and proper transfer
functions. It should be emphasized that we by the adjective, optimal, explicitly understand a
H2 cost function as a statistical criterion.

As discussed above feedback system (FBS) are prone to stability problems due to the direct control
feedback. In addition to these exclusive feedback system (FBS) and feedforward system (FFS)
specific problems, stability due to imperfect plant modeling and the use of adaptive filters are
also of concern in both feedforward system (FFS) and feedback system (FBS) design. Another
type of feedback problem exists that is specific to feedforward system (FFS). If the reference
sensors are not sufficiently isolated from the signals generated by the actuators the reference
signals might be disturbed potentially leading to instability problems.

In recent years hybrid combinations of feedback and feedforward systems have been introduced
aimed at taking advantage of both topologies while simultaneously avoiding or at least reducing
the shortcomings of each individual topology.

The ANR headsets represent an example of local active control. In fact, it can be argued that the
desired zones of quiet are very small and limited to the volumes of the earchannels.

The design of HPD with embedded active noise control system is complex requiring synergy
between (not prioritized):

➀ Acoustics

➁ Transducer Technologies

➂ Digital Signal Processing

➃ Control

➄ Vibroacoustics

➅ Psycho Acoustics

➆ Microelectronics
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➇ Material Technology

The present Ph.D. project primarily focus on the overall system design and scientific issues per-
tinent to points item ➀ and item ➂.

Traditional ANR headsets are most likely single-input and single-output (SISO) feedback system
(FBS) [s] (one per ear). These systems will normally be implemented as continuous-time time
systems involving very cheap analogue components in a feedback configuration.

A conventional continuous-time ANR HPD solution satisfying pertinent military standards has
also been developed by Terma. This analogue ANR system has been subjected to some tests in
our noise chamber facility. Exposed to realistic F-16 Fighting Falcon noise this first prototype
system demonstrated reasonable ANR capabilities. In the frequency range from 50 Hz to 300 Hz
an active attenuation (as opposed to passive attenuation) exceeding 10 dB was observed. The
performance was primary limited by delays in the single channel feedback topology, but also
by the stability margins involved. In addition the original earphone (delivered with the Gentex
HGU 55/P helmet) was deemed to provide too inefficient low-frequency response. A completely
new earcup design was therefore initiated. Recent improvements of the overall continuous-time
ANR system have resulted in an attenuation exceeding 10 dB in a frequency band from 100 Hz
to 800 Hz.

Early experimentations with adaptive discrete-time (as opposed to continuous-time fixed) filters
provided only a marginal overall performance gain. In some cases the upper 0 dB ANR frequency
range was reduced from 800 Hz to 650 Hz. This lack of general performance increase can be
attributed to the additional delays introduced by the conversion stages involved. Further tests
with periodic signals, however, demonstrated the advantages of adaptive filtering over fixed
filtering as could be expected. In both cases the system was operating with plant responses close
to their nominal values where the continuous-time filter attains its best performance.

Some manufactures of ANR headsets claim to obtain active attenuation figures exceeding 30 dB.
Unfortunately, such requirement specifications are usually commercially driven with no due re-
spect to scientific integrity. The specific test conditions are therefore adroitly omitted.

Thorough evaluation of the same ANR headsets under diffuse sound field conditions gave another
and less satisfying picture. Large negative deviations from specified attenuation numbers were
observed. Moreover, stability problems could rather easily be provoced by a test person walking
slowly around in a room with great spatial variation in the sound field. For a high-end product
active attenuation of 20− 25 dB in the frequency range 140− 300 Hz, 15− 20 dB in the frequency
range 90− 400 Hz and 10− 15 dB in the frequency range 50− 530 Hz was measured.

Hence, the very optimistic attenuation performance numbers proclaimed by some manufactures
of ANR headsets are probably obtained under very idealized conditions such as upstream signal
acquisition, periodic signals excitation or they stem from experiments with small volume couplers.

In contrary, Terma appreciating the environmental conditions in which our avionics equipment
shall operate do comprehensive but realistic specification work with our costumers in due respect
to their needs.

Although a set of physical and subjective based measurement procedures for passive HPDs exist,
unfortunately currently no such standard exists for the test of active HPD.

For practical purposes the ANR HPD supposedly shall work in an often hostile environment with
noise incident from almost everywhere and with a significant amount of random signal content.
In addition the noise fields usually exhibit a high degree of temporal as well as spatial variation.



1.3. Motivation 5

Accordingly, but as also confirmed by some of Terma’s customers who actually have performed
field evaluations of the aforementioned products, no satisfactory ANR solutions is currently
available for the airborne military platforms.

Some manufactures of ANR headsets add feedforward control functionality by placing a micro-
phone exterior to each earmuff. However, as is proven at various places in this report two reference
sensors are often simply not enough to avoid the problem of spatial aliasing in particular under
diffuse sound field conditions.

As the physical topology of a headset largely is determined by the humans wearing them, it
is relative fixed and only a few possibilities are usually left for the designer. Improvements in
transducer design and material technology also are reflected in better ANR designs. Moreover,
the fast increase in MIPS provided by modern digital signal processor (DSP) also makes it feasible
to implement more and more advanced signal processing algorithms in a discrete-time controller.

In the literature it is often seen that the noise attenuation predicted by a HPD measured by the
error microphone in the active control loop exceeds the attenuation obtained from either physical
ear channel measurements or psychophysical measurements by as much as 10 dB. Therefore, the
acoustical /electro acoustical environment in modern active HPD determines an upper limit to
the achievable attenuation figures, which probably is more problematic than the performance
limitations associated with bone conduction.

For the signal processing part the least-mean-squares technique has been used extensively. The
actual type of application dictates the use of adaptive algorithms in order to cope with an un-
predictable noise environment and individual pilot-dependent system responses. Moreover, an
adaptation capability also facilitates the use of relative inexpensive transducers which become
particular important in more advanced systems involving multiple transducers. In the present
case of noise control, the plant inherently introduces a non-negligible delay and possible uncer-
tainty. In order to ensure filter weight convergence a filtered reference signal is used. The filtered
reference signal is obtained by passing the reference signal through a plant model. Then the al-
gorithm is referred to as filtered-x least-mean-squares (LMS), abbreviated filtered-x LMS (FxLMS).

In the active noise control literature both time-domain and various transform domain solutions
have been proposed. In this project both time-domain and z-domain solutions are being consid-
ered.

1.3 Motivation

In section 1.2 it was mentioned that an active attenuation of 20− 25 dB is attainable under
realistic conditions in the frequency band from 140 Hz to 300 Hz with current high-end ANR HPD.
Unfortunately, even by taking passive attenuation into account the total attenuation is still to
insufficient in particular in extreme noise cases as often experienced by military personnel.

The present Ph.D. project hopefully represents some initial steps on a probably long passage from
this performance level to for example 30− 35 dB active diffuse sound field attenuation over a
much wider frequency range, e.g., from 20 Hz to 1500 Hz.

However, as is well know among acousticians, antenna designers and active control (AC) engineers
increasing system performance - if at all possible - by an order of 10 dB is usually associated
with severe difficulties. Popularly phrased, it can be argued that in order to obtain 10 dB noise
attenuation then among many other design issues, the designer must be in control of a least
90% of the energy present at the position where noise cancelation shall take place. However, for
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20 dB or 30 dB noise attenuation only 1% respective 0.1% of the energy is allowing to be left
unmodulated. Quite similar considerations apply to the design of antennas with low or very low
side lobe levels (SLLs).

It should also be recalled that the requirement on attenuation performance, however, is very
domain dependent and in some cases a smaller bandwidth with even higher achievable attenuation
would be more usefull.

Moreover, attenuation capabilities are by no means the only figure of merit in HPD design.
Among, other performance criterions we find dynamic range of operation, stability, tracking
capabilities etc.

1.4 Research Objectives

Owing to the inherent limitation of feedback control in ANR headsets, in this Ph.D. a - to the
author’s best knowledge - new technique referred to as confined feedforward (CFF) control in
which an array of reference sensors are placed on a surface completely confining the zones of quite
will be investigated. This CFF topology in turn is embedded in a multiple-input and multiple-
output (MIMO) system that facilitates both feedforward and feedback control. The general
system then referred to as hybrid MIMO confined-feedforward-feedback system (HMIMOCFFFBS)
ANR system is depicted in abstract form in Figure 1.1 on the facing page.

The sensor suite comprises Ne error sensors, Nx reference sensors and Np performance sensors.
In total Ny actuators excite the secondary signals. The Sx reference surface is the (artificial)
surface constituted by the reference sensors.

The Ph.D. project, therefore also investigates the benefits of using multi-variable control, that
is, a MIMO system configuration. The investigation of a multi-channel ANR system with mixed
feedforward and feedback topologies is motivated by the following reasons

1. In diffuse sound fields the sound is by definition incident uniformly from all directions.
In the simple feedback configuration part of the disturbance will enter the active control
volume before it is sensed by the error microphone. From elementary control theory it
is well known that delays in the control path will limit the operational bandwidth of the
system. If instead an array of microphones is positioned on a surface enclosing the active
control volume, in-time reference signals can be obtained.

2. Collectively, by the use of multiple reference sensors an increase in the multiple coherence
function (MCOF) is obtainable. The MCOF provides a measure of the linearity of the
system and an indicator of the presence of measurement noise and consequently a measure
of the ANR capabilities of a system based on the assumption of a linear control system.
By increasing the number of input sensors the rejection signals can more accurately be
determined.

3. As the array of reference sensors completely confines the zones of quiescent time-advance
reference signals information which in combination with a sufficiently high MCOF improves
the ANR attenuation capabilities and operational bandwidth substantially as compared
with ordinary feedback system (FBS) solutions in particular for random noise stimuli.

4. In the military domain the trend is to wear complex triple layer hearing protection devices.
The first level of protection is provided by the helmet itself. The earcups constitute the
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Fig. 1.1: ANR System Topology consisting of Nx = 7 reference sensors, Ne = 2 error sensors and Np = 3
performance sensors.
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second protection layer. The third protection layer is provided by earplugs that are either
shallowly or deeply inserted in the earchannel. Both the earcups and the earplugs will be
equipped with ANR hardware. A practical instantiation of the HMIMOCFFFBS involves the
first and second protection layer in which an array of flush-mounted surface microphones
on a helmet, a pair of error microphones in the vicinity of the entrance to the ear channels
and a set of earphones that provide the anti-noise signals (rejection signals).

5. Provision for head-tracker capabilities. Terma also produces 3-D audio equipment. Essen-
tial to the 3-D audio performance is that the system can track the pilot own-maneuvers.
By using a set of exterior sound sources the actual translatoric and angular data needed
can then be processed using existing hardware to a large extent.

6. When the positions of the noise sources relative to the zones of quiescent are not static
but time-varying the adaptive filters involved should respond accordingly. An audio based
head-tracker function provides means to efficiently tune the adaptive filters to new optimal
settings.

7. The feedforward part of the system becomes more fault-tolerant as the failure of a single
sensor only will lead to some performance degradation especially for a feedforward-feedback
system (FFFBS) involving many reference sensors. For single channel FFFBS such failure
will imply that the feedforward part of the system simply stops working. The hybrid
system, however, will still be vulnerable to failure of the error sensors. The actual F-16
Fighting Falcon and CH-47 Chinook applications are indeed considered mission critical.
Hence, system failure cannot be tolerated.

The analysis of stability of MIMO systems with mixed feedback and feedforward topologies is
considerably more complicated than in the SISO feedback case. The requirement on using adap-
tive filters as opposed to fixed (analogue) filters renders the analysis and synthesis of such filters
even more challenging.

Although the original problem formulation specifically addresses AC in a HPD context, it has
through out the course of the project been the ambition to establish the theory in more abstract
and versatile context. The ANR helmet is merely used as an instantiation of this more general
applicability of the research.

In order to test and evaluate developed theories and methods it is often very beneficial in engi-
neering practice to work with a reference test unit (RTU) for which highly accurate models can be
established. The design of a system for active control of sound and vibration (ACSV) represents
no exception from the rule and therefore also pertain to the verification of a complex AC system
including hybrid combination of feedforward and feedback system elements like the proposed
HMIMOCFFFBS for instance. In contrary, only very crude models are available for helmet based
HPDs. Therefore, it may often be difficult to predict very accurately the attenuation achievable
when applying AC to such systems.

During initial system test, most likely errors and malfunctions are experienced at least by all
honest engineers. The test and debugging of proposed HMIMOCFFFBS is no exception from
general observation. During such evaluation phase, the problem is often associated with proper
isolation of the fault or problem at hand. Sometimes it might be difficult to trace if a problem
is related to the hardware, transducers, the control algorithms or the adaptive filter. Evaluation
of the system design to the extent possible on a RTU can greatly help such localisation effort.
Moreover, the RTU also serves as framework where a new type of measurement technique might
be assessed with respect to obtainable accuracy.
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The adaption of the spherical near-field antenna testing (SNFAT) technique discussed in Part I
to the domain of acoustics looks as a promising idea in the development of such reference test
unit. Accordingly for the development of a test unit for AC acoustical transparent and acoustical
semi-transparent-semi-opaque hollow spheres are currently being considered.

A disadvantage of the CFF configuration is related to the requirement on a relative high number
of reference sensors required in order to prevent spatial-aliasing of high-frequency components. In
practice for the HMIMOCFFFBS applied to a helmet based HPD the minimum number of reference
sensors amounts to six to eight. Increasing this number improves performance and in particular
raises the upper ANR bandwidth limit. Accordingly, if a of more general framework of sensor
data acquisition can be invented this can be beneficial to the HMIMOCFFFBS.

In many signal processing applications a reduction in the computational complexity is required
especially whenever finite-duration impulse response (FIR) filters of high order is used. This can
be accomplished by using multi-rate adaptive filters where the adaptive processing is performed
at a lower rate than the incoming rate. The research into the field of multi-rate system design is
therefore motivated by a need to keep the requirement on bandwidth requirement at a sufficient
low level for the application, which is of particular importance in multi-channel systems. More-
over, multi-rate system design allows the designer to obtain very small delays associated with
the conversion stages in the secondary paths.

In the original proposal of the Ph.D. project emphasis was made on the study of adaptive filter
algorithms in association with the modified-filtered-x (mFx) technique. However, from the outset
the author being a newcomer to the field of AC has been sceptical to this priority of the research
activities to be pursued. Early research activities and B.Sc. projects supervised by the author
indicated that a variety of already existing adaptive filter candidates are at our disposition. The
optimal choice of the underlying parameters and the achievable performance was not surprisingly
seen to be governed by the overall structure in which they should work. In particular the
achievable performance of ordinary feedback system (FBS) solutions was deemed to be moderate
and highly dependent on inherent delays in the secondary path. Moreover, a realistic hardware
platform for ANC investigations was expectably first at disposition at a very late stage in this
project. It would therefore not be rather beneficial for Terma, that at time of start had no previous
experiences with the design of ANC systems, if the Ph.D. has been dwelling all the time in this
particular field. Furthermore, it became soon evident that the project supposedly should run
autonomously, that is, with a minimum of resource draw elsewhere within the company. It was
therefore decided to take a more fundamental and theoretical approach to this research project
in which the dependence on hardware for evaluation or the dependence on resource availability
in general could be kept at a very low level. Hence, the diversity of the areas studied during the
course of the Ph.D. project is probably relative large for this type of project. As a consequence,
however, of this approach and the non inexhaustible work capacity of the author only a finite
amount of time has been spent in each of the scientific areas investigated.

Although the three branches of physics, acoustics, elasticity and electromagnetics seem quite
dissimilar and describe completely different phenomena, however, they are all subjectable to
analysis in the mathematical framework of field theory. Therefore, by taking the necessary
precautions, then results that have been developed for one type of physical system can in some
specific cases be adapted to one of the other two physical systems considered. In particular,
thorough examination of the governing equations revealed that results for SNFAT as used for
more than 30 years for example at Ørsted TUD potentially can be generalized to predict field
quantities from sensors being responsive to acoustical as well as elastoric waves. Among such
sensors we find ordinary pressure microphones, (radial) velocity microphones and accelerometers.
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For this purpose a so-called probe description of the sensor supposedly used for the acquisition
of the sensor information must be made. As implicitly appear from the name SNFAT scanning of
the fields takes place on a sphere. As discussed in Appendix F the spherical coordinate system is
also the only coordinate system in which the vector wave equations separate for all three physical
systems considered which in turn greatly simplifies the analysis.

Moreover, the project takes recent improvements in digital signal processing into account. Hence,
the use of Kautz/Laguerre filter as possible replacement of FIR filters is investigated.

It is common engineering practice to apply an assumption of Gaussian distributed signals. How-
ever, many phenomena encountered in daily life fall into a generalization of the normal distri-
bution and is referred to as α-stable distributions. Noise source encountered in the domain of
AC are sometimes best fitted to the family of α-stable distributions. So-called α-stable adaptive
filters are therefore also assessed for the use in ANC applications.

As part of the project a MATLAB®-based general purpose tool for analysis and synthesis of
ACSV systems and in particular the HMIMOCFFFBS has been developed. This software tool has
also largely been used to compensate for the lack of a hardware platform with sufficient channel
and processing capability to support the HMIMOCFFFBS.

1.5 Organization of the Thesis

Of course within a single Ph.D. project not every stone can be turned in such multi-disciplinary
system design. Hence, such important aspects the psychoacoustical aspects of ANC and in par-
ticular related to ANR HPDs. Furthermore, throughout the report it is usually assumed that
the systems are strictly linear. Hence, the vast field of adaptive non-linear control is cleverly
excluded.

Moreover, some of the chapters are included merely to support the rest of the report. Hence,
such chapters are not vital for the overall comprehension of the Ph.D. work and therefore given a
low priority (refer to Table 1.1 - 1.2). This report is therefore organized in two volumes. Volume
I is the official part of the thesis that will be subject to a formal Ph.D. defense includes the main
contribution of the work by the author. Volume II contains a suite of supplementary chapters.
The contents of Volume II, however, will not be subjected to the Ph.D. defense.

1.5.1 Organization of Volume I of the Thesis

Volume I in turn is organized in four parts addressing different aspects of an active control of
sound (ACS).

Following this introduction chapter 2 - 3 constitute Part I of this report. The performance
of a modern complex active noise control system (ANCS) is determined from numerous system
parameters. Coherence functions are of particular concern in ANC system design as the achievable
ANR performance in a feedforward system (FFS) is to a large extent determined by the degree
of coherence between the set of reference sensors and the set of error sensors (or performance
sensors). The theme of chapter 2 is coherence functions and statistical analysis methods that can
be applied to obtain estimates of different types of coherence functions. A quantity referred to
as the spatially-weighted-averaged acquisition lead time is introduced to represent the averaged
time-advance obtained by each reference sensor relative to each performance sensor involved
in a confined feedforward active control (CFFAC) system. A new method for acoustical signal
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processing that is referred to as joint-channel residual spectral analysis (JCRSA) is developed.
With this method joint signal information including the spatially-weighted-averaged acquisition
lead time can be extracted from diffuse sound field measurements.

In chapter 3 the ANR performance limitations as determined from causality constraints will
be considered. A key technique to the causality analysis is the spectral factorization which
therefore will play a main role in this chapter. Another objective pursued is the examination
of the performance of two variant Wiener-Hopf (WH) filters that are useful for the analysis of
the achievable ANR performance under causality constraints. A suite of examples of increasing
complexity is constructed in order to exhibit some of the characteristics related to causality
constraints.

Part II includes two chapters related to control system design. In chapter 4 the topology of the
overall control system will be introduced. A brief introduction to hybrid continuous-time discrete-
time topology (HCTDTT), hybrid feedforward FBS (HFFFBS), internal model control (IMC) and
adaptive inverse control (AIC) is provided. The HFFFBS is discussed at length later in chapter 7
directly in a MIMO context. AIC is proposed as a method to achieve adaptive control of unknown
and possible time-varying systems by using adaptive filters.

In chapter 5 of multi-rate system generally applicable for ACSV is developed. A detailed de-
scription of the processing stages involved in sensing signals and actuating signals respectively
is included. This system involves three different sampling rates for maximum trade-off between
different design constraints. Moreover, the system is formulated in general ACSV context of a
hybrid MIMO feedforward-feedback system (HMIMOFFFBS). A conceptual demonstration of this
new multi-rate ANC system is provided.

The theme of the Part III that is constituted by four chapters is adaptive filters for ANC. The
objective of chapter 6 is to establish a link between the domain of control system to the domain
of adaptive filtering. A description of the well-established filtered-reference signal method used
to accommodate the presence of a plant is made. The more advanced technique referred to
as modified filtered reference method is carried out. This method is extensively being used in
the simulations. Moreover, this chapter also presents the family of filtered-error (Fe)LMS that
provides a cost effective alternative to the mFx in MIMO systems.

In chapter 7 a bottom-up description of the HMIMOFFFBS from basic feedback systems and
feedforward systems to the full blown HMIMOCFFFBS including provision for on-line system
identification and integrated communication (IC) is made. Moreover, the system includes a
scheme that to a large extent can eliminate the effects of feedback signals contaminating the
reference signals. In a demonstration off-line simultaneous system identification capabilities of a
complex system using different adaptive filter configurations is made.

Then in chapter 8 four different modes of adaptive filtering is presented. The concepts of cost
functions, leakage and regularization is discussed. Both t-domain- and z-domain causally con-
strained Wiener filters are introduced. The steepest descent (SD) and then subsequently the
family of stochastic gradient (SG) are presented. A new and more general variant of the affine
projection algorithm has been developed. This adaptive filter algorithm that is denoted by
multiple-channel-αγΠε-affine projection algorithm includes parameters for leakage control and
adaptive tap-weight regularization as well as numerical regularization. A simplification of this
algorithm leads to the MC-αγΠε-NLMS algorithm that is an extended variant of the NLMS algorithm.

The theme of chapter 9 is an extensive performance analysis of the linear-least-mean-squares
estimate (l.l.m.s.e.)-based multiple-channel-αγΠε-affine projection algorithm (MC-αγΠε-APA) adap-
tive filter encompassing both dynamic weight-driven leakage and dynamic control-effort-driven
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leakage and numerical regularization as well as weight regularization. Moreover, in our presen-
tation we also allow the step-size μ, the leakage control parameters α, γ and the numerical regu-
larization parameter ε to attain matrix-values and to be time-variant. Furthermore the analysis
conducted in this chapter uses an advanced random-walk model and also allows a non-vanishing
initial weight vector.

Finally, Part IV includes two chapters related to the vibro-electroacoustical part of a HPD. The
passive operation of circumaural HPDs is addressed in chapter 10. In chapter 11 a discussion
of quantities governing the performance of ANR HPDs will be carried out. Moreover, the actual
Helmet design including the Terma Earcup system is modeled and suggestions to a less resonant
structure is made.

Following our conclusions a total of five appendices are included in Volume I of the thesis. Various
ANR attenuation quantities are defined in Appendix A. Among important parameters considered
we find the acquisition time, the group delay, aliasing effects, the ordinary coherence function
(OCOF) and the MCOF. The obtainable performance as limited by each of these quantities is
evaluated. Then in Appendix B random variables (RVs) and random processs (RPs) are formally
defined and subsequently set into perspective using the F-16 application as an example. The
theme of Appendix C is statistical data analysis (SDA) and in particular an assessment of the
errors that result during post processing of the acquired data is made. Results from noise
recordings acquired in an F-16/B cockpit and in a CH-47D are presented in Appendix D that
also includes a description of the customization process of the Gentex HGU-55/P helmets. Finally,
Appendix E describes a pseudo-random noise generator that is used for system identification.

In Table 1.1 a prioritizing of the included chapters of Volume I of the report is listed. Priority 1
is attributed to the chapters that should be read, priority 2 is assigned to the chapters supporting
for the overall comprehension of the report and priority 3 indicates that the material might be
somewhat outside the main scope of the Ph.D. work or else is at an introductory level.

Chapter Name Priority
chapter 1 Introduction 1
chapter 2 Coherence Functions and Spectral Analysis 1
chapter 3 Causality Constraints and Spectral Factorization 1
chapter 4 System Description 2
chapter 5 Multi-rate Systems 2
chapter 6 Adaptive Filtering for Active Control 2
chapter 7 HMIMOFFFBS 2
chapter 8 Adaptive Filtering Algorithms for LTV Systems 1
chapter 9 MC-αγΠε-APA Performance Analysis 1
chapter 10 Hearing Protector: Active Attenuation 2
chapter 11 Hearing Protector: Passive Attenuation 2
chapter 12 Conclusions 1
Appendix A Active Noise Control Performance 2
Appendix B Random Signals 2
Appendix C Statistical Data Analysis 2
Appendix D Analysis of Noise Recordings 2
Appendix E Random Noise Generation 2

Tab. 1.1: Ph.D. Thesis Chapter Priority Level Volume I.
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1.5.2 Organization of Volume II of the Thesis

Volume II of the Thesis is organized in two parts addressing different aspects of an active control
(AC) system.

Three chapters constitute Part V that supplement Part I of Volume I of this report. In Appendix F
a theory unifying three branches of physics namely acoustics, elasticity theory and electromag-
netics is presented. This unifying theory is the mathematical framework of field theory. The
contents of this chapter should generally be fruitful when attempting to project results ob-
tained in one of the physical systems to one of the other two physical systems. In particular
in Appendix G where spherical near-field antenna testing (SNFAT) techniques used primarily for
antenna measurement will be accommodated to measurement of acoustical wave fields as well
as elastoric wave fields. In order to accomplish this goal, however, some care must be exercised
when adapting to results obtained from electromagnectics. Following the presentation of the
SNFAT techniques in Appendix G this part of the report concludes with Appendix H that pro-
vide some practical examples to where field considerations are of profound concern in the design
of an active noise control (ANC) system. The problem related to AC when either of the primary,
secondary sources or control volumes are subject to dynamic movements is also addressed. In
particular, existing spherical near-field techniques from Appendix G are adapted to cases where
the sources are positioned outside the spherical scan surface and time-domain field for which
the interior field inside the sphere can be determined. These results are used in the design of
the aforementioned reference test unit (RTU) dedicated the test and evaluation of methods and
techniques developed for active control of sound and vibration (ACSV) systems.

The theme of Part VI that supplements Part III of Volume I is constituted by four chapters is
adaptive filters for ANC. The presentation of adaptive filters for AC is proceeded in Appendix I
with a discussion of the topology of the filters involved. The topic of Appendix J is fast adaptive
filtering algorithms and in particular order-recursive algorithms. A detailed derivation of the
fast array recursive least-squares (FARLS) is provided. Moreover, an extension to the FARLS

algorithm is made allowing a non-vanishing initial condition and a regularization matrix that
not necessarily is a diagonal matrix. This adaptive filter is used extensively in many parts of this
report. The theme of Appendix K is orthonormal filters and in particular Kautz/Laguerre filters.
Finally, Appendix L provide insight to the class of α-stable distributions. Various adaptive
filter dedicated to this class of probability density functions and in particular the normalized
LMpN (NLMpN) algorithm are presented. A total of four appendices namely Appendix M-P are
included in Volume II of the thesis.

In Table 1.2 a prioritizing of the included chapters in Volume II of the report is listed.

Chapter Name Priority
Appendix F Acoustic, Electromagnetic and Elastic Field Theory 3
Appendix G Spherical Near-Field Testing 3
Appendix H Applied Active Control of Fields 3
Appendix I Adaptive Filter Topology 3
Appendix J Adaptive Filtering Fast Algorithms for LTV Systems 3
Appendix K Orthonormal Filters 3
Appendix L Alpha-Stable Distributions 3
Appendix M Fourier Transforms 3
Appendix N Signal Aliasing Effects 3

Continued on next page



14 BIBLIOGRAPHY

Chapter Name Priority
Appendix O Mathematical Model Dynamical System 3
Appendix P Terma Noise Chamber Facility 3

Tab. 1.2: Ph.D. Thesis Chapter Priority Level Volume II.

The author has tried to supplement the mathematical derivations and physical ideas by expression
in plain English and apology for any deviation from this objective.

Rather than collect all appendices at the end of this report, the author has opted to place each
of the domain specific appendices at the end of the chapter where it is called upon. Material of
more general character, however, is placed in appendices in the end of the report.
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Part I

ACTIVE CONTROL OF FIELDS





2. COHERENCE FUNCTIONS AND SPECTRAL ANALYSIS

2.1 Introduction

The theme of this chapter is coherence functions and statistical analysis methods that can be
applied to obtain estimates of different types of coherence functions. Coherence functions are of
particular concern in ANC system design as the achievable active noise reduction (ANR) perfor-
mance in a feedforward system (FFS) is to a large extent determined by the degree of coherence
between the set of reference sensors and the set of error sensors (or performance sensors).

In section 2.2 on the next page three coherence functions will be introduced, namely the ordi-
nary coherence function , the multiple coherence function and the partial coherence function.
Moreover, section 2.2 lists various causes to the lack of coherence between two sensor signals. Ex-
pressions for the three coherence functions are provided and for the multiple coherence function
and the partial coherence function both an iterative procedure as well as a matrix implementation
formulation is presented.

A problem exists when one attempts to model a physical spatially distributed system with no
obvious input and output channel definition by a finite lumped-elements multi-channel system.
Usually, no unique transfer function exist as the system is not point-wise excited, but excited
over an area as in the case of diffuse sound field illumination.

A - to the author’s best knowledge - new method for acoustical signal processing that is referred
to as joint-channel residual spectral analysis (JCRSA) is developed in section 2.3 on page 29. The
JCRSA method is used for the extraction of joint signal information from different observation
positions in space. The idea is to separate each spectrum in a coherent spectrum and a residual
spectrum. The contents of the coherent spectrum can be obtained from a linear superposition of
the other signals, whereas the residual spectrum bears information that is unique to each specific
channel1. Moreover, a quantity referred to as the spatially-weighted-averaged acquisition lead
time is introduced to represent the averaged time-advance obtained by each reference sensor
relative to each performance sensor or error sensor involved in the proposed confined feedforward
active control (CFFAC) system.

As will be demonstrated in section 2.4 on page 32 this method has the ability to extract distinct
channel timing information that is deeply buried in multi-channel interferences in a diffuse sound
field. Such timing information is useful for, e.g., the determination of the spatially-weighted-
averaged acquisition lead time.

1In the study of the extent of the diffuse field zone of quiet one may apply a somewhat related idea of
separating the primary field at an arbitrary position is space, say, r into a component that is perfectly correlated
spatially with primary field (and therefore also secondary field) at the position in space where perfect cancelation
is obtained, say, r0 and an orthogonal field component that is perfectly uncorrelated with this primary field at
r [13] [20, Ch. 11.4]. Hence, spatially decorrelation between two field points (r0, r) is considered, whereas the
theory developed in this chapter is the natural extension to the multiple field point case. Spatial decorrelation is
also considered in subsection 2.4.3 viz. (2.4.2) on page 45.
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2.2 Coherence

Coherence functions are measures of linear dependence between random signals or in general sets
of random signals, say, A and B to be defined later. They represent the correlations between
spectral components of random processs (RPs) and are thus functions of frequency. Four types of
coherence functions will be considered: the ordinary coherence function , the multiple coherence
function which in turn involves the partial coherence function and a generalized coherence
function. The ordinary coherence function consider two different channels, the multiple coherence
function involve one single channel and a number of different channels. The partial coherence
function on the other hand consider two different channels and a number of likewise different
channels.

In feedforward AC lack of sufficient coherence between the reference sensors and error sensors
will directly limit the obtainable ANR attenuation. Denoting by Aγ2 the attenuation limited
by (lack of) coherence, the following expression is readily obtainable [12, Ch. 3]

Aγ2(f) = 10 log10

(
1− γ2(f)

)
[dB]. (2.2.1)

Many physical systems are extended continuum systems which we, however, model as finite-
dimensional continuous-time or discrete-time linear time-invariant (LTI) dynamical systems that
can be accessed at different points or channels. As described in Appendix O on page 807 the
state-space representation and the input-output model is widely used to model a great variety of
systems encountered in nature.

Usually in systems theory some of the channels are considered as inputs while the remaining
channels are considered as outputs. Our approach will, however, be more general as often no
obvious input output assignment exists. Sometimes the channels2 naturally fall into two or more
sets. Henceforth, we will by A designate one arbitrary subset of the channels and by B designate
another arbitrary subset of the channels. Moreover, we will let ψa, ψb represent arbitrary random
signals. The signal set membership for these arbitrary random signals is inessential. Typically,
ψa and ψb will be used as surrogates for reference signals, disturbance signals and performance
signals.

The total number of channels is henceforth denoted by Nψ. Accordingly, the system is con-
sidered spatially sampled at Nψ distinct points in space and the corresponding signal as an
Nψ-multivariate stationary RP.

2.2.1 Imperfect Coherence

From a literature survey the following reasons for observed imperfect coherence has been found3

[15, Ch. 4], [4, 6, 12]:

Coherence Prob. 1. Partially Coherent Fields. A real physical source is not a point source,
but has a finite extension, consisting of many elementary radiators. Acoustical sources related
to violent fluid motion was discussed in subsection F.3.11 on page 654 represent an example of
spatially distributed elementary sources. In optics these elementary sources are atoms. Moreover,
a physical source is never constituted by strictly coherent elementary sources. This is in particular

2We use the words channel and signal synonymously.
3The list is most likely not exhaustive and many other causes to imperfect coherence may exist.
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the case for the noise generated from violent fluid motion. On the contrary, for some vibrating
machinery radiating noise the source points will to a large extent be coherent. Incoherence
in turn always implies a finite (though not necessarily wide) spectral range4. Accordingly, a
physical source is never strictly monochromatic and even the sharpest spectral line has a finite
width. At field points many wavelengths away from such extended and partially coherent noise
source the amplitude and phase of the radiated field will undergo temporal fluctuations, the
rapidity of which depends essentially on the width of the spectrum. The characteristic time of
the amplitude variations is called the coherence time [8, Ch. 10]. Similarly, the field will exhibit
spatial fluctuations in amplitude and phase, that is, the field points are only partially coherent.
The spatial extent of the dependence of the field is characterized by the region of coherence5.
Hence, the cause of lack of perfect coherence is an extended source of non perfectly coherent
elementary elements.

Coherence Prob. 2. Insufficient model order. This is of particular importance when one
attempts to model a spatially distributed system as a finite lumped-elements multiple-input and
multiple-output (MIMO) system. With increasing frequencies the field necessarily become spa-
tially undersampled and the corresponding spatially-aliased signal components can be considered
as extraneous signals.

Coherence Prob. 3. Doppler effects. Consider two sensors as observers that are moving along
trajectories with reference to a coordinate system with origo at the position of the noise source.
Then at times where a difference in the radial velocity component of the two sensors exists,
the sensors will experience different doppler shifts and therefore also a drop in the coherence
function.

Hence, 1 and 2 relate to the problem of modeling a physical continuum with a finite-dimensional
MIMO system. 1 refers to the reason of the existence of partially coherent fields, whilst 2 refers
to the problem of insufficient hardware deployment (for economic and/or practical reasons).
Owing to wave nature such considerations apply to the three physical phenomena considered in
Appendix F on page 619, that is, acoustics, elasticity theory and optics (electromagnetics). A
possible remedy to 3 is to apply doppler filtering techniques well known within the sonar and
radar communities.

Coherence Prob. 4. The system relating the ψA(t) signals and the ψB(t) signals is not linear6.

Coherence Prob. 5. The system relating the ψA(t) signals and the ψB(t) signals is not a
constant-parameter system.

Deviations from a strictly LTI system is accounted for in 4 and 5. A remedy to this problem
is to use non-linear and time-varying AC. However, this will usually increase the complexity
considerably. The time-variance is to some extent taken into account by the use of adaptive
filters for adaptive control and for plant representation.

4In optics the partial coherence is often related to an extended quasi-monochromatic light or polychromatic
light source. Such light sources most often imply incoherence.

5From optics it is well known that the spectrum of radiation from an extended source changes on propagation
unless a certain scaling condition is obeyed by the degree of spectral coherence across the source [8]. For a
large class of source-coherence functions the changes may be manifested as shift of spectral lines either towards
the longer (red shift) or the shorter (blue shift) wave length. In [7] an acoustical experiment with two small
partially correlated sources frequency shifts in tonal contents was observed by this mechanism, which validate
this hypothesis in the acoustical domain.

6Atmospheric turbulence. This is of particular concern in aeroacoustic tracking systems with widely separated
sensor arrays [19]. In [25] physics-based models for the associated spatial coherence loss are developed.
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Coherence Prob. 6. Finite signal-to-noise ratio (SNR). The presence of extraneous noise that
is uncorrelated with ψa(t) and ψb(t). For example, noise in the receiver electronics will most
likely be uncorrelated from one sensor to another. From [6, Ch. 6] we find the ordinary coherence
function expressed in terms of the SNR at port a represented by SNRa and the SNR at port b
designated by SNRb

γ2
ψaψb

(f) =
1

1 + SNR−1
a (f) + SNR−1

b (f) + SNR−1
a (f)SNR−1

b (f)
. (2.2.2)

Accordingly, considering this point isolated high SNRs lead to a coherence function approaching
unity.

Coherence Prob. 7. Aliased signal components in discrete-time systems. In AC a trade-off
between suppression of aliased signal components and performance loss due to group delays
within the anti-aliasing filters (AAFs) therefore often prevails.

Coherence loss associated with the AAF will be discussed in subsection N.2.1 on page 792.

Coherence Prob. 8. Adaptive filter truncation errors. By the use of finite-duration impulse
response (FIR) filters for plan model representation some model imperfections necessarily result.
A remedy to this problem is to use infinite-duration impulse response (IIR) filters. Moreover, by
using numerical methods in the determination of fields from an extended source region usually
involves an infinite or possibly double infinite sum of terms. In practice an estimate of the field
is obtained by truncation of the (double) infinite sum. As a consequence some numerical source
contributions are omitted and the coherence function decreases.

Coherence Prob. 9. The underlying RPs are not mean and variance stationary or ergodic.

The analysis presented in this chapter is based on an underlying assumption of mean and variance
stationarity. Coherence problem 9 accounts to such model deviations. Lack of stationarity,
however, may be compensated for by employing more advanced data analysis schemes.

Coherence Prob. 10. Periodicities in the acquired data set.

Coherence Prob. 11. A nonzero mean in the acquired data set. A finite direct current (DC)
offset ı̈n the acquisition equipment that is not taken properly compensated for may completely
overshadow possible subsonic signal content in the first frequency bin.

Coherence problem 10 and coherence problem 11 refer to improper statistical data analysis which
may lead to an underestimation of the true coherence function.

Moreover, it should, however, be remarked that 1-11 to some extent might be mutually depen-
dent.

In the system identification the coherence function indicates how much of the system output
signal is due to the input to the system.

Finally, it should be recalled that the improper statistical analysis of the data set may lead
to an erroneous underestimation of the achievable performance. Similarly, imperfections in the
performance sensor itself may lead to an underestimation of the ANR performance that will be
perceived by humans at the same position.
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2.2.2 MIMO channel power spectral density matrix

In the statistical data analysis a MIMO channel power spectral density matrix denoted by Sψψ ∈
CNf×Nψ×Nψ , where the diagonal elements are auto spectral density functions and the off-diagonal
elements are cross-spectral density functions, is constructed

Sψψ �

⎡⎢⎢⎢⎢⎣
Sψ1ψ1 Sψ1ψ2 . . . Sψ1ψNψ

Sψ2ψ1 Sψ2ψ2 . . . Sψ2ψNψ

...
...

. . .
...

SψNψ
ψ1 SψNψ

ψ2 . . . SψNψ
ψNψ

⎤⎥⎥⎥⎥⎦ . (2.2.3)

In the statistical data analysis it is often not required to examine all N2
ψ possible channel com-

binations. Sometimes the data naturally fall into two or more sets. Typically, when considering
MIMO systems one subset of signals is designated as input and the other subset of signals is
designated as output. Accordingly, we may write the set of all signals denoted by ψS as

ψS = ψI ∪ψO, (2.2.4)

where ψI = ∪j∈
¯
NI

ψ
ψI

j denotes the set of input signals and N I
ψ is the number of input channels,

and where ψO = ∪k∈
¯
NO

ψ
ψO

k similarly denotes the set of output signals and NO
ψ likewise is the

number of output channels.

The set of input signals and output signals are by definition always considered mutually exclusive,
that is, ψI ∩ψO = ∅. The number of channels are therefore related by

Nψ = N I
ψ + NO

ψ . (2.2.5)

Then we may reexpress the MIMO channel power spectral density matrix in terms of block channel
matrices according to

Sψψ �
[
SψIψI SψIψO

SψOψI SψOψO

]
, (2.2.6)

where SψIψI ∈ CNf×NI
ψ×NI

ψ represents the input channel power spectral density matrix, SψOψO ∈
CNf×NO

ψ ×NO
ψ similarly is the output channel power spectral density matrix and SψIψO = S∗

ψOψI ∈
CNf×NO

ψ ×NI
ψ denotes the input-output cross channel power spectral density matrix. The depen-

dence on the frequency index is suppressed for notational convenience. In full expansion Sψψ is
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expressed by

Sψψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SψI
1ψI

1
SψI

1ψI
2

. . . SψI
1ψI

NI
ψ

SψI
1ψO

1
SψI

1ψO
2

. . . SψI
1ψO

NO
ψ

SψI
2ψI

1
SψI

2ψI
2

. . . SψI
2ψI

NI
ψ

SψI
2ψO

1
SψI

2ψO
2

. . . SψI
2ψO

NO
ψ

...
...

. . .
...

...
...

. . .
...

SψI

NI
ψ

ψI
1

SψI

NI
ψ

ψI
2

. . . SψI

NI
ψ

ψI

NI
ψ

SψI

NI
ψ

ψO
1

SψI

NI
ψ

ψO
2

. . . SψI

NI
ψ

ψO

NO
ψ

SψO
1 ψI

1
SψO

1 ψI
2

. . . SψO
1 ψI

NI
ψ

SψO
1 ψO

1
SψO

1 ψO
2

. . . SψO
1 ψO

NO
ψ

SψO
2 ψI

1
SψO

2 ψI
2

. . . SψO
2 ψI

NI
ψ

SψO
2 ψO

1
SψO

2 ψO
2

. . . SψO
2 ψO

NO
ψ

...
...

. . .
...

...
...

. . .
...

SψO

NO
ψ

ψI
1

SψO

NO
ψ

ψI
2

. . . SψO

NO
ψ

ψI

NI
ψ

SψO

NO
ψ

ψO
1

SψO

NO
ψ

ψO
2

. . . SψO

NO
ψ

ψO

NO
ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.2.7)

Sometimes such partitioning of the channels is less obvious. For example, at various places in
this thesis the mutual relationship between the reference signals, disturbance signals and the
performance signals is investigated. However, none of these subsets of signals are physically
inputs nor physical outputs, but merely some sensed signals. In this specific case, however,
it seems natural to consider the reference signals as inputs and the disturbance signals and
the performance signals as outputs. For the investigation of mutual relationship between the
disturbance signals and the performance signals we may arbitrarily designate the disturbance
signals as inputs and the performance signals as outputs.

On the contrary, the aforementioned abstract signal sets A and B may or may not be overlapping.
Moreover, the union of A and B will sometimes only constitute a subset of all signals. Hence,

ψS ⊇ ψA ∪ψB, (2.2.8)

where ψA = ∪j∈
¯
NA

ψ
ψA

j denotes the set of A signals and NA
ψ is the number of A channels, and

where ψB = ∪k∈
¯
NB

ψ
ψB

k similarly denotes the set of B signals and NB
ψ likewise is the number of

B channels.

In general, the number of channels is accordingly subject to

Nψ � NA
ψ + NB

ψ . (2.2.9)

The equality sign in (2.2.8) and (2.2.9) pertains for example to the case where subsets ψA and
ψB are non-overlapping and include all signals.

Moreover, we introduce the set of C (conditioning) signals denoted by ψC = ∪l∈
¯
NC

ψ
ψC

l where

NC
ψ is the number of C (conditioning) channels. Important to note is that ψC may or may not

contain elements from either of ψA or ψB, that is, in general ψC ∩ψA �= ∅ and ψC ∩ψB �= ∅.
For all practical purposes it should suffice to consider signals from three subsets of signals at a
time. Then, we may let ψA, ψBand ψC be surrogates for application dependent specific subsets.
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2.2.3 Ordinary Coherence

The ordinary coherence squared function (or just coherence function) between (arbitrary) ran-
dom signal ψa and (arbitrary) random signal ψb denoted by γ2

ψaψb
(f), represents the linear

dependence (correlation) in the space-frequency domain between the spectral components of ψa

and those of ψb. It is defined from the PSD of signal ψa designated by Sψaψa(f), the PSD of
signal ψb denoted by Sψbψb

(f) and the CPSD between signal ψa and signal ψb represented by
Sψaψb

(f), that is,

γ2
ψaψb

(f) � |Sψaψb
(f)|2

Sψaψa(f)Sψbψb
(f)

. (2.2.10)

As opposed to the multiple coherence function that will be introduced in subsection 2.2.5 on
page 25 the ordinary coherence function consider signals pairwise. The coherence function is
zero if the random signals are uncorrelated and equal to one at any frequency index where there
exist a linear transformation between ψa and ψb.

In the statistical data analysis presented in Appendix C on page 539 it is useful to introduce the
ordinary complex coherence function γψaψb

defined by

γψaψb
(f) = |γψaψb

(f)|eı�γψaψb
(f), (2.2.11)

where the magnitude and phase are defined by

|γψaψb
(f)| = +

√
γ2

ψaψb
(f) (2.2.12)

and

�γψaψb
(f) = arctan

(
Qψaψb

(f)
Cψaψb

(f)

)
(2.2.13)

respectively and where the CoPSD (co-spectrum) Cψaψb
(f) and QPSD (quad-spectrum) Qψaψb

(f)
in turn are defined according to

Sψaψb
(f) = Cψaψb

(f) + ıQψaψb
(f). (2.2.14)

Comparing the definition for the ordinary coherence function in the space-frequency domain
(2.2.10) with the definition for the correlation coefficient (coherence function in space-time)
ρψaψb

(τ)7.

ρψaψb
(τ) � Cψaψb

(τ)√
Cψaψa(0)

√
Cψbψb

(0)
, (2.2.15)

7One must distinguish between the temporal complex degree of coherence ρψaψb
(τ) that is a measure of

the coherence in the space-time-domain and the spatial degree of coherence γψaψb
(f) that is a measure of the

coherence in the space-frequency-domain [8, Ch. 10].
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where Cψaψb
(τ) denotes the cross-covariance function between two arbitrary continuous-time

random signals ψa(t), ψb(t)
8

Cψaψb
(τ) � Rψaψb

(τ) − ηψaη∗
ψb

, (2.2.16)

and where Rψaψb
(τ) in turn denotes the cross-correlation function between two arbitrary

continuous-time random signals ψa(t), ψb(t) and ηψa in turn denotes the mean of arbitrary
random signal ψa(t), then some interrelations seem to appear. In [17] it is proven that the fre-
quency band coherence can be interpreted as the squared envelope of the correlation coefficient
at zero time delay for the particular case of pressure and an arbitrary component of the particle
velocity vector considered as RPs, that is,

γ2
ψaψb

(f) = ρ2
ψaψb

(0, f0, Δf) + ρ̌2
ψaψb

(0, f0, Δf), (2.2.17)

where ρ̌ in turn designates the Hilbert transform of ρ( · ). The relationship between the two
degree of coherence is discussed, under more general circumstances in [14, 26]. They found the
following relations between the two degrees of coherence9

γψaψb
(ω) =

1
2π

1√
sψaψa(ω)

√
sψbψb

(ω)

∫ ∞

−∞
ρψaψb

(τ)e−ıωτ dτ, (2.2.18)

and

ρψaψb
(τ) =

∫ ∞

−∞

√
sψaψa(ω)

√
sψbψb

(ω)γψaψb
(ω)eıωτ dω, (2.2.19)

where sψaψa(ω) denotes the normalized single-sided autospectra

sψaψa(ω) � Sψaψa(ω)∫∞
−∞ Sψaψa(ω) dω

. (2.2.20)

Hence, the ordinary complex coherence function is obtained as 1
2π times the Fourier transform

defined in (M.1.3) on page 787 of the correlation coefficient weighted by the inverse product of
the square roots of normalized spectral densities. Similarly the correlation coefficient is obtained
as 2π times the inverse Fourier transform (see (M.1.5) on page 788) of the ordinary complex
coherence function weighted by the product of the square roots of normalized spectral densities.

It should be emphasized that the complex coherence function γψaψb
(f) is a measure of coherence

in the space-frequency domain, whilst the correlation function ρψaψb
(τ) is a measure of coherence

in the space-time domain.

The magnitude-squared coherence function is usually determined from periodogram analysis as
presented in Appendix C on page 539.

8Note, Cψaψb
(τ) represents a cross-covariance function whereas Cψaψb

(f) defined in (2.2.14) is the co-
spectrum.

9The expressions have been accommodated to the choice of non-unitary Fourier transform pair viz. (M.1.3)
and (M.1.5).
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2.2.4 Partial Coherence

The partial coherence function is usually most used as an intermediate quantity for the determi-
nation of the multiple coherence function. However, we will later make direct use of the partial
coherence function in the JCRSA method to be presented in section 2.3 on page 29. The partial
coherence function between random signals ψa and ψb conditioned on the random signal set ψC

denoted by γ2
ψaψb⊥ψC is defined by10

γ2
ψaψb⊥ψC (f) � Sψaψb⊥ψC (f)Sψbψa⊥ψC (f)

Sψaψa⊥ψC (f)Sψbψb⊥ψC (f)
. (2.2.21)

By the term conditioned is meant the residual components of random signal ψa(t) and of random
signal ψb(t) that remains after removing all components linearly dependent on ψC . By comparing
(2.2.10) and (2.2.21) we recognize that the partial coherence function is the ordinary coherence
function of the residual parts of the random signals that follows from conditioning with respect to
ψC . An explicit expression for the partial coherence function is provided in (2.2.28) on page 28.

The partial coherence function is subject is to a double inequality viz. (2.2.31) on page 28. In
the development we sometimes are conditioning with an empty set (ψC = ∅), which of course
leaves the auto- and cross-spectral density functions unchanged, that is, Sψaψa⊥∅ � Sψaψa and
Sψaψb⊥∅ � Sψaψb

.

It is important to note that the partial coherence function involve two single channel signals
that may or may not belong to the same channel set and a set of NC

ψ signals. As such the
partial coherence function is more complicated in structure than the multiple coherence function
defined in subsection 2.2.5. For the same reason when considering specific pairs of channels, that
is, joint-channels and we want to eliminate the interference from a set of other channels, it is
therefore the partial coherence function and not the multiple coherence function that will be
used.

2.2.5 Multiple Coherence

The multiple magnitude-squared coherence function or more briefly the multiple coherence func-
tion is normally only considered in more advanced data analysis.

The MIMO problem has among other authors theoretically been considered by Bendat in [1, 2],
Dodds and Robson [11] and Yacoub [27]. Moreover the handbook by Bendat and Piersol [6]
provides invaluable insight into the partial coherence function and multiple coherence function.

Somewhat surprisingly, only a few references to the multiple coherence function can be found in
the ANC literature. In [9] a diesel engine structural-acoustical problem is modeled by a multiple-
input and single-output (MISO) system where the vibration measured at each of the six cylinders
constitute the inputs and where the sound pressure measured some distance away represents the
output. Using multiple coherence function analysis as opposed to ordinary coherence function it
was found that the total noise was almost equal to the coherent noise.

In the present report we will make extensive use of the multiple coherence function in particular
for the assessment of the requirement on the amount of reference sensors required in a confined
feedforward (CFF) ANC system.

10The notion ψaψb ⊥ ψC can mnemonically be viewed as the subspace of ψa and ψb that is orthogonal to ψC .
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In geophysics the multiple coherence function (MCOF) can be used to separate two stationary
components: a signal sequence, which correlates from trace to trace, and an incoherent noise
component, which does not correlate from trace to trace [23, 24]. Hence, a single as opposed to
multi-channel system is considered, but at multiple times.

The multiple coherence function has also been used as a statistic measure for detection of a
common unknown signal component in multiple noisy channels [22]. A discussion of this subject,
however, will be deferred until section 2.A on page 102.

The multiple coherence function is not directly available in a MATLAB® package and the engineer
or scientist therefore has to implement his own version dedicated to the specific application at
hand.

The multiple magnitude-squared coherence function between ψa and the set of ψC signals that
we will denote by11 γ2

ψa ·ψC , represents the linear dependence between spectral components of
ψa(f) and those of the signals ψC

1 (f), ψC
2 (f), . . . , ψC

NC
ψ

(f). Hence, a single signal ψa(t) is related

to the non-empty set of, e.g., NC
ψ signals. Some authors prefer to make the size of the conditioning

signal set explicit and therefore refer to a NC
ψ -order multiple coherence function.

At least two different approaches to the determination of the multiple coherence function exist.
The first procedure relies on straight forward use of linear algebra and requires no ranking of
the input channels nor determination of conditioned spectra or partial coherence functions. The
second procedure on the other hand is based on a ranking of the input channels and uses an
iterative computation procedure involving conditioned spectra and partial coherence functions.
This iterative procedure provides specific insight in to the contribution of the individual signals.
Moreover, this second method is relative easy amendable to statistical error analysis as detailed
in Appendix C on page 539.

Both methods rely on the construction of a signal set, say, ψA as the union of the random signal
ψa and the set of ψC signals, that is, ψA ← ψa ∪ψC . Hence, NA

ψ = NC
ψ + 1.

From these signals the following ψa − ψC channel power spectral density matrix denoted by
SψAψA ∈ CNf×NA

ψ ×NA
ψ that is obtained from concatenation of the random signal ψa and the

conditioning signal set ψC , that is,

SψAψA �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sψaψa SψaψC
1

SψaψC
2

. . . SψaψC

NC
ψ

SψC
1 ψa

SψC
1 ψC

1
SψC

1 ψC
2

. . . SψC
1 ψC

NC
ψ

SψC
2 ψa

SψC
2 ψC

1
SψC

2 ψC
2

. . . SψC
2 ψC

NC
ψ

...
...

...
. . .

...
SψC

NC
ψ

ψa
SψC

NC
ψ

ψC
1

SψC

NC
ψ

ψC
2

. . . SψC

NC
ψ

ψC

NC
ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.2.22)

11The notion ψa ·ψC can mnemonically be viewed as the projection of ψa on ψC .
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Multiple Coherence Function Matrix Formulation

In [6, Ch. 7] the multiple magnitude-squared coherence function between the conditioning signal
sets ψC and random signal ψa denoted by γ2

ψa · ψC can be expressed as

γ2
ψa ·ψC (f) = 1−

|SψAψA(f)|
Sψaψa(f)|SψCψC (f)| . (2.2.23)

In [21, Ch. 14] a somewhat different expression for the multiple magnitude-squared coherence
function is provided

γ2
ψa ·ψC (f) =

SψaψC (f)S−1
ψCψC (f)SψCψa

(f)

Sψaψa(f)
, (2.2.24)

where SψaψC and SψCψa
are the last NC

ψ elements of the first row and first column of SψAψA

in (2.2.22) respectively. However, applying ordinary rules from linear algebra the equivalence of
(2.2.23) and (2.2.24) is easily recognized.

As proven in, e.g., [18] the multiple coherence function is subject to the following double con-
straints

0 ≤ γ2
ψa ·ψC (f) ≤ 1, (2.2.25)

where γ2
ψa ·ψC (f) attains the lower value 0 when the measured output at the frequency being

considered is entirely due to noise and therefore cannot be deduced from the known inputs.
Similarly, γ2

ψa ·ψC (f) attains the upper value 1 when ψa can be completely determined from the
ψC signals passing through a (virtual) linear noise-free system.

However, the compact forms (2.2.23) and (2.2.24) provide no specific insight into the contribution
of the individual signals in ψC to the multiple coherence function γ2

ψa · ψC (f).

Multiple Coherence Function Iterative Procedure

In [3, 5, 6] a detailed derivation of the multiple coherence function based on the iterative procedure
is provided.

If a large variation among the individual ordinary coherence functions γ2
ψaψC

l
are encountered a

ranking of the conditioning signal sets should initially be carried out. Hence, for each frequency
index perform a channel ranking with respect to ordinary coherence functions and in descending
order, that is,

γψaψC
1̌(f)

(f) ≥ γψaψC
2̌(f)

(f) ≥ · · · ≥ γψaψC

ŇC
ψ(f)

(f), (2.2.26)

where 1̌(f), 2̌(f), . . . , ŇC
ψ(f) are the corresponding ranking indices in SψAψA defined in (2.2.22).

For notational brevity, the explicit dependence of the ranking on the frequency index will subse-
quently be suppressed.
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Then follows the creation of a NA
ψ ×NA

ψ ×NC
ψ MISO channel conditioned power spectral density

matrix denoted by Sψiψj⊥ψr! from the following recursive algorithm

SψA
i ψA

j ⊥ψC
l!

=

⎧⎪⎪⎨⎪⎪⎩
SψA

ǐ
ψA

ǰ
−

S
ψA
1̌

ψA
ǰ

S
ψA

ǐ
ψA
1̌

SψA
ǐ

ψA
1̌

l = 1

SψA
i ψA

j ⊥ψC
(l−1)!

−
S

ψC
l

ψA
j

⊥ψC
(l−1)!

S
ψC

l
ψC

l
⊥ψC

(l−1)!

SψA
i ψC

l ⊥ψC
(l−1)!

l > 1;
i, j ∈ NA

ψ , l ∈
¯
NC

ψ , l < min (i, j).

(2.2.27)

The notion ψr! = ∪r
r′=1ψr′ is introduced as a compact representation of the accumulated set of

signals.

It should be observed that the link between the iteration variables i, j to the corresponding
indices ĭ, j̆ in the MIMO channel power spectral density matrix Sψψ defined in (2.2.22) on page 26
is established by (2.2.26) on the preceding page. In addition by definition i = NA

ψ ⇐⇒ ĭ = NA
ψ

and a similar relation pertains to j and j̆.

Next the partial coherence function γ2
ψaψC

l ⊥ψC
(l−1)!

is likewise determined recursively from

γ2
ψaψC

l ⊥ψC
(l−1)!

=

⎧⎪⎪⎨⎪⎪⎩
|Sψ

ľ
ψ

ǰ
|2

Sψ
ľ
ψ

ľ
Sψ

ǰ
ψ

ǰ

l = 1
|S

ψaψC
l

⊥ψC
(l−1)!

|2

S
ψC

l
ψC

l
⊥ψC

(l−1)!
S

ψaψa⊥ψC
(l−1)!

l > 1
l ∈

¯
NC

ψ , j = NA
ψ . (2.2.28)

Finally, the multiple magnitude-squared coherence function is determined from (2.2.28) by

γ2
ψa · ψC = 1−

NC
ψ∏

l=1

(
1− γ2

ψaψC
l ⊥ψC

(l−1)!

)
. (2.2.29)

In [27] it is shown that the multiple coherence function between ψa(t) and ψC(t) can also be
expressed as the sum of NC

ψ terms each consisting of the product of partial coherence function
between ψa(t) and the l’th component of ψC(t) conditioned on the previous l − 1 components,
and multiple incoherence between ψa(t) and the conditioning subset of ψC(t), that is,

γ2
ψa ·ψC (f) =

NC
ψ∑

l=1

γ2
ψaψC

l ⊥ψC
(l−1)!

(f)
(

1− γ2
ψa ·ψC

(l−1)!
(f)

)
. (2.2.30)

Hence, γ2
ψa · ψC will be a monotonously non-decreasing function with increasing NC

ψ .

The partial coherence function defined in subsection 2.2.4 is subject to a double inequality [27]

0 ≤ γ2
ψaψC

l ⊥ψC
�=l

(f) ≤ min
{

1; γ2
ψaψC

l
(f)

(
1− γ2

ψa ·ψC
�=l

(f)
)−1}

. (2.2.31)

In [27] graphical interpretation of the identity (2.2.30) and the inequality (2.2.31) is provided in
terms of coherence diagrams.
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In the special case where the spectral components of ψC
l (f) and ψC

l′ (f) are uncorrelated ∀l �= l′,
then the multiple coherence function is simply the sum of individual ordinary coherence functions

γ2
ψa ·ψC (f) =

NC
ψ∑

l=1

γ2
ψa ·ψC

l
(f). (2.2.32)

Multiple Coherence Function MIMO System

The multiple coherence function is determined by isolating each output channel in turn and by
considering the MISO system thus obtained. In the following we assume that channel ψO

k , k ∈
¯
NO

ψ

has been selected as output channel. The first step is in accordance with (2.2.22) to assign to the
signal set A the union of the k’th output signal and the set of input signals, that is, ψa ← ψO

k and
ψC ← ψI which means ψA ← ψO

k ∪ψI . Hence, in this specific case NA
ψ = N I

ψ + 1. Accordingly,
the multiple coherence function is obtained from the matrix formulations (2.2.23) or (2.2.24) or
alternatively are iteratively determined from (2.2.26) to (2.2.29).

For the multiple magnitude-squared coherence function analysis to turn out successfully the
following assumptions will be made

MCOF Assump. 1. None of the ordinary coherence functions between any input and the total
output should equal unity, that is, ∀j ∈

¯
N I

ψ, k ∈
¯
NO

ψ : γ2
ψI

j ψO
k

< 1. Otherwise the other inputs
are superfluous and do not contribute further to the multiple coherence function.

MCOF Assump. 2. None of the multiple coherence functions between any input and the other
inputs should equal unity, that is, ∀j ∈

¯
N I

ψ : γ2
ψI

j · ψI
�=j

< 1, where we by the notion ψI
�=j = ψI \ψI

j

refer to the subset of input signals obtained from excluding the j’th element . Otherwise this
input is superfluous and can be obtained from a linear combination of the other inputs.

MCOF Assump. 3. Referring to (2.2.1) on page 18 for each output the ordinary coherence
function between the output signal and the input signals should exceed, say, 0.9 for 10 dB
attenuation, that is, ∀k ∈

¯
NO

ψ : γ2
ψO

k
·ψI ≥ 0.9.

It should be remarked that MCOF assumption 2 implies that none of the ordinary coherence
functions between any pair of input records should equal unity. The MCOF assumptions 1-2 pose
no problem for the signals considered in this report. We also appreciate the importance of MCOF

Assump. 2 as regards numerical stability of (2.2.23) and (2.2.24). The requirement in MCOF

assumption 3 is often of great concern especially at higher frequencies.

Sample statistic for the pairwise and multiple magnitude-squared coherence is considered in
[22]. From such sample statistic density functions can be expressed and receiver operating
characteristic (ROC) curves deduced, which in turn define the probability of detection versus
probability of false alarm for a signal of a given true coherence.

2.3 Joint-Channel-Residual Spectral Analysis

In this section a new method for acoustical signal processing that is referred to as joint-channel
residual spectral analysis (JCRSA) is developed. The JCRSA method is used for the extraction
of joint signal information from different observation positions in space. The idea is to separate
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each spectrum in a coherent spectrum and a residual spectrum. The contents of the coherent
spectrum can be obtained from a linear superposition of the other signals, whereas the residual
spectrum bears information that is unique to each specific channel.

As will be demonstrated in section 2.4 on page 32 this method has the ability to extract distinct
channel response relationships and in particular timing information that may be obscured by the
action of the remainder channels. Such timing information is useful for, e.g., the determination of
the spatially-weighted-averaged acquisition lead time. This quantity is introduced to represent the
averaged time-advance obtained by each reference sensor relative to each performance sensor or
error sensor involved in the proposed CFFAC system. A formal definition, however, is postponed
until section 2.4.3 on page 58.

The idea is to use the results from section 2.2 in particular the concepts of multiple coherence
functions and partial coherence functions. Moreover, we will define two sets of mutually exclusive
sets of spectra that will be used to describe the joint-channel-conditioned statistics. Hence, we
will divide each spectra in two parts. The first part, the coherent spectrum or parallel spectrum,
is the component of the spectrum that could be obtained by the sum of a linear transformation
of the conditioning signal. The second part, the residual spectrum or orthogonal spectrum is that
part of the total spectrum that is unique to the isolated channels. Hence, the residual spectrum is
the part that of the total spectrum that remains when the coherent spectrum has been subtracted
from the total spectrum.

Denoting by Sψaψa ·ψC (f) the coherent auto spectral density function of random signal ψa

conditioned on random signal set ψC and denoting by Sψaψa⊥ψC (f) the residual auto spectral
density function of random signal ψa conditioned on random signal set ψC we may express the
(total) auto spectral density function as

Sψaψa(f) � Sψaψa ·ψC (f) + Sψaψa⊥ψC (f). (2.3.1)

Similarly denoting by Sψaψb ·ψC (f) the coherent cross-spectral density function between ran-
dom signal ψa and random signal ψb conditioned on random signal set ψC and denoting by
Sψaψb⊥ψC (f) the residual cross-spectral density function between random signal ψa and ran-
dom signal ψb conditioned on random signal set ψC we may express the (total) cross-spectral
density function as

Sψaψb
(f) � Sψaψb ·ψC (f) + Sψaψb⊥ψC (f). (2.3.2)

2.3.1 Joint-Channel-Residual Spectral Analysis Matrix Formulation

In the abstract matrix formulation we create the following block matrix

Sψψ �
[
SψAψA SψAψC

SψCψA SψCψC

]
. (2.3.3)

where SψAψA ∈ CNf×NA
ψ ×NA

ψ represents the A channel power spectral density matrix, SψCψC ∈
CNf×NC

ψ ×NC
ψ similarly is the C channel power spectral density matrix and SψAψC = S∗

ψCψA ∈
CNf×NC

ψ ×NA
ψ denotes the A-C cross channel power spectral density matrix. The dependence on
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the frequency index is as usual suppressed for notational convenience. In full expansion Sψψ is
expressed by

Sψψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SψA
1 ψA

1
SψA

1 ψA
2

SψA
1 ψC

1
SψA

1 ψC
2

. . . SψA
1 ψC

NC
ψ

SψA
2 ψA

1
SψA

2 ψA
2

SψA
2 ψC

1
SψA

2 ψC
2

. . . SψA
2 ψC

NC
ψ

SψC
1 ψA

1
SψC

1 ψA
2

SψC
1 ψC

1
SψC

1 ψC
2

. . . SψC
1 ψC

NC
ψ

SψC
2 ψA

1
SψC

2 ψA
2

SψC
2 ψC

1
SψC

2 ψC
2

. . . SψC
2 ψC

NC
ψ

...
...

...
...

. . .
...

SψC

NC
ψ

ψA
1

SψC

NC
ψ

ψA
2

SψC

NC
ψ

ψC
1

SψC

NC
ψ

ψC
2

. . . SψC

NC
ψ

ψC

NC
ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.3.4)

Applying ordinary linear algebra to (2.3.4) we obtain the following expression for the residual
cross spectral density matrix SψAψA⊥ψC

SψAψA⊥ψC = SψAψA − SψAψC S−1
ψCψC SψCψA . (2.3.5)

2.3.2 Joint-Channel-Residual Spectral Analysis Iterative Procedure

The coherent auto spectral density function12 is readily available from the multiple coherence
function

Sψaψa ·ψC (f) = γ2
ψa ·ψC (f)Sψaψa(f). (2.3.6)

Fortunately, we may use the recursive procedure (2.2.27) on page 28 to obtain the residual auto
spectral density function and residual cross-spectral density function. Finally, if required, the
coherent cross-spectral density function can be derived from insertion of Sψaψb⊥ψC in (2.3.2).

2.3.3 Joint-Channel-Residual Spectral Analysis MIMO System

The JCRSA method applied to a MIMO system consider each input-output channel combination
in turn. The number of such combinations amounts to N I

ψNO
ψ . In the following we assume

that channel ψI
j , j ∈ ¯

N I
ψ and ψO

k , k ∈
¯
NO

ψ have been selected as input and output channel
respectively. Accordingly, we make the following assignments: ψA ← ψI

j ∪ ψO
k and ψC ← ψI

�=j .
Now, the spectrum quantities sought after are readily available from instantiating the abstract
matrix formulation viz. (2.3.5) or by invoking the iterative procedure viz. (2.2.27) on page 28.

12The term coherent spectrum is usually used. However, disambiguation of the coherent autospectrum and
coherent cross-spectrum is required here.
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2.4 System Identification of Primary Pathes

2.4.1 Motivation

In this demonstration the JCRSA method is used to determine the so-called primary paths that
mutually link the reference signals to the disturbance signals and performance signals. By the
term primary an explicit reference is made to the primary sources being responsible for the
signals considered. In chapter 7 on page 291 the so-called secondary paths that exclusively
involve the secondary sources will be determined for the same unit under test (UUT).

In particular we wish to estimate the spatially-weighted-averaged acquisition lead times provided
by the reference sensors when positioned on the surface of a Gentex HGU-55/P helmet. By the
phrase spatially-weighted-averaged acquisition lead time we refer to some average time value that
is obtained in CFFAC topology. This quantity will be more precisely defined in section 2.4.3 on
page 58.

In the duct ANR case an upstream reference sensor will provide lead time information, that is,
τacq > 0 while a reference sensor positioned downstream will provide lag time information, that
is, τacq < 0. For an AC system in a diffuse sound field expectably each reference sensor will
provide an equal amount of lead time and lag time information. However, this pertains to sound
wave propagation in a homogeneous media. For the particular case of the depicted ANR helmet
the propagation or leakage of sound waves from the exterior of the helmet to the interior of the
earcups involves relative slow vibroacoustic mechanisms. Accordingly, it is expectable that in the
average each sensor provide more lead time information than lag time information. The actual
time-advance, however, depends on the relative positions of the reference sensor and performance
sensor combination.

As only a few accounts to partial coherence functions and residual spectra can be found in the
literature, we will discuss residual auto- and cross-spectral density functions, transfer functions
and auto- and cross-correlation functions at length in this section. This should hopefully bring
new insight to these somewhat abstract quantities.

2.4.2 Measurement Setup

The diffuse sound field measurements were conducted in the Terma Noise Chamber Facility. Some
photos illuminating the measurement setup can be found in Figure 2.1 - 2.2 on pages 33–34.

For all statistical analysis the following power spectral density functions parameters defined in
Appendix C on page 539 have been chosen: Periodogram, single-sided, fs = 65.536 kHz, NDFT =
16384, LDFT = 16385, RDFT = 8193, Hanning, Δfm = 16 Hz, TDFT = 0.25 s, NfDF T =
8193, ΔfDFT = 4 Hz, KDFT = 158.

The system identification uses a random low-pass 4 kHz white noise (N (0, 0.2)) distributed signal.
The bandwidth of the statistical analysis has been limited to 900 Hz by using an elliptic LPF

(fpass = 900 Hz, fstop = 1 kHz, Apass = 1 dB, Astop = 40 dB), fs =65.536 kHz filter for reasons
of bandwidth limitation of the JCRSA method that will be come clear later viz. Simulation 2.4.37
on page 78.

Measurements were acquired over a 30 s time period of which only 0− 20 s are used in the
analysis. The topology consisted of a total of Nx = 10 BK4949 surface microphones flush-
mounted on Gentex HGU-55/P helmet mounted on a BK 4128 C head and torso simulator (HATS)
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Fig. 2.1: Gentex HGU-55/P helmet with BK 4949 surface microphones mounted on the BK 4128 C HATS.
Leftside view.
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Fig. 2.2: Gentex HGU-55/P helmet with BK 4949 surface microphones mounted on the BK 4128 C HATS.
Backside view.

that in turn includes the BK 4159 C left ear simulator and the BK 4158 C right ear simulator, that
is, Np = 2. The performance signals acquired by the left and right ear simulators are denoted
by dp

1 and dp
2 respectively. The Terma Earcup Audio System was used on the left ear only. The

built-in microphone provides a disturbance signal that will be designated by d1, that is, Ne = 1.

In Figure 2.3 on the facing page the positions of each of the 10 BK 4949 surface microphones
flush-mounted on the Gentex HGU-55/P helmet are depicted.

2.4.3 System Identification of Primary Pathes Gj,m
ex

System Identification of Primary Pathes Gj,m
ex , Ordinary Analysis

In Simulation 2.4.1 - 2.4.2 on pages 36–37 the probability density functions (pdfs) for the first
reference signal and the disturbance signal, that is, x1 and d1 are shown. Apparently, the
two pdfs closely resemble zero-mean Gaussian distributions. The same pattern pertains to the
other reference signals. This result is expectable as the loudspeakers in the reverberant room are
excited by normal distributed signals and as the room acts linearly on the signals. However, some
care must be exercised when making conclusion regarding the tail part of a pdf. Accordingly, in
order to test for a possible heavy-tail distribution behavior the software package STABLE from
Robust Analysis, Inc. was used to obtain estimates of the stable parameters S(α, β, γ, δ) defined
in Appendix L on page 773 using the maximum likelihood estimation (MLE). The results are
listed Table 2.1

As is well known uncertainty values do not make sense when a parameter is at the boundary of
the parameter space, e.g., α = 2 and therefore not included. Hence, as the index of stability α is
identical to 2 and as the skewness parameter β takes small values this confirms the assumption of
normal distributed signals. Having confirmed that the pdfs indeed are Gaussian we use standard
statistical tools to estimate the normal parameters N (μ, σ2) and the confidence intervals listed
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Fig. 2.3: BK 4949 surface microphones flush-mounted on Gentex HGU-55/P helmet mounted on a man-
nequin (not the HATS).
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Signal x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 d1
α 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
β 0.000 0.225 0.001 −0.016 −0.055 0.000 0.000 −0.099 0.000 0.010 0.008
γ 1.899 1.781 1.788 1.814 1.840 2.050 2.477 1.914 2.132 1.908 0.809
δ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Tab. 2.1: System Identification of Primary Pathes Gj,m
ex , Stable parameters γ, δ re. 20 µPa.

in Table 2.213.

Signal x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 d1
μ −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
σ 2.684 2.518 2.528 2.564 2.601 2.899 3.502 2.706 3.014 2.698 1.143
μ− 3εμ −0.007 −0.007 −0.007 −0.007 −0.007 −0.008 −0.009 −0.007 −0.008 −0.007 −0.003
μ+ 3εμ 0.007 0.006 0.006 0.007 0.007 0.008 0.009 0.007 0.008 0.007 0.002
σ − 3εσ 2.679 2.513 2.523 2.559 2.596 2.894 3.495 2.700 3.008 2.693 1.141
σ + 3εσ 2.690 2.523 2.533 2.569 2.606 2.905 3.509 2.711 3.020 2.704 1.146

Tab. 2.2: System Identification of Primary Pathes Gj,m
ex , Normal parameters re. 20 µPa.

The auto spectral density functions are shown in Simulation 2.4.3 on the facing page. As ex-
pected a relative small variation with frequency above 200 Hz is observed. Unfortunately, the
subwoofer that usually is responsible for the generation of very low frequency signals was not
at our disposition at the time of measurements. This explains the drop of energy content be-
low 50 Hz. The large variations in auto spectral density functions below 200 Hz experienced
by all channels is due to strong resonance behavior of the box-formed reverberant room (see
Appendix P on page 809). The variation among the reference sensors is of the order of ±2 dB.

The corresponding averaged sound pressure levels re. 20 µPa can be found in Table 2.3.

Signal x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 d1
SPL 102.6 102.0 102.0 102.2 102.3 103.2 104.9 102.6 103.69 102.6 95.2

Tab. 2.3: System Identification of Primary Pathes Gj,m
ex , Sound Pressure Levels re. 20 µPa.

Moreover, as a check of the sound pressure levels listed in Table 2.3 obtained from integration
over the frequency band we can obtain identical result within −0.03, +0 dB by direct insertion
of prms = 20 log10(σ/20 µPa) in Table 2.2.

The magnitude of the cross-spectral density functions is shown in Simulation 2.4.4 on page 40.
Also here very small variations among the individual cross-spectra are observed. Moveover, the
troughs and peaks are found at the same frequencies especially below 300 Hz.

The ordinary coherence functions (OCOFs) and related coherence limited attenuation (see (2.2.1)
on page 18) are depicted in Simulation 2.4.5 on page 41 and Simulation 2.4.6 on page 42 respec-
tively. Owing to the different relative positions of the reference sensors with respect to the error
sensor as large variation in the ordinary coherence functions can be observed. Moreover, each of
them exhibit large multiple resonant behavior.

In Simulation 2.4.7 on page 43 and Simulation 2.4.8 on page 44 the specific OCOF details for the
sixth reference sensor and the error sensor, that is, γ2

x6d1
(f) is shown. Both figures include ±3ε

confidence intervals (refer to subsection C.3.2 on page 542).
13As a check from Table 2.1 - 2.2 it can readily be confirmed that the following identity holds: S(2, 0, γ, δ) =

N (δ, 2γ2).
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Accordingly, from a feedforward based AC system perspective these result might at first glance
look disappointing. Hence, attenuation figures above 10 dB is limited to frequencies less than
60 Hz. Deep troughs are observed in the OCOF in the vicinity of 200 Hz, 320 Hz and 370 Hz
for some of the reference sensors. Moreover except for reference sensors 1, 6 and 7 coherence is
almost absent above 400 Hz. By inspection of Figure 2.3 we observe that reference sensors 1, 6
and 7 indeed are the three reference sensors that are positioned closest to the error sensor at the
left ear.

Similarly, in Simulation 2.4.9 - 2.4.10 on pages 46–47 the specific OCOF details for the eighth
reference sensor and the error sensor, that is, γ2

x8d1
(f), which results in the lowest coherence is

shown. Hence, by the use of this reference signal alone very poor ANR performance is obtained.

By inspection of the magnitude and phase of the transfer functions from the 10 reference sensors
to the performance sensor depicted in Simulation 2.4.11 and Simulation 2.4.12 respectively, it
is observed that individual transfer function characteristic is not discernible from some average
transfer function except for the phase response at higher frequencies. It could be argued that
Simulation 2.4.11 represents the average passive ANR obtained from this hearing protection device
(HPD).

The auto- and cross-correlation functions and auto- and cross-spectral density functions consti-
tute Fourier transform pairs. A smoothed-out pattern is therefore also present in the auto- and
cross-correlation functions illustrated in Simulation 2.4.13 on page 51 and Simulation 2.4.14 on
page 52 respectively. Both the auto- and cross-correlation functions exhibit large temporal side
lobes. Different factors contribute to this non-Dirac-impulsively behavior. Firstly, the diffuse
sound field in the reverberant room has its imperfections as discussed above. Moreover, by inser-
tion of the UUT, that is, the HATS and helmet (see Figure 2.1 - 2.2 on pages 33–34) large parts
of the incident field will be scattered thereby perturbating the pseudo diffuse sound field. Fur-
thermore, the sensors are exposed to random low-pass 4 kHz white noise that is further low-pass
filtered with fpass = 900 Hz and not to perfect random white noise (RWN). From [6, Ch. 5] we
find the following expression for the auto correlation function for low-pass white noise omitting
insignificant constants

Rxjxj (τ) = sinc(2πfpassτ), j ∈ 1, 2, . . . , 10. (2.4.1)

Accordingly the zero in the auto correlation function is found at τ = ± 1
2fpass

≈ 550 µs. By
inspection of the details in Simulation 2.4.13 on page 51 we read the zero-crossing as 560 µs.
Hence, the field generally decorrelates in time as predictable from its frequency contents. The
first sidelobe level should approximately be 20 log 10 2

3π ≈ −6.7 dB which agrees reasonably
with the results in Simulation 2.4.13 where the sidelobe level is assessed to −9 dB. The auto
correlation function for the disturbance signal, that is, Rd1d1(τ) exhibit slower variation due to
the low-pass filtering effect from the passive attenuation of the helmet.

Besides the two aforementioned factors spatial decorrelation also governs the cross-correlation
functions. Cook, Waterhouse, Berendt, Edelman, and M. C. Thomsen [1955] [10] showed theo-
retically and confirmed experimentally that the normalized cross-correlation function between
the sound pressures in a diffuse sound field of narrow bandwidth was equal to

ρxjd1(rxjd1 , λ) = sinc
(
2π

rxjd1

λ

)
, j ∈ 1, 2, . . . , 10, (2.4.2)

where rxjd1 is the distance between the j’th reference sensor and the error sensor and λ is
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the wavelength. Two important consequences follow from (2.4.2). Firstly, the cross-correlation
functions exhibit frequency dependence and secondly the signals from two sensors separated by
half a wavelength are completely uncorrelated. Much more details can be found in [16]. It
should, however, be recalled that (2.4.2) pertains to propagation in a homogeneous medium
and therefore not fully to our UUT. Considering the decorrelation among the reference sensors,
however, it seems not unreasonable to assume that (2.4.2) to a first order holds if we ignore
scattering effects. In this topology the inter reference sensor distance is uniformly approximately
equal to 12 cm. Accordingly, the normalized cross-correlation function between a reference signal
and a reference signal that would have been obtained from a reference sensor positioned in the
middle between two reference sensors is estimated to be bounded from below by 0.85 at the
upper frequency band of 900 Hz. A more advanced analysis would take the correlation effects of
the four nearest reference sensors including their mutual correlations into account.

The cross-correlation functions give an indication of an acquisition lead-time of approximately
1 ms.

The corresponding impulse response functions are shown in Simulation 2.4.15 on page 53 which
also indicate that time-advance information achievable with the CFF topology. However, the
individual timing characteristic is completely smoothed-out. The impulse behavior at t = 0
experienced by all the channels may be explained by the large low frequency content in the
transfer functions and because such signal content with equal likelihood is present with a time
lead and a time lag.

The MCOFs obtained from using both the matrix formulation and the iterative procedure pre-
sented in section 2.2.5 on page 27 is displayed in Simulation 2.4.16 - 2.4.17 on pages 54–55. The
MCOF corresponding to the disturbance signal taking all ten reference signals into account is des-
ignated by γ2

d1 ·x10!
(f) using the matrix method and the MCOF γ2

d1 · x6,1,2,7,10,9,3,4,5,8
(f) applying

the iterative procedure. In this simulation the reference signals are sorted in descending order
with respect to their ordinary coherence function averaged over the frequency band. Hence, with
reference to (2.2.26) on page 27 the following ranking is obtained: 1̌← 6, 2̌← 1, . . . , 1̌0← 8.

Within the graphical resolution the two methods give identical results as expected. As seen ANC

attenuation figures exceeding 10 dB possible up to approximately 850 Hz is predicted. Moreover,
the deep troughs previously observed in some of the ordinary coherence functions are almost
absent now in a MCOF analysis. In addition the iterative procedure illuminates the successive
increase in the MCOF from increasing the number of reference sensors. Hence, in Simulation 2.4.16
no apparent saturation in MCOF with increasing number of reference sensors is seen. Hence, by
including additional reference sensors the upper frequency limit determined by the MCOF would
most likely increase as a consequence of closer spatial sampling. It should be emphasized that we
in the iterative multiple coherence function procedure successively enable reference signals that
exhibit decreasing coherence with the error sensor. If we instead successively add a reference
sensor and reoptimized their positions the increase in multiple coherence function would most
likely be higher.

In Appendix D very similar pattern in the MCOFs obtained from field measurements in a Chinook
CH-47D helicopter will be presented.

The particular details including ±3ε confidence intervals for the MCOFs (refer to subsection C.3.4
on page 544) using all ten reference sensors are shown in Simulation 2.4.18 - 2.4.19 on pages 56–
57.

We observe that the random errors correspond to an uncertainty in the attenuation estimation
of approximately +1,−1.5 dB. The relative narrow confidence interval stems from the use of a
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large number of averages (KDFT = 158) and because the multiple coherence function is exceeding
0.9 up to 850 Hz. The uncertainty in the attenuation estimation is relatively constant over the
frequency band. This is a consequence of two opposing factors. Firstly, when the multiple
coherence function is close to unity, that is, γ2

ψa · ψC � 1 the uncertainty is very low viz. (C.3.10)
on page 544 and Simulation 2.4.18. Secondly, when the multiple coherence function is close to
unity large negative (dB ) attenuation numbers are predicted which in turn is associated with
large estimation uncertainties. This second determining factor to some extent counterbalances
the first factor. Off course a formal derivation of the relative uncertainty in the attenuation
estimation that could be obtained from insertion of (2.2.1) on page 18 in (C.3.10) would lead to
the same conclusions.

From this ordinary analysis it can be concluded that in general much care should be exercised
when interpreting the result from applying single-input and single-output (SISO) model to a
spatially distributed physical system. The consequence of using an insufficient number of spatial
samples was predicted in Coherence Prob. 2 on page 19.

System Identification of Primary Pathes Gj,m
ex , JCRSA

Next we use the JCRSA method as described in section 2.3 on page 29 to obtain more distinctive
channel and in particular timing information.

By comparing the residual spectra shown in Simulation 2.4.20 - 2.4.21 on pages 59–60 with the
total spectra in Simulation 2.4.3 - 2.4.4 on pages 39–40 we observe that by conditioning the
spectra by the contents of the other channels effectively acts as a high-pass filter. The reason
for this effect can be attributed to the fact that at lower frequencies the fields at the position
of the reference sensors are indeed coherent. With increasing frequency, however, the coherence
decreases which in turn leads to an increase in the information that is unique for each specific
reference sensor. The difference between Simulation 2.4.20 - 2.4.21 and Simulation 2.4.3 - 2.4.4
are the coherent auto and cross-spectral density functions respectively.

The partial coherence functions (PCOFs) and related coherence limited attenuation (see (2.2.1)
on page 18) are depicted in Simulation 2.4.22 on page 61 and Simulation 2.4.23 on page 62
respectively. A large individual variation with frequency as well as variation among the channels
themselves are observed.

In Simulation 2.4.24 - 2.4.27 on pages 63–66 the specific PCOF details for the sixth and eighth
reference sensor and the error sensor, that is, γ2

x6d1⊥1,2,3,4,5,7,8,9,10(f), and γ2
x8d1⊥1,2,3,4,5,6,7,9,10(f)

including ±3ε confidence intervals are shown.

It should be recalled that the sixth reference sensor is the one closest to the position of the
error sensor in the left ear cf. Figure 2.3 on page 35. However, due to imperfection the partial
coherence function estimate over some frequencies exceeds 1. As a consequence the attenuation
estimate erroneously becomes complex.

In Simulation 2.4.28 on page 67 the partial coherence function γ2
d1 ·x6,1,2,7,10,9,3,4,5,8

(f) obtained
from increasing the number of independent discrete Fourier transform (DFT) averages from 158
to 638 is shown. From this it can be concluded that the overestimate of the partial coherence
function is not due to an insufficient number of averages, but related to inherent numerical
limitations of the use of this estimate. It is for the same reason that we sort the reference signals
with respect to the ordinary coherence function in descending order. Hence, a reference signal
having a high coherence with respect to the disturbance signal is not conditioned with respect to
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the reference signals with low coherence. Instead the reference signal having a low coherence with
respect to the disturbance signal is conditioned with respect to the reference signals with a high
coherence. However, the relative high partial coherence function numbers in Simulation 2.4.24
indicate that provided that a narrow acoustical beam could be constructed such as only reference
sensor 6 would be illuminated this sensor alone would provide sufficient coherence for the ANR

attenuation predicted in Simulation 2.4.25.

Next consider the eighth reference sensor which lead to the poorest ordinary coherence function
values depicted in Simulation 2.4.9 on page 46. As expected the corresponding partial coherence
function depicted in Simulation 2.4.26 reveal even lower coherence values. It should be remem-
bered that in the construction of the partial coherence function we are conditioning on the other
reference signals thereby subtracting that part of the coherent spectrum that is also coherent
with these sensors.

By inspection of Simulation 2.4.29 - 2.4.30 on pages 69–70 we appreciate that more distinctive
gain and phase factors of the transfer functions from the ten reference sensors to the error sensor
are provided by the JCRSA method.

The JCRSA based auto- and cross-correlation functions are shown in Simulation 2.4.31 on page 71
and Simulation 2.4.33 on page 73 respectively. As expected the use of residual spectra accentuates
individual channel characteristics. Moreover, the sidelobe is much more reduced as compared
with the ordinary analysis in Simulation 2.4.13 - 2.4.14 on pages 51–52. The detailed information
is illuminated in Simulation 2.4.32 on page 72 and Simulation 2.4.34 - 2.4.36 on pages 74–76.

Now we are in a position to formally define the acquisition lead-time and spatially-weighted-
averaged acquisition lead time.

Definition 2.1. Each input-output channel combination of a MIMO system consisting of N I
ψ

inputs and NO
ψ outputs is considered in turn. Assume for now that channel ψI

j , j ∈ ¯
N I

ψ and
ψO

k , k ∈
¯
NO

ψ have been selected as input and output channel respectively. Apply the assignments:
ψA ← ψI

j ∪ ψO
k and ψC ← ψI

�=j and subsequently determine the JCRSA based residual cross-
spectral density function SψI

j ψO
k ⊥ψI

�=j
(f) as outlined in subsection 2.3.3. The JCRSA based cross-

correlation functions is RψI
j ψO

k ⊥ψI
�=j

(τ) � F−1
{
SψI

j ψO
k ⊥ψI

�=j
(f)

}
. Then the acquisition lead-time

between input signal ψI
j and output signal ψO

k denoted by τψI
j ψO

k
is defined as the time where

RψI
j ψO

k ⊥ψI
�=j

(τ) attains its numerical peak value.

It should be observed that the acquisition lead-time defined in Definition 2.1 is a general system
theoretic quantity without any assumption on the physical nature of the excitation of the system.
The spatially-weighted-averaged acquisition lead time defined next, however, is an instantiation
to the domain of acoustics.

Definition 2.2. Assume in addition to the conditions stated in Definition 2.1 that the MIMO

is subject to diffuse sound field incidence, then the acquisition lead-time becomes the spatially-
weighted-averaged acquisition lead time between input signal ψI

j and output signal ψO
k that also

will be denoted by τψI
j ψO

k
.

Applying Definition 2.2 the calculated spatially-weighted-averaged acquisition lead times are
tabulated in Table 2.4

Hence, except for reference sensors 5 and 9 the spatially-weighted-averaged acquisition lead
time exceeds 0.8 ms. This is very important as such large lead times to a very large extent
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2.4. System Identification of Primary Pathes

Signal x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

τxd1 0.91 0.82 0.81 0.81 −0.70 0.92 0.87 2.75 0.05 0.82

Tab. 2.4: System Identification of Primary Pathes Gj,m
ex , Acquisition Lead Times in ms.

can compensate for the delays in the secondary paths (refer to section 11.5 on page 489) as
discussed in Appendix A on page 529. The acquisition time lag between reference sensor 5
and the error sensor can probably be attributed to the lack of coherence between these signals
cf. Simulation 2.4.5 on page 41. By inspection of Simulation 2.4.34 - 2.4.36 on pages 74–76 we
appreciate that the cross-correlation function for this channel pair, that is, Rx5d1 is very flat with
no significant peaks. Accordingly, this spatially-weighted-averaged acquisition lead time is very
uncertain. The same considerations apply to the large spatially-weighted-averaged acquisition
lead time predicted for reference sensor 8. The vanishing spatially-weighted-averaged acquisition
lead time provided by reference sensor 9 as depicted in Figure 2.3 on page 35 may be attributed
to the high temporal sidelobes rendering the maximum response insignificant.

Now returning to the use of a low-pass filter (LPF) for bandwidth limitation proclaimed in
section 2.4 on page 32. The coresponding results for the cross-correlation functions without a
LPF are illuminated in Simulation 2.4.37 - 2.4.40 on pages 78–81.

The calculated spatially-weighted-averaged acquisition lead times are tabulated in Table 2.5

Signal x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

τxd1 0.85 0.76 0.87 0.71 0.03 0.87 0.79 2.65 −0.04 0.73

Tab. 2.5: System Identification of Primary Pathes Gj,m
ex , Acquisition Lead Times in ms.

By comparison of Table 2.4 and Table 2.5 we see that the predicted spatially-weighted-averaged
acquisition lead times are very similar except for reference sensor 5. Hence, by excluding the
frequency band above 900 Hz from the analysis essentially no loss in information takes place.
It should, however, be emphasized that the nature of the problem cannot be fully described in
terms of a single time quantity. In a more advanced analysis we should also consider the first,
say, two temporal sidelobes. However, it can readily be observed that the main part of the energy
is present with a lead time.

With the availability of estimates of the propagation delays that prevail between the reference
sensors and the error sensor, it is time to assess if these delays could lead to potential bias errors
in the ordinary coherence function estimates. As discussed in subsection C.3.2 on page 542
negative bias is introduced to the estimates of cross-spectral density functions, transfer functions
and ordinary coherence functions (and therefore also to the multiple coherence functions) if such
delays form a small but non-negligible fractions of the DFT time. We may use (C.3.6c) to obtain

a factor by which the ordinary coherence function is underestimated:
γ̂2

ψaψb
(f)

γ2
ψaψb

(f)
=

(
1− 1 ms

250 ms

)2

≈
0.992. Accordingly, even if a perfect ordinary coherence function between a reference sensor
and an error sensor actually is present, if this propagation delay is not taken into account, we
may erroneously conclude that the attenuation cannot to exceed 21 dB. However, this estimate
represents a sort of worst case bias estimate based on the assumption that two neighboring DFT

records are completely decorrelated. In an earlier analysis with TDFT = 64 ms the bias was

underestimated by a factor
(
1− 1 ms

64 ms

)2

≈ 0.969 corresponding to a 15 dB attenuation floor.

The corresponding conditioned impulse response functions are shown in Simulation 2.4.41 on
page 83. The impulse nature owing to the large gain factor |Hφaφb⊥φC | at low frequencies shown
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in Simulation 2.4.29 on page 69 completely dominates.

In Appendix A on page 529 we will consider the concept of group delays as representing delays
encountered in primary the electrical circuitry of an ANR system. This is useful for the assessment
of delay limited performance which is of particular importance in feedback system (FBS). For
comparison with previous results the group delays estimates are depicted in Simulation 2.4.42 -
2.4.43 on pages 84–85. From these figures it is evidently clear that the concept of group delays
provide little information regarding the delay encountered in a physical spatially extended system.

System Identification of Primary Pathes Gj,k
px

System Identification of Primary Performance Pathes Gj,k
px , Ordinary Analysis

For the UUT depicted in Figure 2.1 - 2.2 on pages 33–34 the pair of performance sensors and
error sensors are positioned relative close to one another as seen from the 10 reference sensors.
Accordingly the primary performance paths Gj,k

px expectably will exhibit similar coherence be-
havior as for the primary paths Gj,m

ex described in subsection 2.4.3 on page 34. We will therefore
only accentuate the main results.

The MCOFs for the first performance sensor, that is, dp
1 are displayed in Simulation 2.4.44 - 2.4.47

on pages 86–89 and for the second performance sensor, that is, dp
2 in Simulation 2.4.48 - 2.4.51

on pages 90–93.

As observed, attenuation above 10 dB is predicted attainable up to 800− 900 Hz for both the left
and the right ear system. Also for the primary paths no apparent saturation in the MCOF with
increasing number of reference sensors is seen. Hence, by including additional reference sensors
the upper frequency limit determined by the MCOF would most likely increase as a consequence
of closer spatial sampling.

It should be observed that the ordinary coherence function-based reference signal sorting order
is the same for the left ear performance signal, that is, dp

1 as for the left ear error signal in
Simulation 2.4.5 - 2.4.6 on pages 41–42. Hence, owing to different positions of the two perfor-
mance sensors relative to the 10 reference sensors the reference signal sorting order for the right
ear performance signal, that is, dp

2 is different.

System Identification of Primary Pathes Gj,k
px , JCRSA

The calculated spatially-weighted-averaged acquisition lead times are tabulated in Table 2.6.

Signal x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

τxdp
1

0.89 0.79 0.78 0.79 −0.72 0.89 0.85 2.73 0.03 0.79

τxdp
2

2.69 0.96 1.50 1.89 7.49 2.66 2.56 1.01 0.96 2.72

Tab. 2.6: System Identification of Primary Pathes Gj,k
px , Acquisition Lead Times in ms.
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System Identification of Primary Pathes Gm,k
pe

System Identification of Primary Pathes Gm.k
pe , Ordinary Analysis

Ideally, a performance signal should be fully coherent with the corresponding error signal for
optimal performance. However, it is well known (see, e.g., (2.4.2) on page 45) that a finite
interspacing between the performance sensor and the error sensor leads to a decrease in their
ordinary coherence function in a diffuse sound field. However, for the particular case of an
acoustical field inside an earcup the field will to a large extent exhibit cavity behavior, where the
field in the limit will be fully coherent everywhere.

The auto- and cross-spectral density functions for the error sensor and the two performance
sensors presented previously are included in Simulation 2.4.52 - 2.4.54 on pages 95–97 for con-
venience

The OCOFs and related attenuation are depicted in Simulation 2.4.55 - 2.4.56 on pages 98–99
respectively.

It should be observed that for frequencies above 700 Hz the coherence between the left ear error
sensor and performance sensor gradually decreases and the same therefore also applies to the
predicted ANR capabilities. Hence, for a nominal 20 dB ANR system this lack of coherence
becomes a problem at frequencies exceeding 800 Hz.

Not surprisingly, very poor coherence exist between the left ear error sensor and the right ear
performance sensor. Hence, the signal content in one earcup is not representative of the signal
content in the opposite earcup. As a consequence, if a malfunction enters one of the error
sensors, it is very difficult to maintain ANR performance by using the opposite error sensor for
performance feedback.

The HATS is designed for the test of hearing aids and for binaural experiments in general. It
models accurately scattering of waves by a human head (without a helmet) and torso, but also
the transfer function from the pinna to the eardrum. However, the HATS does not model the
vibroacoustic mechanisms involved in the energy transfer from the sound field exterior to the
helmet and the sound field interior to each earcup. Hence, the ordinary coherence function
between the signal sensed by an error sensor in a ANR system and the field at the eardrum might
deviate substantially from the results presented.

2.5 Conclusions

In this chapter the ordinary coherence function , the multiple coherence function and the partial
coherence function have been introduced. Various general causes for the lack of coherence be-
tween two sensor signals encountered in practice were listed. Expressions for the three coherence
functions have been provided and for the multiple coherence function and the partial coherence
function both an iterative procedure as well as a matrix implementation formulation was pre-
sented. The concepts of coherent spectrum and residual spectrum were subsequently introduced.
Then the joint-channel residual spectral analysis (JCRSA) method was developed and expressions
for both an iterative procedure as well as expressions for a matrix based formulation provided.

The JCRSA method can used for the extraction of joint signal information from different ob-
servation positions in space. In a demonstration the JCRSA method was used to determine the
spatially-weighted-averaged acquisition lead times provided by the reference sensors positioned
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on the surface of a ANR helmet employing the CFF topology. Owing to the relative slow mecha-
nisms involved in the propagation or rather leakage of sound waves from the exterior of the helmet
to the interior of the earcups most of the reference sensors provide an acquisition lead-time in
the order of 0.8 ms.

The key function to the determination of the channel distinctive timing information is the resid-
ual cross-correlation functions. The conditioned impulse response functions, however, provide
no such insight. The reason for this apparent paradox can be explained as follows. The cross-
correlation function and cross-spectral density function constitute a Fourier transform pair. Like-
wise do the impulse response function and the transfer function constitute a Fourier transform
pair. However, recalling that the transfer function is obtained as the ratio of cross-spectral den-
sity function to auto spectral density function the very small residual low-frequency auto spectral
density function content will totally dominate the characteristics in the residual impulse response
function. As the field is almost perfectly coherent at low frequencies no distinctive information
are therefore really provided by the residual impulse response functions. The residual cross-
correlation functions on the other hand provide the unfiltered timing information. Assuming
negligible dispersion effects the acquisition lead-time represent an average acquisition lead-time
over the measurement bandwidth.

As no reasonably accurate vibroacoustic model is available for this hardware, it is indeed difficult
to assess the accuracy of the obtained results. With the completion of the RTU for AC described
in section H.2 on page 720 a rigorous analysis and assessment of the JCRSA method can be made.

In order analytically to determine the number of reference sensors required for a certain attenuation-
bandwidth combination an expression for the integrated normalized correlation function obtained
from sampling the (diffuse) field at equidistant positions over a sphere should be derived.

The primary path measurements did also reveal that a nonunity coherence function between the
error signal and performance signal within the same earcup prevails at frequencies above 700 Hz.
Objective measurements where a person wearing the ANR helmet is equipped with a microphone
in the ear (MIE) should examine more realistically to which extent this lack of coherence also
will limit the achievable performance in practice. Of course subjective ANR measurement can be
used to relate monitored ANR performance from the error sensor and the actually perceived ANR

performance by a humans wearing the helmet.
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2.A Multiple-Channel Signal Detection and Generalized Coherence14

Detection theory usually involves two mutually exclusive hypothesis:

{
H0 : xi(t) = ni(t)
H1 : xi(t) = s(t) + ni(t)

, ∀i ∈
¯
Nψ. (2.A.1)

Hence, hypothesis H0 refers to the case of only noise n(t) present at each of the channels, that
is, the signal absent case. The H1 hypothesis refers to the hypothesis that both a signal s(t) and
noise are present in the channels. Of course, the channel statistic will be different for the two
hypothesis. A detection threshold γ2

th(pfa, pd) that is a function of the probability of false alarm
pfa and the probability of detection pd is used to select between H0 and H1 according to

{
H0 : γ̂2(t) < γ2

th

H1 : γ̂2(t) ≥ γ2
th.

(2.A.2)

The target location usually involves time-delay estimation [1] to establish a time difference of
arrival (TDOA) map. In [2, 3] analytical expressions for the statistics of the two-channel esti-
mate involving two random stationary Gaussian processes were presented. From the pdf of the
magnitude-squared coherence function denoted by fγ2(γ2) detection thresholds γ2

th corresponding
to predetermined probability of false alarm values can then be deduced.

The invariance of the magnitude-squared coherence estimate with respect to the statistics of
one of the channels has been investigated in several studies. In [8] it was demonstrated that
fγ2(γ2) does not depend on the distribution of a channel in the magnitude-squared coherence
function (two-channel) estimate provided that the other channel contains only zero-mean sta-
tionary Gaussian noise and the RPs involved in the two channels are statistically independent
of each other. Such invariance results have importance in active radar or sonar applications
where an exact replica of the transmitted signal typically is at disposition for detection of the
radar/sonar returns. Similarly, passive radar or sonar applications might benefit from reserving
one of the channels as a reference channel. Using geometric arguments it was further shown in
[7] that even the Gaussian assumption on one of the channels for the invariance of the second-
channel statistics in the two-channel estimate is not necessary. Hence, threshold corresponding
to particular false probabilities can be computed under the mild condition that, say, fψ1(ψ1) is

14This subsection provides supplementary that, however, can be skipped on a first reading.
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spherically symmetric 15 and statistically independent on fψ2(ψ2). Such invariance extends the
utility of the magnitude-squared coherence function estimate based detection from passive to
active applications where one of the Nψ channels is an exact replica of a transmitted waveform
thereby providing a multiple-channel matched filter.

The generalized coherence (GC) estimate was proposed by Cochran, Gish, and Sinno [6] as a nat-
ural extension to the magnitude-squared coherence (MSC) estimate for multi-channel detection.
Adapted to the nomenclature used in this report the GC estimate is defined by γ̂2(f)

γ̂2(f) � 1−
g(S11, · · · , SNψNψ

)
‖S11‖2 · · · ‖SNψNψ

‖2 , (2.A.3)

where g(S11, · · · , SNψNψ
) denotes the Gram determinant of a Nψ × Nψ Gram matrix which

coincides with the MIMO channel power spectral density matrix defined in (2.2.3) on page 21,
that is,

g(S11, · · · , SNψNψ
) � ‖Sψψ‖. (2.A.4)

The main difference between the generalized coherence function (2.A.3) and the multiple co-
herence function presented in subsection 2.2.5 on page 25 relies in the former using one of the
channels as a reference. The GC estimate can be used for multiple-channel matched filtering
with applications to radar and sonar and seismography [10]. In these applications the ability to
detect and locate a common signal present on two or more channels is crucial.

For the particular examples studied in [4, 6] the GC estimate provided better ROC curves than
by MSC estimation [9]. This means that for the same pd the GC estimate will in average provide
a smaller probability of false alarm than by MSC estimation. Similarly for a fixed pfa the GC

estimate will provide a higher probability of detection than by MSC estimation.

In [5] it is proved that the GC estimate likewise the magnitude-squared coherence function es-
timate is invariant to the distribution in one channel provided that remaining channels contain
only white Gaussian noise and that all channels are independent. The analysis of the GC estimate
as a multiple-channel detection statistic, however, in general is rather complicated. The pdf is
difficult to evaluate under the H0 hypothesis and is unknown under the H1 hypothesis. In [4]
asymptotic (KDFT → ∞) a model for the signal present hypothesis H1 statistics in the multi-
channel. Likewise an efficient closed-form asymptotic model for the target absent hypothesis H0

case was developed for multi-channel systems.
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3. CAUSALITY CONSTRAINTS AND SPECTRAL FACTORIZATION

3.1 Introduction

The performance of a modern complex active noise control system (ANCS) is determined from
numerous system parameters as detailed in Appendix A on page 529. In chapter 2 on page 17
the active noise reduction (ANR) performance as a function of the multiple coherence function
was examined in detail. In particular, it was found that in the ANR helmet application the
spatially-weighted-averaged acquisition lead time is approximately 0.9 ms. A natural question
is therefore, whether this lead time sufficiently can compensate for delays associated with the
secondary paths in relation to the frequency spectrum of the noise. Hence, in this chapter the
ANR performance limitations as determined from causality constraints will be considered.

In special situations, however, it might be possible to avoid considering causality constraints.
For example, if we experimentally could set up a noise scenario and then acquire the primary
signals, post process these signals and determine the control output signals, then provided that
the experiment is conducted in a controlled environment where the primary noise fields can
be reproduced with high accuracy we could excite the secondary fields from those previously
determined control output signals. Of course such system is useful for system test but not for
practical real-time ANR operation.

A key technique to the causality analysis is the spectral factorization which therefore will play a
main role in this chapter.

Another objective pursued in this chapter is to examine the performance of two variant Wiener-
Hopf (WH) filters that are useful for the analysis of the achievable ANR performance under
causality constraints. These WH filters are formally defined in chapter 8 on page 371 where
adaptive filtering algorithms for linear time-variant systems are considered. The first method
that will be referred to as the t-domain WH method estimates the optimal causally constrained
filter weights when presented to random white noise signals. The second WH method referred to
as the z-domain WH filter returns the optimal causally constrained filter weights independent of
the colorization of the regressor signals. This method, however, is more complex and is relying
on a spectral factorization that can be quite involved in particular for multiple-channel (MC)
systems.

3.1.1 Chapter Outline

Following these introductory remarks the theme of section 3.2 is spectral factorization. This
section starts with a formal definition of z-spectra and the spectral factorization will then formally
be defined. Spectral factorization in active control (AC) context is subsequently addressed and
the importance of the most significant parameters discussed. In particular a formula that defines
the optimal causally constrained weight vector and that involves the so-called plus operator is



106 3. Causality Constraints and Spectral Factorization

the kernel for much of the development in that section.

In many ANR applications the reference signals and the disturbance signals will tentatively be
very correlated as the system will possess some underlying structure. We will exploit the existence
of such structure in section 3.3 and in particular, specific expressions for the optimal causally
constrained weight vector for systems governed by primary paths and for FBS are provided.

Hitherto, the chapter has included examples involving mathematically constructed plants in
order to make our exhibitions of the causality constraints more clear. Then in section 3.4 we will
consider causality constraints pertaining to the Gentex HGU-55/P helmet closed-back headset
system employing the Terma earcup system.

Instructive examples should hopefully help to make these somewhat abstract concepts more
comprehendible. To the author’s best knowledge no such or similar calculations can be found in
the open literature.

The theme of section 3.5 is spectral factorization methods for active control of sound and
vibration (ACSV) applications. In subsection 3.5.1 the cepstral method for single-channel (SC)
spectral factorization is introduced. This method is rather simple and straightforward to use.
The cepstral method is applied in the examples to divide the secondary paths into their all-pass
component and minimum-phase components. A more versatile framework, however, is required
for MC spectral factorization. One such candidate for MC spectral factorization that involves
a prediction error filter (PEF) is presented in subsection 3.5.2. Moreover, some design guides
for successful operation of this more complex procedure that we henceforth will refer to as the
multiple-channel prediction error filter spectral factorization (MCPEFSF) algorithm is provided.

The main results of this chapter are summarized in section 3.6.

Finally, in appendix 3.A an attempt is made to carry out in hand the spectral factorization of
simple ANR system involving two reference sensors that are exposed to pink noise.

3.2 Spectral Factorization

Spectral factorization is a signal processing technique that has applications to stable inverse
filter design, linear quadratic estimation and also to the design of optimal causally constrained
(nonanticipatory) filters for AC. In spectral factorization the minimum-phase part of a signal is
constructed from the auto correlation function or directly from the auto spectral density func-
tion. Owing to its wide spread applicability a variety of methods have been developed for the
computation of the canonical spectral factors in particular for scalar-valued signals. A survey of
spectral factorization methods can be found in [13], that also establishes a link between the some-
what scattered results in this field. Unfortunately, generalization of the spectral factorization
methods to the case of vector-valued signals is not straightforward. Some methods have been
reported in the literature for computing the matrix-valued spectral factorization also including
a technique that involves solving the discrete-time algebraic Riccati equation (DARE) [9] (see
also [8, Ch. 6] and the references herein). However, a common problem associated with these
factorization methods is that they generally rely on accurate modeling of the MIMO systems
in terms of state-space (SS) form, which is extremely difficult for high order systems frequently
encountered in active noise and vibration control (ANVC) problems.

Examples with increasing complexity will be used to explain in details the underlying mechanism
of MC spectral factorization applied to active control of sound (ACS). These examples establish
a link to more realistic systems.
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The PEF based method for obtaining the MC spectral factors only requires a discrete-frequency
version of the auto- and cross-spectral density functions and is thus well suited for AC applications
whether applied to experimental data or simulated data.

3.2.1 z-Spectra

Signal analysis often involves examination of the z-autospectrum and z-cross-spectrum. For
two arbitrary but stationary1 random sequences (RSs) ψa(n), ψb(n) the z-autospectrum and z-
cross-spectrum are defined as the bilateral z-transform of the discrete-time ACS respective the
discrete-time CCS, that is,

Sψaψa(z) �
∞∑

n=−∞
Rψaψa(n)z−n = E ψ̃a(z)ψ̃∗

a(z−∗) (3.2.1a)

Sψaψb
(z) �

∞∑
n=−∞

Rψaψb
(n)z−n = E ψ̃a(z)ψ̃∗

b(z
−∗) (3.2.1b)

respectively, where the discrete-time ACS and CCS Rψaψa(n) and Rψaψb
(n) in turn are defined in

(N.2.14) on page 796. The last equation in (3.2.1a) to (3.2.1b) are obtained from interchanging
the expectation operator E( · ) and the z-transform operator ψ̃a(z) = (Zψa)(z). A sufficient
requirement for the existence of the z-auto-cross-spectrum is that the ACS respectively the CCS

are exponentially bounded, namely that at all time n there exist a constant positive-definite (p.d.)
matrix K and a constant ν such that

∃K � 0, 0 < ν < 1 : ∀n ∈ Z Rψaψa(n), Rψaψb
(n) ≺ Kν|n|. (3.2.2)

The region of convergence (ROC) of (3.2.1a) and (3.2.1b) is the annular ring defined by ν ≤ |z| ≤
ν−1, that includes the unit circle.

3.2.2 Spectral Factorization Definition

The spectral factorization of the z-auto-cross-spectrum2 Sxx(z) of a finite-power possibly vector-
valued sequence x(n) is defined by [8, Ch. 6]

Sxx(z) = L(z)ReL
∗(z−∗), (3.2.3)

where the quantity L(z) ∈ CNx×Nx is a minimum phase function (modeling filter) that can be
expanded as

L(z) =
∞∑

k=0

Lkz−k, (3.2.4)

1Formally, stationarity is meant as stationarity in a autocorrelation sequence (ACS) sense and stationarity
in a cross correlation sequence (CCS) sense respectively (refer to footnote 3 on page 796 and [11]).

2We deliberately use the term z-auto-cross-spectrum in the MC case as Sxx involves both self-terms in the
diagonal (z-autospectrum) and cross-terms outside the diagonal (z-cross-spectrum).
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where each spectral factor Lk ∈ KNx×Nx and L0 = I. The quantity L∗(z−∗) denotes the para-
Hermitian conjugate of L(z) (whitening filter) that when evaluated on the unit circle δD becomes
the usual Hermitian conjugate. The parameter3 z−∗ is just the conjugate-reciprocal of z (reflec-
tion of z about the uc). In this formulation Re ∈ RNx×Nx � 0 is a normalization matrix (constant)
that ensures that L(z) is normalized to the identity matrix at infinity, that is, L(∞) = I. This
in turn makes the canonical spectral factorization4 in (3.2.3) unique.

For scalar-valued signals it is in principle straightforward to calculate the canonical spectral
factorization: Compute the poles and zeros and retain the stable ones in the canonical factor
and use their conjugate reciprocals for the para-Hermitian conjugate. In this case Re is simply
the variance of the signal. However, for vector-valued signals L(z) becomes matrix-valued and
can therefore not alone be determined from zeros and poles. In addition transmission zeros must
be considered.

The conditions under which such spectral factorization exists will be dependent on whether
rational z-autospectra or nonrational z-autospectra are considered.

Spectral Factorization of Processes with Rational z-Spectra

In general for MCAC systems the z-autospectrum matrix Sxx(z) may be globally rank deficient,
that is, Sxx(eıω) is rank deficient at infinitely many points on the unit circle. In such a globally
rank deficient case a spectral factorization of the form [8, Ch. 6]

Sxx(z) = L̄(z)R̄eL̄
∗(z−∗), (3.2.6)

can always be performed, where

1. L̄(z) ∈ CNx×nx is a minimum phase rational matrix sequence (modeling filter), that is
analytic5 on and outside the unit circle (uc), i.e., for z ∈ D+ .

2. The normalization matrix R̄e ∈ Rnx×nx � 0 is only positive-semidefinite (p.s.d.).

The quantity nx ∈ N∗ is the rank of Sxx(eıω), that is, rank
(
Sxx(eıω)

)
= nx < Nx a.e.; ω ∈

[−π; π].

For example, for collocated reference sensors the reference signal content in, say, two reference
sensors may be very redundant especially in the low frequency region leading to nx = Nx − 1.
A remedy to such global rank deficiency is (artificially) to superpose the reference signals with
some uncorrelated noise. In this global rank deficient case the pseudo inverse of L̄(z) denoted by

3Recall that z−1 is the reciprocal of z (reflection of z about the uc and reflection of the result hereof about
the real axis).

4By the term canonical we explicitly refer to a unique solution to (3.2.3). However, we may obtain a basic
spectral factorization Sxx(z) = QL(z)ReL∗(z−∗)Q∗ for some orthonormal matrix Q. In the literature the basic
spectral factorization is often expressed by

Sxx(z) = L+(z)L∗
−(z−∗), (3.2.5)

where L+(z) is a spectral factor (minimum phase, modeling filter) and L−(z) is the para-Hermitian conjugate of
L+(z).

5Basically, an analytic function is an infinitely differentiable function such that the Taylor series at any point
z0 in its domain is convergent for z close enough to z0 and its value equals f(z).
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L̄†(z) should be inserted in (3.2.3) instead of L−1(z) (and accordingly in (3.2.11) on the following
page).

Now excluding the possibility of global rank deficiency, then for a rational z-autospectrum
Sxx(eıω) can only be rank deficient at finitely many points on the unit circle, that is, rank

(
Sxx(eıω)

)
=

Nx a.e.; ω ∈ [−π; π], the existence of the spectral factorization (3.2.3) is then always guaranteed,
where

1. L(z) ∈ CNx×Nx is rational matrix sequence, that is analytic on and outside the uc, i.e., for
z ∈ D+.

2. L−1(z) ∈ CNx×Nx is rational matrix sequence that is analytic outside the uc, i.e., for z ∈
D∗

+ {z ∈ C; |z| > 1}.

3. L(∞) = I.

4. The normalization matrix is p.d., that is, Re � 0.

Furthermore, if we explicitly assume that Sxx(z) has full rank everywhere on the unit circle, that
is, Sxx(eıω) has no unit-circle zeros then point 2 should be replaced by

1. L−1(z) ∈ CNx×Nx is rational matrix sequence for z ∈ D+.

Hence, as both L(z) and L−1(z) are analytic in the domain D+, L(z) therefore has all its zeros
and poles strictly inside the unit circle, that is, for z ∈ D∗

− {z ∈ C; |z| < 1} and is therefore
a rational minimum phase function. By excluding the possibility of global rank deficiency the
uniqueness is guaranteed and we refer (3.2.3) to as a canonical spectral factorization.

Spectral Factorization of Processes with Nonrational z-Spectra

In contrary to the case of rational z-spectra where both L(z) and L−1(z) are analytic both on
the unit circle and outside the unit circle, that is, for |z| ≥ 1 this analyticity, however, does only
pertain to the region |z| > 1 in the case of nonrational z-spectra. In practice this means that
although the impulse response of L(z) l(n) is square-summable, that is,

∑∞
n=1|l(n)|2 < ∞ this

cannot in general be guaranteed for the impulse response of L−1(z).

However, if and only if Sxx(eıω) satisfies the finite power condition

Rxx(0) � 1
2π

∫ π

−π

Sxx(eıω) dω <∞ (3.2.7)

and the so-called Paley-Wiener condition

1
2π

∫ π

−π

ln
(
Sxx(eıω)

)
dω > −∞, (3.2.8)
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then the existence of a spectral factorization of the form (3.2.3), where L(z) and L−1(z) are
analytic in D∗

+, is guaranteed. The finite power condition which is the same as the condition
of Sxx(eıω) being absolute integrable is satisfied by virtue of the assumption of exponentially
bounded sequences (3.2.2). More importantly, however, in many engineering applications the
Paley-Wiener condition is not satisfied. For example, for band-width limited signals Sxx(eıω) = 0
at infinitely many points.

3.2.3 Spectral Factorization in Active Control

In subsection 8.5.4 on page 389 viz. (8.5.19) an expression for the t-domain WH filter optimal
weight vector for a cost function JαγΠ(wiB ) that include weight-effort-driven leakage, control-
effor-driven leakage and weight regularization is provided and repeated here for convenience

wo
iB

=
[
RWe

u,i + αiα + Rγ
x,i + ΠiΠ

]−1(
RWe

du,i + ΠiΠ w̄iw̄

)
. (3.2.9)

In order to accommodate the corresponding z-domain WH solution (8.5.20) for AC applications
in addition to the spectral factorization of the reference signals we also need to decompose the
secondary paths into their minimum-phase/all-pass components, that is,

g̃ey(z) = g̃ey,min(z)g̃ey,all(z). (3.2.10)

In the transform domain the optimal weights - in a linear-least-mean-squares estimate (l.l.m.s.e.)
sense - are obtained from6

w̃o(z) = −g̃−1
ey,min(z)

{
L−1(z−∗)Sxd(z−∗)g̃ey,all(z−∗)

}∗
+
R−1

e L−1(z), (3.2.11)

where the plus operator
{

·
}

+
determines the causal part of the sequence whose Fourier trans-

form is inside the curlets and where the notion
{

·
}∗

+
is used instead of

({
·
}

+

)∗ for notational
convenience.

Expression (3.2.11) represents an extension to (8.5.20) in subsection 8.5.4 on page 389 by acco-
modating the plant. For notational brevity, however, in this chapter we use Sxx(z) and L(z) as
surrogates for SαγWe

uuxx (z) and LαγWe
ux (z) defined in (8.5.21) to (8.5.22).

We recognize that the following three components all evaluated in a time-reversed sense are
subject to the plus operator

{
·
}

+
:

1. L−1(z−∗) that is the inverse of the minimum phase function L(z) evaluated in a time-
reversed sense. As L∗(z−∗) by the definition (3.2.3) is anti-causal the same applies to its
reciprocal. Hence this factor (matrix) will increase the number of terms within the plus
operator, but therefore also increase the number of terms discarded by the action of the
plus operator as the signals become more and more colored. At first glance this might seem
counter-intuitive, but might be explained by the fact that white signals require relative few
weights in the time-domain representation (in principle only a Dirac impulse) while in order
to represent colored signals more weights are required half of which extent in to the past.

6This expression is slightly different from [5, Ch. 5] owing to the different definition of z-cross-spectrum.
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On the other hand white noise signals are generally substantially more difficult to control
by a feedback system (FBS) topology than colored signals.

2. The z-cross-spectrum matrix between the reference sensors and the error sensors Sxd(z−∗)
evaluated in a time-reversed sense. From the definition of z-cross-spectrum (3.2.1b) on
page 107 Sxd(z) will include z-terms raised to a positive power corresponding to the number
of samples signals are acquired in advance by the reference sensors before they are acquired
by the error sensors. Hence, the time-reversed version hereof, that is, Sxd(z−∗) will include
causal terms corresponding to such acquisition lead-time and will therefore act to increase
the number of terms remaining after the plus operation.

3. g̃ey,all(z−∗) that is the time-reversed all-pass component of the plants. This matrix consists
therefore of anti-causal elements that will decrease the number of terms remaining on under
causality constraints.

It should be recalled that the operation of the plus operator is associated with a performance
decrease as compared with the unconstrained case7. In conclusion, causally constrained filtering
is of most concern in AC of colored random signals involving ”slowly” reacting plants (secondary
paths) and with negligible acquisition lead-times. On the contrary, for random white noise (RWN)
signals with responsive plants and with a feedforward topology that ensure large acquisition lead-
times fewer terms will be discarded by the plus operator in (3.2.11). For periodic signals the
causality constraints as applied in (3.2.11) are not of concern.

The following examples will hopefully shed some light on the underlying nature of the expression
for the optimal weights (3.2.11).

Example 3.2.1 (Feedforward System). In this example we consider a very rudimentary feedforward
system (FFS) consisting of two reference sensors, one error sensor and one actuator, that is,
Nx = 2, Ne = 1 and Ny = 1. An acoustical field is established by two uncorrelated random white
noise sources (1 Hz-3 kHz) of unit variance each. The propagation direction of these fields are
along the negative and positive x-axis respectively, that is, ŝC

1 = (−1, 0, 0) and ŝC
2 = (1, 0, 0),

where ŝC
s is the propagation direction of the s’th clutter signal (see Figure 3.1). The vector

ŝS
s denotes the propagation direction of the s’th periodic signal. The reference sensors and

the error sensor are positioned at rx1 = (517.5, 0, 0)mm and rx2 = (−517.5, 0, 0)mm and
rd1 = (57.5, 0, 0)mm respectively. With a speed of sound c = 345 m · s−1 and a sampling fre-
quency of f2

s =6 kHz these interspacings under the assumption of free space (FS) propagation
correspond to a delay of exactly 8 samples from the reference sensor x1 to error sensor d1, 10
samples delay from reference sensor x2 to d1 and 18 samples delay from x1 to x2.

The position of the actuator is inessential but implicitly included in the plant response that we
assume is a simple delay of 4 samples, that is, g̃ey(z) ≡ g̃e1y1(z) = z−4. Hence, g̃ey,all(z) ≡
g̃e1y1,all(z) = z−4 and g̃ey,min(z) ≡ g̃e1y1,min(z) = 1. Moreover, for simplicity of the analysis we
exclude any feedback paths, that is, g̃xy(z) = 0.

The cross-correlation functions rx1d1(τ), rx2d1(τ), rx1x1(τ), rx2x2(τ) and rx1x2(τ) therefore be-
come

7An example where noncausal filtering is applied is when smoothing signals.
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rx1d1(τ) =

{
1; τ = ±8
0; else

(3.2.12a)

rx2d1(τ) =

{
1; τ = ±10
0; else

(3.2.12b)

rx1x1(τ) = rx2x2(τ) =

{
2; τ = 0
0; else

(3.2.12c)

rx1x2(τ) = r∗x2x1
(−τ) =

{
1; τ = ±18
0; else.

(3.2.12d)

The z-auto-cross-spectrum matrices are therefore

Sxx(z) =
[

2 z18 + z−18

z18 + z−18 2

]
(3.2.13)

and

Sxd(z) =
[

z8 + z−8

z10 + z−10

]
. (3.2.14)

Although two RWN signals of unit variance each are used the z-auto-cross-spectrum matrix does
not coincide with two times the identity matrix owing to the cross-coupling between the reference
sensors.

By using Euler’s formula we may express Sxx(eıω) on the unit circle as

Sxx(eıω) = 2
[

1 cos(36πf/fs)
cos(36πf/fs) 1

]
. (3.2.15)

From (3.2.15) we identify the frequency points where Sxx(eıω) might be rank-deficient to be
obtained from f = n

18
fs

2 = n166.67 Hz, n ∈ Z. We therefore appreciate that Sxx(eıω) does not
comply with our requirements on Sxx(eıω) � 0 as Sxx(eıω) is rank-deficient for f = n

18
fs

2 , n ∈ Z.
We will return later to the consequences of the lack of positive-definiteness. It should, however,
be noticed that as the elements of Sxx(z) are rational functions of z Sxx(eıω) will only have a
finite number of such transmission zeros, that is, Sxx(eıω) � 0 a.e. on the uc. However, ignoring
this problem for a moment we readily identify the unique spectral factorization of Sxx(z) namely,

L(z) =
[

1 z−18

z−18 1

]
; Re = I; L∗(z−∗) =

[
1 z18

z18 1

]
. (3.2.16)

We appreciate that L(z) basically has an 18th order pole at the origo and no zeros outside the
uc (at all) and therefore presents a causal stable sequence. On the contrary L∗(z−∗) has an 18th

order pole at infinity and also no zeros inside the uc (at all) and therefore presents a anti-causal
unstable sequence.
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From (3.2.16) the inverse of L(z) and L∗(z−∗) are

L−1(z) = 1
1−z−36

[
1 −z−18

−z−18 1

]
; L−∗(z−∗) = 1

1−z36

[
1 −z18

−z18 1

]
. (3.2.17)

Note that L−1(z) and L−∗(z−∗) are causal and anti-causal sequences respectively. Accordingly,
by insertion of (3.2.14) and (3.2.17) in (3.2.11) we obtain

w̃o(z) = −
{

1
1−z∗36

[
1 −z∗18

−z∗18 1

] [
z∗8 + z−∗8

z∗10 + z−∗10

]
z∗4

}∗

+

1
1−z−36

[
1 −z−18

−z−18 1

]
= −

{
1

1−z∗36

[
z∗8 + z−∗8 − z∗28 − z∗8

z∗10 + z−∗10 − z∗26 − z∗10

]
z∗4

}∗

+

1
1−z−36

[
1 −z−18

−z−18 1

]
= −

{
1

1−z36

[
z−4 − z32 z−6 − z30

]}
+

1
1−z−36

[
1 −z−18

−z−18 1

]
,

(3.2.18)

where we for notational compactness use z∗18 instead of (z18)∗. Now by applying the Taylor
expansion (1− z±36)−1 = 1 + z±36 + z±72 + z±108 . . . to the terms inside the

{
·
}

+
operator in

(3.2.18) we see that only a single term in each element remains. Accordingly the optimal weights
are obtained from

w̃o(z) = −(1 + z−36 + z−72 + z−108 + . . . )
[
z−4 z−6

] [ 1 −z−18

−z−18 1

]
= −(1 + z−36 + z−72 + z−108 + . . . )

[
z−4 − z−24 z−6 − z−22

]
.

(3.2.19)

We readily observe from (3.2.19) that wo is constituted by two infinite sequences of weights.
The weight vector

�

w1,1 that links the first reference signal to the control output signal has
two ”fundamental” weights, namely the 4’th weight and the 24’th weight that in turn both are
repeated an infinite number of times shifted 36 positions each time. The weight vector

�

w2,1 that
links the second reference signal to the control output signal similarly has its 6’th and the 22’th
weight as ”fundamental” weights and these weights are also repeated an infinite number of times
shifted 36 positions each time.

The results from applying the two causality-finite-order-constrained WH filters, that is, the t-
domain and the z-domain WH filter defined in (3.2.9) and (3.2.11) respectively to the setup in
this example will be presented next. For the z-domain method we have employed the MCPEFSF

described in subsection 3.5.2 on page 206.

The auto spectral density functions are shown in Simulation 3.2.1. Hence, for a one-sided spectra
the Sxx(f) = See(f) = 10 log10(2/(fs/2)) ≈ −31.76 dBHz−1. The signals have been averaged
over 180 s resulting in KDFT = 1438 averages and the fluctuations are therefore confined within
fractions of a dB. In Simulation 3.2.2 very deep troughs are observed in the multiple coherence
function γd1 · x! at frequency points where Sxx(eıω) is rank-deficient, namely for f = n

18
fs

2 , n ∈ Z,
as previously predicted from (3.2.15). Hence, at these frequencies the system is blind as regards
the reference signals and no ANR is possible. The cross-correlation functions are depicted in
Simulation 3.2.3. The pulses occur at times ±133 µs and ±167 µs in agreement with (3.2.12a)
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to (3.2.12b) for a sampling frequency of f2
s =6 kHz. The finite width and the spill-over to time-

domain side-lobes of the ”Dirac” impulse is due to the finite bandwidth of 3 kHz. The spill-over
effects are also responsible for the peak values being marginally lower than unity.

When only 130 weights are used we readily identify the non-zero weights predicted from (3.2.19)
in Simulation 3.2.4 - 3.2.5. The first non-zero weights of

�

w1,1 and
�

w2,1 corresponding to the z−4

and z−6 terms in (3.2.19) can easily physically be explained as follows. When reference sensor
x1 receives the incident field with propagation direction ŝC

1 it has an acquisition lead time of 8
samples. That lead time in combination with 4 samples delay in the secondary path leads to
choice of a ”wait delay” in the weight vector of 4 samples. Similarly, arguments explains the
”wait delay” in weight vector

�

w2,1 of 6 samples when the incident field with propagation direction
ŝC
2 is received as the acquisition lead-time for reference sensor x2 amounts to 10 samples. By

considering the case where each reference sensor is only ”responsible” for a single incident field,
that is, reference sensor x1 and x2 are only responsive to the fields with propagation direction ŝC

1

and ŝC
2 respectively, we appreciate that no more active weights would be needed. However, both

reference signals x1(t) and x2(t) are superpositions of both primary fields sC
1 (t) and sC

2 (t). One
may argue that reference sensor x1 should ”take some actions” on sC

2 (t). However, this signal is
received 8 samples after it has been received by the error sensor and for a causal secondary path
and a random white noise signal nothing can be done. This term is therefore correctly discarded
by the plus operator.

In general, a superposition of the secondary fields that are generated in response to those primary
fields on the reference signals should be considered. However, we have explicitly assumed that
no such feedback path exists.

The second non-zero weights of
�

w1,1 and
�

w2,1 corresponding to the z−24 and z−22 terms in
(3.2.19) are consequences of the superposition of the primary and secondary fields at the error
sensor. For example, as the component of the primary field at reference sensor x1 caused by sC

2 (t)
provides no useful information the controller should estimate this contribution and subtract it
from the corresponding reference signal. This also explains the infinite and repetitive weight
pattern in (3.2.19) where z−36 corresponds to the turn-around time x1 � x2. The z−24 and z−22

terms correspond to the initial weight delays z−6 and z−4 associated with the opposite reference
sensor and subsequent propagation delays x1 ← x2 and x1 → x2 respectively that both count
for z−18. This operation is obtained from inverse filtering (cross-channel-whitening) by L−1(z).

In Simulation 3.2.6 - 3.2.7 the weight vectors
�

w1,1 and
�

w2,1 are shown for the t-domain WH

method for M
�

w1,1 = M
�

w2,1 = Mw = 2048. Both of these weight vectors are seen to be tapered
such that, e.g.,

�

wMw−1 ≈ 0. The white-noise-independent WH method, that is, the z-domain
WH method described in subsection 8.4.2 on page 387 is more sensitive to truncation effects as
evident from Simulation 3.2.8 - 3.2.9 and in accordance with [6].

The weights supposedly being equal to unity at infinitely many points, however are numerically
decaying from 0.8 for the first weights to 0.1 for the last weights. This might be explained by
truncation effects. Elliott and Rafaely [6] investigated frequency-domain domain adaptation of
causal digital filters for SC systems and we will augment their findings to the MC case without a
formal proof. Hence, according to [6] when employing the cepstral method the operation of the
plus operator taking per frequency bin, that is,

w̃o(k) = −g̃−1
ey,min(k)

{
L−1(k)Sxd(k)g̃ey,all(k)

}∗
+
R−1

e L−1(k), (3.2.20)

then the accuracy of (3.2.20) will only be equal to the continuous frequency version of the
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optimum filter (3.2.11) at the frequencies f = kΔfDFT, where −Nf,DFT + 1 ≤ k ≤ Nf,DFT

provided that the causal part of the inverse discrete-time Fourier transform of each entity in{
L−1(eıω)Sxd(eıω)g̃ey,all(eıω)

}
+

has a duration less than NDFT /2 samples. However, we cannot
make the discrete Fourier transform (DFT) size sufficiently large enough for the causal part of
the impulse response entities to have decayed to zero at NDFT /2 samples as we need an infinite
number of weights for perfect operation for this topology. An indication of this type of problem
can also be seen as a ”reflection” of

�

w1,1 and
�

w2,1 at M
�

w1,1 = 2048. By increasing the DFT size
NDFT from 4096 to 16382 the tapering is less pronounced and the last weight in

�

w1,1 increases
numerically from |

�

wMw−1| ≈ 0.1 to 0.35� 1 and similar observations apply to
�

w2,1.

The performance is depicted in Simulation 3.2.10. It is readily observed that the performance is
heavily dependent on the number of weights used, that is, M

�

w1,1 and M
�

w2,1 .

This simple example revealed that even though the acquisition lead-times are larger than the
plant delays at least three problems limit the achievable ANR performance. Firstly, the solution
(3.2.19) is only optimal in a mean-square error (m.s.e.) sense under causality constraints. Without
considering causality many more terms would be included, however, with a negative time-index.
The second problem is related to the use of finite filter orders. It was demonstrated for this
particular example that the t-domain WH method is more robust to truncation errors than the
z-domain WH counterpart. The third problem identified is the lack of directivity of the reference
sensors. This problem in turn accentuates the problem of using filters of insufficient order as will
be seen next.

The discussion above suggests that by using reference sensors with element directivity more
successful ANR performance is achievable. In the next example we will therefore investigate the
benefits of element directivity.

Example 3.2.2 (Feedforward System, Reference Sensors with Directivity). We assume in this
example that each reference sensor but not the error sensor possess elementary directivity. Re-
ferring to Figure 3.1 we will assume a uniform directivity in the elevation plane (θ) and that the
sensitivity varies as a cosine-on-a-pedestal function in the azimuthal plane (φ), that is,

gxj (θj,s, φj,s) =

{
max(cos(θj,s), bxj); θj,s ∈ [0; π/2];
bxj ; θj,s ∈ [π/2; π];

φj,s ∈ [−π, π]; j = 1, 2; s = 1, 2,

(3.2.21)

where gxj(θj,s, φj,s) is the elementary directivity of the j’th reference sensor θj,s, φj,s denote the
angles of incidence of the s’th field relative to the j’th reference sensor and bxj is the minimum
directivity of the j’th reference sensor (0 ≤ bxj ≤ 1).

Hence, for the same two incident fields with propagation directions ŝC
1 and ŝC

2 respectively and
the same two reference sensor positions rx1 and rx2 as in Example 3.2.1 the element directiv-
ities become gx1(θ1,1, φ1,1) = gx1(0, 0) = 1, gx1(θ1,2, φ1,2) = gx1(π, 0) = bx, gx2(θ2,1, φ2,1) =
gx2(π, 0) = bx and gx2(θ2,2, φ2,2) = gx2(0, 0) = 1 respectively.

Proceeding as in Example 3.2.1 we readily obtain
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rx1d1(τ) =

⎧⎪⎨⎪⎩
1; τ = −8
bx; τ = 8
0; else

(3.2.22a)

rx2d1(τ) =

⎧⎪⎨⎪⎩
1; τ = −10
bx; τ = 10
0; else

(3.2.22b)

rx1x1(τ) = rx2x2(τ) =

{
1 + b2

x; τ = 0
0; else

(3.2.22c)

rx1x2(τ) = r∗x2x1
(−τ) =

{
bx; τ = ±18
0; else.

(3.2.22d)

The z-cross-spectrum matrix Sxd(z) and z-auto-cross-spectrum matrix Sxx(z) are therefore

Sxd(z) =
[

z8 + bxz−8

z10 + bxz−10

]
(3.2.23)

and

Sxx(z) =
[

1 + b2
x bx(z18 + z−18)

bx(z18 + z−18) 1 + b2
x

]
. (3.2.24)

On the unit circle Sxx(eıω) can be expressed by

Sxx(eıω) =
[

1 + b2
x 2bx cos(36πf/fs)

2bx cos(36πf/fs) 1 + b2
x

]
. (3.2.25)

The frequency points where Sxx(eıω) might be rank-deficient can be obtained from f = n
18

fs

2 cos−1(1+b2x
2bx

), n ∈
Z. Hence, as by assumption 0 ≤ bx ≤ 1 the case bx = 1, that is, without element directivity is
the only case where the lack of positive-definiteness on the uc exists.

We observe that in the limit limbx→0 the z-auto-cross-spectrum matrix will coincide with the
identity matrix.

For the present case of directional reference sensors we may guess the spectral factorization of
Sxx(z) to be of the form

L(z) =
[

1 b′xz−18

b′xz−18 1

]
; Re = diag {d−1

x }; L∗(z−∗) =
[

1 b′xz18

b′xz18 1

]
. (3.2.26)

It can readily be deduced that (3.2.26) has the following two solutions for the normalization
constant dx and the quantity b′x

dx =

{
1
b−2
x

; b′x = dxbx. (3.2.27)
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For bx = 1 the two solutions in (3.2.27) coincide and the spectral factorization coincide with
Example 3.2.1 viz. (3.2.16), where Re = I. However, as L−1(z) also should be analytic in D+

this rules out the dx = b−2
x solution in (3.2.27). The inverse of L(z) and L∗(z−∗) are therefore

L−1(z) = 1
1−b2xz−36

[
1 −bxz−18

−bxz−18 1

]
; L−∗(z−∗) = 1

1−b2xz36

[
1 −bxz18

−bxz18 1

]
. (3.2.28)

By insertion of (3.2.23) and (3.2.28) in (3.2.11) we obtain

w̃o(z) = −
{

1
1−b2xz∗36

[
1 −bxz∗18

−bxz∗18 1

] [
bxz∗8 + z−∗8

bxz∗10 + z−∗10

]
z∗4

}∗

+

1
1−b2xz−36

[
1 −bxz−18

−bxz−18 1

]
= −

{
1

1−b2xz∗36

[
z−∗8 − b2

xz∗28

z−∗10 − b2
xz∗26

]
z∗4

}∗

+

1
1−b2xz−36

[
1 −bxz−18

−bxz−18 1

]
= −

{
1

1−b2xz36

[
z−4 − b2

xz32 z−6 − b2
xz30)

]}
+

1
1−b2xz−36

[
1 −bxz−18

−bxz−18 1

]
= −(1 + b2

xz−36 + b4
xz−72 + b6

xz−108 + . . . )
[
z−4 z−6

] [ 1 −bxz−18

−bxz−18 1

]
= −(1 + b2

xz−36 + b4
xz−72 + b6

xz−108 + . . . )
[
z−4 − bxz−24 z−6 − bxz−22

]
.

(3.2.29)

Hence, from (3.2.29) we observe that element directivity may lead to an adaptive filter (AF)
solution of finite order as the weight-vector sequences

�

w1,1 and
�

w2,1 both decrease rapidly with
increasing weight number even for a modest value of bx = 0.5 as in this example.

The auto spectral density functions are shown in Simulation 3.2.11. Hence, for a one-sided spec-
tra the Sxx(f) = 10 log10(1.25/(fs/2)) ≈ −33.80 dBHz−1, while See(f) ≈ −31.76 dBHz−1 as in
Example 3.2.1. In Simulation 3.2.12 the multiple coherence functions γd1 · x! is depicted. The
deep troughs from Simulation 3.2.2 on page 117 are now barely observed. The cross-correlation
functions depicted in Simulation 3.2.13 are now asymmetric in agreement with (3.2.22a) to (3.2.22b).

In Simulation 3.2.14 - 3.2.15 on pages 132–133 we readily identify the weights
�

w1,1 and
�

w2,1

predicted from (3.2.29) for the bx = 0.5 case.

These weights were again obtained from time-averaging of the reference signals and the distur-
bance signal over a period of 180 s. Moreover, in this case the effects of the plus operator are less
pronounced as the discarded terms related to the ratio 1

1−b2xz36 , that is,
∑∞

k=1(b
2
xz36)k are rapidly

decaying with increasing k by the presence of the b2
x factor. Expectably, we will be much more

successful with the ANR operation as illustrated in Simulation 3.2.16 showing the attenuation
performance for the t-domain and the z-domain WH filter defined in (3.2.9) and (3.2.11) respec-
tively. For the z-domain method we have employed the MCPEFSF described in subsection 3.5.2
on page 206.

As seen the attenuation fluctuates in the vicinity of Ae
1(t) ≈ 31− 35 dB for the t-domain WH

method and Ae
1(t) ≈ 40− 44 dB for the z-domain WH method8. Hence, employing the PEF

8In all the time-domain attenuation plots presented in this report the power of the disturbance signals and
the error signals have been subject an exponentially weighted average with an integration time of approximately
200 ms.
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described in subsection 3.5.2 on page 206 for the z-domain WH method even outperformed the
t-domain WH filter tailored to such flat spectral excitation. This might be explained by the fact
that although the t-domain WH method works on random white noise signals the channels are
cross-coupled leading to a channel-cross colorization.

3.3 Decomposition of Reference Signals and Disturbance Signals

As described in details in chapter 2 on page 17 the performance of a feedforward based ACSV

system is very dependent on the coherence between the set of reference sensors and the set of
error sensors. Accordingly, the reference signals and the disturbance signals will tentatively be
very correlated and the system is designed to possess some underlying structure. In this section
we will exploit the existence of such structure and in particular new expressions for the optimal
weights in a causally constrained system will be derived. This should also provide new insights
to the actions of the plus operator

{
·
}

+
.

Hence, referring to Figure 3.1 we will consider the incident primary noise field as constituted
from a number of random white noise signals that amount to Nv and that are assumed mutually
uncorrelated and with unit variance. Accordingly, Lwv(z) is a diagonal matrix. A minimum phase
function (modeling filter) that we will denote by Lv(z) ∈ CNv×Nv is responsible for colorization
of the random white noise signals

w̃(z) = Lwv(z)ṽ(z), (3.3.1)

where w(t) ∈ CNv×1 is the vector of random colored noise signals. Although the random colored
noise signals are individually correlated they are assumed mutually uncorrelated. The random
colored noise signals are considered acquired by set of Nv virtual sensors that are positioned on
an (imaginary) surface Sv. The number of virtual sensors equals the number of random white
noise signals and each virtual sensor is positioned on Sv in a direction opposite to the propagation
direction of the corresponding incident field, that is, r̂C

n · ŝC
n = −1, n ∈

¯
Nv (refer to Figure 3.1

on page 112).

Another minimum phase function (modeling filter) Lxw(z) ∈ CNx×Nv establishes a link between
the random colored noise signals and the reference signals

x̃(z) = Lxw(z)w̃(z). (3.3.2)

The number of reference sensors equals the number of reference signals and each reference sensor
is positioned on the possibly virtual surface Sx. Similarly, the random colored noise signals and
the disturbance signals are related by the minimum phase function (modeling filter) Ldw(z) ∈
CNd×Nv

d̃(z) = Ldw(z)w̃(z). (3.3.3)

The causality of Ldw(z) is obtained from requiring that the virtual sensor surface Sv is entirely
circumscribing the surface spanned by the reference sensors that we will designate by Sx and
is also entirely circumscribing the surface spanned by the error sensors that we denote by Sd.
This is equivalently to the conditions Vx ⊂ Vv and Vd ⊂ Vv, where Vv,Vx,Vd are the interior
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volumes of Sv,Sx,Sd respectively. The reference sensors and error sensors are therefore entirely
inside Vv and every incident primary field is acquired first by one of the virtual sensors.

It should be noticed that in Example 3.2.1 - 3.2.2 the reference sensor and virtual sensor positions
coincide, that is, Nx = Nv = 2, rx1 = rv1 and rx2 = rv2 .

The model described above will be of general applicability provided that the following points are
taking into account.

1. The primary sources responsible for the random white noise signals are positioned exterior
to the imaginary surface Sv.

2. A sufficient number of random white noise signals are used in order to establish a sound
field with the required diffuseness.

3. A sufficient number of virtual sensors/reference sensors are used in order to prevent spatially
undersampling of the incident fields.

According to (3.3.1) to (3.3.3) we may express the reference signal vector and the disturbance
signal vector in the transform domain as

x̃(z) = Lx(z)ṽ(z) = Lxw(z)Lwv(z)ṽ(z) (3.3.4a)

d̃(z) = Ld(z)ṽ(z) = Ldw(z)Lwv(z)ṽ(z). (3.3.4b)

By using (3.3.4) we may the express the z-cross-spectrum (3.2.1b) as

Sxd(z) = E x̃(z)d̃∗(z−∗)

= ELxw(z)Lwv(z)ṽ(z)ṽ∗(z−∗)L∗
wv(z

−∗)L∗
dw(z−∗)

= Lxw(z)Lwv(z)L∗
wv(z

−∗)L∗
dw(z−∗),

(3.3.5)

where we have used that by definition E ṽ(z)ṽ∗(z−∗) = I. Hence, from (3.3.4a) and (3.3.5) we
get

L−1
x (z−∗)Sxd(z−∗) = L−1

wv(z
−∗)L−1

xw(z−∗)Lxw(z−∗)Lwv(z−∗)L∗
wv(z)L∗

dw(z)
= L∗

wv(z)L∗
dw(z).

(3.3.6)

Then by insertion of (3.3.4a) and (3.3.6) in (3.2.11) we obtain

w̃o(z) = −g̃−1
ey,min(z)

{
g̃∗ey,all(z

−∗)Ldw(z)Lwv(z)
}

+
R−1

e L−1
wv(z)L−1

xw(z). (3.3.7)

By using (3.3.7) the results in Example 3.2.1 - 3.2.2 viz. (3.2.19) and (3.2.29) can be obtained in
a somewhat more straightforward manner as we will see in Example 3.3.1.
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Moreover, if the primary paths g̃ex(z) that link the reference signals to the disturbance signals
are known we may express (3.3.7) as

w̃o(z) = −g̃−1
ey,min(z)

{
g̃∗ey,all(z

−∗)g̃ex(z)Lxw(z)Lwv(z)
}

+
R−1

e L−1
wv(z)L−1

xw(z). (3.3.8)

We appreciate from (3.3.8) that the all-pass component g̃ey,all(z) counteracts the benefit of
large acquisition lead-times provided by the primary paths g̃ex(z) in CFF. Finally, it should be
remarked that for a FBS using internal model control (IMC) described in section 4.6 on page 244
the reference signals and disturbance signals are entirely correlated to the point of the accuracy
of the secondary path models. Hence, by insertion of x̃(z) = ˜̂

d(z) in (3.3.7) we obtain

w̃o(z) ≈ −g̃−1
ey,min(z)

{
g̃∗ey,all(z

−∗)Ld̂(z)
}

+
R−1

e L−1

d̂
(z). (3.3.9)

We will return to consequences of (3.3.9) on this page in Example 3.4.2 on page 163.

Example 3.3.1 (Feedforward System, Reference Sensors with Directivity, Colored Noise). In
the audio and signal processing communities reference is often made to various types of colored
noise governed by a constant rate of increase/decrease in the auto spectral density function per
decade or octave. For example, within these aforementioned communities it has become standard
to let the terms purple noise, blue noise, white noise, pink noise and brown noise refer to a slope
in the auto spectral density function of +20, +10, 0,−10 and −20 dB/decade respectively.

In the preceding examples we obtained closed-form canonical spectral factorization of the form
(3.2.3) for white noise signals that subsequently could be inserted in (3.2.11) leading to the
determination of the optimal causally-constrained filter weights. However, as demonstrated in
section 3.A on page 231 such spectral factorization unfortunately is not easily amendable to the
other colorization types mentioned above.

Before entering details, we will first discuss the effects of colorization governed by Lwv(z) when
applied to Example 3.2.1 - 3.2.2. By using (3.3.7) instead of (3.2.11) in Example 3.2.2 (where
Lwv(z) = I) and by insertion of Ldw(z) =

[
z−8 z−10

]
and by using that Lxw(z) coincides with

Lx(z) in Example 3.2.2 on page 119 then from insertion in (3.3.7) we obtain

w̃o(z) = −
{
z4

[
z−8 z−10

]
Lwv(z)

}
+
L−1

wv(z) 1
1−b2xz−36

[
1 −bxz−18

−bxz−18 1

]
= −(1 + b2

xz−36 + b4
xz−72 + b6

xz−108 + . . . )
[
z−4 − bxz−24 z−6 − bxz−22

]
.

(3.3.10)

This expression coincides with (3.2.29) in Example 3.2.2. Hence, for this very ordinary delay
system involving a simple secondary path any type of colorization will lead to the same optimal
causally constrained weights. This is due to the fact that g̃∗ey,all(z

−∗)Ldw(z) is already causal
and no truncation effects occur and Lwv(z)L−1

wv(z) = I cancel out.

Now in order to verify these findings instead of random white noise signal we will use pink
noise (1 Hz-3 kHz) in this example. The results from applying the t-domain and the z-domain
WH filters are shown in Simulation 3.3.1 - 3.3.4 on pages 138–141. For the t-domain WH filter
in Simulation 3.3.1 - 3.3.2 the weight estimates are somewhat noisy. However, for the z-domain
approach shown in Simulation 3.3.3 - 3.3.4 we readily identify the weights

�

w1,1 and
�

w2,1 predicted
from (3.2.29) for the bx = 0.5 case.
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As expected, the z-domain WH method (3.2.11) outperforms the t-domain WH method (3.2.9).
This can be seen in Simulation 3.3.5 where the attenuation for the former method fluctuates
in the vicinity of Ae

1(t) = 20− 30 dB, while the attenuation for the latter method fluctuates in
the vicinity Ae

1(t) = 15− 25 dB. That is, when the reference sensors are illuminated by random
pink noise signals the achieved performance is approximately 5 dB better for the z-domain WH

method.

In practice, however, it is rarely possible to proceed as in Example 3.2.1 - 3.3.1 and obtain closed-
form expressions for the optimal weight vector as will be demonstrated in the next example.

Example 3.3.2 (Feedforward System, Reference Sensors with Directivity, Pink Noise, Extended
Secondary Path). In this example we will demonstrate that truncation effects caused by the plus
operator are often more pronounced for colored signals than for random white noise signals. In
order to make this exhibition we appreciate that from Example 3.3.1 and (3.3.7) we need to
extent the duration of the all-pass component of the impulse response of the secondary path.
Hence, in this example an exponential decaying/growing pulse with an initial delay of td samples
and a duration of tw samples will be considered as the impulse response gey(t). The z-transform
of gey(t) is then

g̃ey(z) = (κz)−td

tw∑
k=0

(κz)−k = (κz)−td
1− (κz)−(tw+1)

1− (κz)−1
, (3.3.11)

where the second equation in (3.3.11) is obtained from rules on geometric series. The complex
constant κ can be used to regularize the exponential decay/grow of the amplitude over the pulse
duration tw (κ > 1/κ < 1) while κ = 1 corresponds to a rectangular pulse. Whenever, κ is
complex the plant exhibits oscillatory behavior. From (3.3.11) it can be observed that g̃ey(z) has
a td-order pole at the origin and tw +1 zeros at z = κ−1eı 2nπ

tw+1 , n = 1, 2, . . . , tw +1. The reflection
of those zeros about the uc are z−∗ = κeı 2nπ

tw+1 , n = 1, 2, . . . , tw +1. Hence, the expressions for the
all-pass component g̃ey,all(z) and the minimum-phase component g̃ey,min(z) differ in the regimes
|κ| < 1 and |κ| ≥ 1

g̃ey,all(z) =

⎧⎨⎩z−tdκtw

∑ tw
k=0(κz)−k∑ tw

k=0(κ
−1z)−k

= z−tdκtw 1−(κz)−(tw+1)

1−(κ−1z)−(tw+1)
1−(κ−1z)−1

1−(κz)−1 ; |κ| < 1

z−td ; |κ| ≥ 1
(3.3.12)

and

g̃ey,min(z) =

⎧⎨⎩κ−(td+tw)
∑tw

k=0(κ
−1z)−k = κ−(td+tw) 1−(κ−1z)−(tw+1)

1−(κ−1z)−1 ; |κ| < 1

κ−td
∑tw

k=0(κz)−k = κ−td 1−(κz)−(tw+1)

1−(κz)−1 ; |κ| ≥ 1.
(3.3.13)

The factor κtw in (3.3.12) and (3.3.13) ensures that g∗ey,all(z
−∗)gey,all(z) = I1 = 1. Moreover, it

can easily be shown that the inverse of g̃ey,min(z) in (3.3.13) is expressed as

g̃−1
ey,min(z) =

{
κ(td+tw)ztd

(
1− (κ−1z)−1

)∑∞
k=0(κ

−1z)−k(tw+1); |κ| < 1
κtdztd

(
1− (κz)−1

)∑∞
k=0(κz)−k(tw+1); |κ| ≥ 1.

(3.3.14)
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Hence, for the special case of a rectangular pulse (κ = 1) the inverse of the minimum-phase
component is constituted from an infinite sum of non converging terms. We may therefore
expect that a very large filter order in a finite-duration impulse response (FIR) implementation
is required for successful performance with such a plant involved. This is demonstrated in
Simulation 3.3.6 on the facing page showing the weights

�

w1,1 for td = 4, tw = 6, κ = 1 and
a pink noise (1 Hz-3 kHz) signal excitation. The weight vector

�

w2,1 exhibits a similar lack of
convergence. The ANR attenuation is negligble in this case.

Now returning to the objective of extending the duration of the all-pass component of the impulse
response of the secondary path it is evident from (3.3.12) that we must choose |κ| < 1. Having
determined the secondary path components g̃ey,all(z) and g̃−1

ey,min(z) we still need to determine the
colorization modeling filter Lwv(z) in (3.3.7). For uncolored signals Lwv(z) = I. Unfortunately,
however, spectral factorization as carried out in the preceding examples is not easily amendable
to a pink noise excitation. Instead of attempting to obtain a rigoristic expression for Lwv(z) (refer
to section 3.A on page 231) we may take a more pragmatic approach and use an estimate hereof.
For pink noise experimental evidence (see Simulation 3.5.5 on page 212) suggests that within the
first few, say 10 samples the auto correlation sequence can be approximated by Rxx(τ) ≈ e−a|τ |

for a ≈ 450 s−1. Hence, the minimum phase coloring filter may be approximated by

Lwv(z) ≈
∞∑

k=0

e−akz−kI. (3.3.15)

Then from insertion of the extended secondary path impulse response function (3.3.11) and the
colorisation approximation (3.3.15) in (3.3.7) using (3.3.12) and (3.3.14) we obtain

w̃o(z) = −κtd+twztd
(
1− (κ−1z)−1

) ∞∑
k=0

(κ−1z)−(tw+1)

{
κtw(κz)td

tw∑
k=0

(κ−1z)−k
( tw∑

k=0

(κ−1z)−k
)−1 [

z−8 z−10
] ∞∑

k′=0

ea|k|z−kI

}
+( ∞∑

k′=0

eakz−k
)−1

I 1
1−b2xz−36

[
1 −bxz−18

−bxz−18 1

]
.

(3.3.16)

Comparing expression (3.3.16) with (3.2.29) where a Dirac-impulse (tw = 0) is used for the
secondary path, we see that colorization of the reference signals and the use of an extended plant
response leads to a considerably more involved expression for the optimal weight vector. We do,
therefore, not attempt to process (3.3.16) further in hand.

From (3.3.16), however, it is expectable that the discrete nonvanishing weights to be smeared out
by comparing expression for the extended secondary path. Moreover, it is expectable that the
plus operator will lead to some truncation of the contribution of the colorization modeling filter
Lwv(z) such that

�

w1,1 and
�

w2,1 will follow a decaying pattern with increasing weight number.
Both of these predictions are confirmed by inspection of the weight

�

w1,1 and
�

w2,1 pattern for the
two WH filter methods shown in Simulation 3.3.7 - 3.3.10 on pages 147–150. The set of optimal
weight vectors from the two methods now deviate substantially from each other.

Expectably, as compared with the κ = 1 case above we will be more successful with the ANR

operation as illustrated in Simulation 3.3.11 where the attenuation performance for the two
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causality WH filters is shown. As seen the attenuation fluctuates in the vicinity of Ae
1(t) =

−2− 8 dB for the t-domain WH filter (3.2.9) while the attenuation is confined to the interval
Ae

1(t) = 4− 14 dB for the z-domain WH method (3.2.11). Hence, as expected when the reference
sensors are illuminated by random pink noise signals the achieved performance is much better
for the latter method.

Moreover, the time-domain attenuation somewhat hiddens the real benefits of using the more
advanced colorization-dependent WH filter. This can be seen in Simulation 3.3.12 - 3.3.13 on
pages 152–153 displaying the frequency-domain attenuation Ae(f) achieved by the two WH

methods. Plant delays effectively limits the upper ANR frequency to 800 Hz. Accordingly, only
marginal ANR performance is achievable in the frequency range 800− 3000 Hz which even for a
pink noise signal clearly limits the time-domain attenuation Ae(t).

The operational difference between the two WH methods investigated is probably most clearly
exhibited in Simulation 3.3.14 - 3.3.15 on pages 154–155 displaying the auto spectral density
functions of the disturbance signals and resulting error signals from applying the WH filters.
While the t-domain method fails to produce a white noise error signal when exposed to colored
noise the z-domain method successfully takes the spectral distribution of the reference signals
into account and produces a RWN error signal.

Finally, in Simulation 3.3.16 the attenuation performance for the two WH filters when white noise
(1 Hz-3 kHz) signals are used instead. As expected the two different WH methods yield an almost
identical attenuation capability that in turn is much poorer than for the pink noise (1 Hz-3 kHz
signal in Simulation 3.3.11).

3.4 Causality Constraints in a Closed-Back Headset System

In the preceding examples we have used mathematically determined plants in order to make
our exhibitions of the causality constraints more clear. In this section we will investigate the
impact of causality constraints pertinent to the helmet based ANR system (see Figure 2.1 - 2.2
on pages 33–34).

3.4.1 Vibro-Acoustical Model Helmet Closed-Back Headset System

Various theoretical models for the primary path and secondary path transfer functions exist as
explained in chapter 10 - 11 on pages 471–481 and practical measurement data is also at our
disposal (see section 2.4 on page 32). Accordingly, we will use (3.3.8) instead of (3.3.7) for the
determination of the optimal causally constrained weights.

We do not attempt to establish an exact vibro-acoustical model for the Gentex HGU-55/P hel-
met. Instead we will use the main findings from chapter 10 - 11 regarding the primary paths
and secondary paths transfer functions in combination with an elementary spherical model for
the helmet that takes propagation delays and spatial decorrelation effects into account. The
applicability of the results obtained in this report are therefore heavily dependent on simula-
tions and actual measurements. It is therefore important that the test scenarios obtained from
the simulations closely resemble realistic noise data. As will be demonstrated, by using a suf-
ficient number of random white noise signals and a colorization filter we may obtain a sound
field with the required diffuseness and reference signals and disturbance signals with the desired
characteristics.
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The confined feedforward (CFF) ANR topology involve the surface spanned by the virtual sensors
Sv, that circumscribes both the surface spanned by the reference sensors Sx and the surface
spanned by the error sensors that we denote by Sd. This is equivalently to the conditions
Vx ⊂ Vv and Vd ⊂ Vv, where Vv,Vx,Vd are the interior volumes of Sv,Sx,Sd respectively.

We first want to validate our simulation data by considering coinciding virtual sensor and ref-
erence sensor spherical surfaces equipped with a total of Nv = 14 virtual sensors and Nx = 10
reference sensors respectively. The radius of the spherical surface virtual sensor and reference
sensor surface Sv,Sx that we designate by Rv, Rx and that equal an average radius of the non-
spherical Gentex HGU-55/P helmet of Rv = Rx = 150 mm. Both the set of virtual sensors and
the set of reference sensors are assumed equidistantly positioned on the sphere. These posi-
tions have be obtained from using the spherical design tool provided by Hardin and Sloane [7].
The simulation results of using the vibro-acoustical model closed-back headset system described
above will be presented next.

The auto spectral density functions are shown in Simulation 3.4.1. These results comply fairly
well with similar data obtained in a noise chamber under diffuse sound field conditions in
Simulation 2.4.3 on page 39 and the F-16 measurements in Simulation D.3.5 on page 564 and
the CH-47 measurements in Simulation D.4.5 on page 581 respectively. In the present analysis
of causality constraints, however, we have deliberately chosen to use reference signals with a
less dominant low frequency contents than actually present in, e.g., the CH-47 measurements.
Therefore, a blue noise 0− 400 Hz, pink noise 400− 1000 Hz and brown noise 1000− 12000 Hz
signal is used for the reference signals. In Simulation 3.4.2 - 3.4.3 the multiple coherence func-
tions are depicted. Again a fairly close match exist to the results in Simulation 2.4.16 - 2.4.17
on pages 54–55 for the diffuse sound field in the noise chamber and Simulation D.4.10 - D.4.13
on pages 587–590 for the helicopter noise. The joint-channel residual spectral analysis (JCRSA)
based cross-correlation functions are shown in Simulation 3.4.4 on page 161 and the details in
Simulation 3.4.5 on page 162. By inspection of similar results in Simulation 2.4.33 on page 73
the validity of the results are confirmed.

In conclusion, we have demonstrated that the simulator on three critical points for our analysis
has been able to reproduce experimentally obtained data. Firstly, the colorization of the reference
signals and the disturbance signals were obtained from a combination of the colorization filter
Lwv(eıω) and a model for the closed-back headset system described in chapter 10 on page 471.
Secondly, it was estimated that in order to produce the experimentally determined multiple
coherence function as a function of frequency a total of 14 uncorrelated uniformly spatially
distributed primary noise sources should used for the choice of 10 reference sensors. Thirdly, by
using the JCRSA based method developed in chapter 2 on page 17 the auto- and cross-correlation
functions should result in acquisition lead-time of the order of 0.8 ms.

In order to provide a smooth transition to the confined feedforward system (CFFS) ANR system
we will first consider the simple two-reference sensor case that has also been considered by, e.g.,
Rafaely and Jones [12].

3.4.2 Causality Constraints in a Closed-Back Headset System, 2 Reference Sensors

Example 3.4.1 (Confined Feedforward ANR System, Pink Noise, Helmet). We will use the same
reference signals as in subsection 3.4.1, that is, blue noise 0− 400 Hz, pink noise 400− 1000 Hz
and brown noise 1000− 12000 Hz. As primary paths we will use the model presented in chapter 10
and for the secondary path we will use the results from a system identification applied to the
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current version of the Terma Earcup System that is detailed in section 7.7 on page 333.

The analysis comprises both the t-domain WH method and the z-domain WH method with
M

�

w1,1 = M
�

w2,1 = Mw = 2048 and α = 1e − 5. As independent reference adaptive filter the
multiple-channel-αγΠε-NLMS (MC-αγΠε-NLMS) algorithm with Mw equal to 1024 and μ = 0.15 is
tested in parallel. The time span of the simulations is 0− 10 s.

Although the two reference sensors coincide with the two virtual sensors and therefore should not
lead to any spatial aliasing effects, owing to the passive attenuation rate of 40 dB ·decade−1 and
the finite precission in our calculations the multiple coherence function γ2

d1x! starts to deviate
from unity above 2000 Hz as depicted in Simulation 3.4.6 on the next page. Hence, an upper limit
(≈ 5000 Hz) to the validity of the simulated ANR therefore exist as shown in Simulation 3.4.7 on
page 165.

The time-domain attenuation results can be found in Simulation 3.4.8 on page 166. Apparently,
the t-domain WH method provides better ANR performance (Ae(t) = 11± 6 dB) than the z-
domain WH method (Ae(t) = 6± 4 dB). However, from inspection of the weight vectors

�

w1,1

and
�

w2,1 for the two WH filters shown in Simulation 3.4.9 - 3.4.12 we appreciate that all of
these four weight vectors exhibit similar highly fluctuating pattern9 and that the optimal weight
vector predicted by the t-domain WH method but not by the z-domain WH method is tapered
such that, e.g.,

�

wMw−1 ≈ 0. Further analysis revealed that by doubling the number of weights,
that is, M

�

w1,1 = M
�

w2,1 = Mw = 4096 would lead to
�

w2,1
Mw−1 ≈ 0 but still not to

�

w1,1
Mw−1 ≈ 0.

Refering to Example 3.2.1 on page 111 this also explains why better ANR performance is obtained
by the t-domain WH method than by the z-domain WH method.

We also observe that it takes the αγΠε-NLMS (αγΠε-NLMS) algorithm more than the entire time
span from 0− 10 s to converge.

The auto spectral density functions and frequency-domain attenuation of the t-domain based WH

filter is depicted in Simulation 3.4.13 on page 171 and Simulation 3.4.14 on page 172 respectively.
The plus 10 dB attenuation range extent from 50 Hz up to 5000 Hz as also predicted by the
multiple coherence function in Simulation 3.4.7 on page 165.

Example 3.4.2 (Feedback ANR System, Pink Noise Helmet). In this example we will examine
the ANR performance provided by a FBS solution when using the same real plant and when
exposed to the same representative disturbance signal as in the preceding example. Moreover,
in order exclusively to focus on causality constraints we do not enforce the FBS to be robustly
stable in the examples presented in this chapter. Hence, in practice H∞ adaptive control should
be applied, e.g., by incorporating stability margins as explained in section 8.A on page 404.
Accordingly, the achievable ANR attenuation provided by a practical feedback systems will be
lower than predicted here in particular at higher frequencies.

The following candidate adaptive filters are considered:

1. WH (t-domain,z-domain , α = 1e− 5, TWSS = 0, M = 1024);

2. αγΠε-NLMS (M = 512, LB = 1, μ = 0.15, α = 1e− 5, γ = 1e − 5, Π = 0, ε = 1e− 006, w̆ =
0, We = I, TEu = 20);

9Such oscillatory pattern could be caused by the presence of a factor (1 − z−1).
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3. αγΠε-APA (M = 512, LB = 1, μ = 0.15, K = 2, 4, Δ = 1, α = 1e− 5, γ = 1e− 5, Π = 0, ε =
1e− 006, w̆ = 0, We = I);

4. FARLS (M = 512, LB = 1, λ = 0.9999, 0.99995, 0.99999, η = 0.125, α = 1e − 5, TSW =
0, Calc = 1);

The time span of the simulations is again 0− 10 s.

In Simulation 3.4.15 - 3.4.17 on pages 174–176 the time-domain attenuation convergence for the
entire 0− 10 s period and the details for the first 100 ms and the last 20 ms respectively are
displayed.

The two WH methods investigated provide almost identical ANR performance (Ae(t) = 8± 6 dB),
while Ae(t) = 6± 4 dB, 0± 3 dB and 3± 3 dB for the αγΠε-NLMS and the αγΠε-affine projection
algorithm (αγΠε-APA) upon convergence. The attenuation provided by the fast array recursive
least-squares (FARLS) varies as Ae(t) = 5± 2 dB for λ = 0.99999 and Ae(t) = 8± 4 dB for
λ = 0.9999, 0.99995. Moreover, in comparison with the FFS in Example 3.2.1 owing to the fewer
weights involved (M

�
w1,1 = 512 while M

�

w1,1 = M
�

w2,1 = 1024) the αγΠε-NLMS algorithm converges
within 2.5 s.

Apparently the two αγΠε-APA filters initally provide fast convergence, but then lead to a perfor-
mance that seems to decrease somewhat with time. The reason for this behavior is currently not
understood. Finally, the three FARLS variants provide almost identical fast convergence of 0.6 s.

Although, the reference signal for the FBS, that is, the estimated disturbance signal deviates sub-
stantially from RWN the t-domain and z-domain WH filters give very similar results. The weight
vector

�
w1,1 for the two WH filters is shown in Simulation 3.4.18 - 3.4.19. We appreciate that the

two weight vectors exhibit similar pattern and that the energy is almost entirely confined to the
first 150 weights. The very much identical performance of the two WH filters may be explained
as follows. From the z-domain WH filter expression for the optimal causally-constrained weights
viz. (3.3.9) on page 137 we appreciate that if the plus operator only leads to minor truncation
effects then we get w̃o(z) ≈ −g̃−1

ey (z) which coincide with the expression for the t-domain WH

filter. Concerning the terms that enter the plus operator in (3.3.9), that is, g̃∗ey,all(z
−∗)Ld̂(z), it

should be recalled that only in the order of 50 weights are used to represent the secondary path.
However, from the auto spectral density function in Simulation 3.4.1 on page 158 we appreciate
that the disturbance signal is primarily confined to the low-frequency range 0− 200 Hz and the
order of the colorization filter Lx(z) therefore exceeds 120 samples for a sampling frequency
f1

s = 24 kHz. Hence, owing to the low-frequency characteristics of the reference signal used in a
helmet based FBS, the difference between z-domain and the t-domain WH filter is less pronounced
than for the FFS considered in Example 3.4.1.

Moreover, by comparison the weight vector
�

w1,1 obtained by the αγΠε-NLMS, αγΠε-APA (K =
2) algorithms depicted in Simulation 3.4.20 - 3.4.21 deviate substantially from the optimally
constrained weight vector in Simulation 3.4.19 while, e.g., the FARLS (λ = 0.99995) shown in
Simulation 3.4.22 constitute a fairly close match.

The auto spectral density functions for the two WH filters are shown in Simulation 3.4.23 - 3.4.24.
As readily seen except for the low frequency range 10− 500 Hz the resulting error spectra are
very flat in contrast to the error spectra of the FFS in Simulation 3.4.13 that exhibit pink noise
characteristics.

The dominant low-frequency ANR capabilities of the feedback topology is clearly exhibited in
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Simulation 3.4.25 on the next page for the z-domain WH filter. The plus 10 dB attenuation
range spans the frequency range from 60 Hz up to 950 Hz, while noise amplification takes place
below 25 Hz and above 2200 Hz.

The performance of the two variants of the αγΠε-APA is disappointing as no noise reduction is
obtained. On the contrary, some noise amplification actually takes place for the K = 4 case. In
order to check if this lack of performance can be attributed to the choice of a to large value of the
step size parameter μ a new simulation with the following αγΠε-APA variants has been conducted:

1. αγΠε-APA (M = 512, LB = 1, μ = 0.01, 0.05, 0.15, K = 1, 2, Δ = 1, α = 1e − 5, γ =
1e− 5, Π = 0, ε = 1e− 006, w̆ = 0, We = I);

The corresponding time-domain attenuation convergence results for these αγΠε-APA variants are
depicted in Simulation 3.4.26 - 3.4.28 on pages 186–188.

Hence, except for the K = 1 case where the affine projection algorithm (APA) filter virtually
become a normalized LMS (NLMS) filter (see section 8.5 on page 388) no ANR benefits are obtained
even for very small values of the step size parameter. However, as will turn out from section 7.7 on
page 333 the αγΠε-APA is indeed very suited for system identification. The two adaptive filtering
modes, however, differ as also discussed in section 8.2 on page 373. In the system identification
a RWN signal is often applied for which (see in chapter 8 on page 371) the eigenvalue spread
of the regressor signal is unity (X (Ru) = 1). In the AC case, however, we apply the modified-
filtered-x (mFx) method (see chapter 6 on page 273) in order to take the presence of the plant
into account. By filtering the colored disturbance signal by the dynamic plant the eigenvalue
spread becomes as high as X (Ru) = 1.4e7. This also explains why the FARLS variants converged
substantially faster than the least-mean-squares (LMS) algorithm. In order to clarify on this
seemingly contradictory behavior an intensive performance analysis that is reported in chapter 9
on page 417 has been initiated. From this analysis viz. Theorem 1 on page 451 we conclude that
the performance of the αγΠε-APA depends on the eigenvalues, however, in a rather complicated
way.

Finally, from a comparison of Simulation 3.4.8 with Simulation 3.4.15 and Simulation 3.4.14 with
Simulation 3.4.25 we conclude that in general somewhat better AC performance is obtainable with
the FFS than with the FBS in particular if we use a FIR filter of higher order for the z-domain
WH filter and also consider to enforce the FBS to be robustly stable. However, the FBS provides
the fastest convergence.

Example 3.4.3 (Confined Feedforward ANR System, Pink Noise, Helmet Model). In this exam-
ple we will use the parameters settings of the ordinary lumped element model in chapter 10 - 11
on pages 471–481 that lead to primary path and secondary path transfer functions that most
closely resemble practical evidence, that is, the compliance-resistance-mass system constituted by
Ka = 26 kN · m−1, Kc = 100 kN · m−1, Rc = 80 N · s ·m−1, ZA

l = (1+ 2ωl

ıω )1.26e7 N · s ·m−5, Ms =
0.16 kg that in turn determine the passive attenuation and that jointly with the cross-over net-
work parameters Qt = 1.6, ft = 870 Hz determine the active attenuation of the hearing protection
device (HPD).

The time-domain attenuation for this simulated HPD is shown in Simulation 3.4.29 on page 189
for the same three investigated filters as in Example 3.4.1. Now, the z-domain WH method
provides much better ANR performance (Ae(t) = 10− 18 dB) than the t-domain WH method
(Ae(t) = −2− 11 dB) .
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The condition
�

wMw−1 ≈ 0 is now also satisfied for the z-domain WH method as seen in Simulation 3.4.30 -
3.4.31 . For the the z-domain WH method the weight vector

�

w1,1 is somewhat similar to
Simulation 3.4.11 in Example 3.4.1, while

�

w2,1 deviates substantially from Simulation 3.4.12.
Moreover, we appreciate that both

�

w1,1 and
�

w2,1 are very slowly varying and may very likely be
more efficiently represented by Lageurre/Kautz filters described in Appendix K on page 759.

The frequency-domain attenuation of the z-domain based WH filter is depicted in Simulation 3.4.33
on page 194. The plus 25 dB attenuation range now extent from 10 Hz up to 200 Hz. Owing to
the large discrepancy between the group delay of the real plant depicted in Simulation 11.5.10 on
page 506 and that by the plant model in Simulation 11.4.3 on page 488 below 200 Hz the filter now
provides considerably more low frequency attenuation than in Example 3.4.1 on page 157. How-
ever, this higher low-frequency ANR attenuation occurs at the expense of medium frequency range
400− 1500 Hz where less than 10 dB attenuation is achieved. Referring to Simulation 11.4.4 -
11.4.5 on pages 490–491 this lack of ANR capabilities can be explained by the very large group
delays of the plant in the frequency range 700− 1000 Hz. In the high-frequency range, however,
10 dB attenuation is provided by the FFS up to 5000 Hz.

Example 3.4.4 (Feedback ANR System, Pink Noise, Helmet Model). For the same helmet model
as in Example 3.4.3 the time-domain attenuation performance obtained by the FBS is shown in
Simulation 3.4.34 - 3.4.36 on pages 195–197.

The two WH methods investigated provide almost identical ANR performance in agreement with
our discussion in Example 3.4.2. Hence, Ae(t) = 18± 4 dB which is 10 dB better than in
Example 3.4.2. The αγΠε-APA following a very short initial convergence then departs from the
optimal settings. This behavior is most pronounced for the K = 4 variant. It is also observed
that for the FARLS with λ = 0.99999 is showing signs of instability. The ANR capabilities in the
frequency-domain of the feedback topology is exhibited in Simulation 3.4.37 on page 198 and in
comparison with the transfer function in Simulation 3.4.25 on page 185 in Example 3.4.2 it is
readily observed that a much higher attenuation is achieved. Moreover, noise amplification only
takes places for frequencies above 4 kHz.

From this example and Example 3.4.1 - 3.4.3 we appreciate that the secondary path is of profound
importance for the achievable ANR performance. Hence, although a fairly close match between
measurements and simulation data of a lumped-element model is reported in chapter 10 - 11 on
pages 471–481 this similarity does not completely hold when the achievable ANR performance is
being considered.

Finally, from a comparison of Simulation 3.4.29 with Simulation 3.4.34 and Simulation 3.4.33
with Simulation 3.4.37 we conclude that from ignoring requirements on robust stability then the
best ANR performance is delivered by the FBS in the frequency range 20− 1500 Hz while the FFS

provides the best solution at frequencies above 1500 Hz.

Example 3.4.5 (Confined Feedforward ANR System, Pink Noise Optimized Helmet). In this
example we want to demonstrate that by increasing the damping of the 2nd order compliance-
resistance-mass system and by lowering the Q-factor of the cross-over network in the HPD a
better ANR performance is achievable. Hence, we increase the resistance of the cushion from
Rc = 80 N · s ·m−1 to Rc = 120 N · s · m−1 and decrease the Q-factor of the cross-over network
from Qt = 1.6 to Qt = 0.5.

The time-domain attenuation for this simulated HPD are shown in Simulation 3.4.38 on page 199.
By comparison with similar results for the non-optimized HPD in Example 3.4.3 viz. Simulation 3.4.29
on page 189 it is readily observed that the αγΠε-NLMS algorithm converges faster and that in par-
ticular the t-domain WH filter provides better results.
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The optimal weight vectors for the z-domain WH method depicted in Simulation 3.4.39 - 3.4.40
exhibit a very smooth pattern and is therefore amendable to Lageurre/Kautz filter implementa-
tion.

The frequency-domain attenuation of the z-domain based WH filter is depicted in Simulation 3.4.41
on page 203. Also by comparison with similar results for the non-optimized earcup system in
Example 3.4.3 viz. Simulation 3.4.33 on page 194 we appreciate that the reduction in the group
delay (see chapter 11 on page 481) manifests itself in terms of a higher noise attenuation in the
frequency range 300− 1500 Hz.

Example 3.4.6 (Feedback ANR System, Pink Noise Optimized Helmet). In this example will
we examine the ANR FBS solution for the same disturbance signal as in the preceding examples.
In Simulation 3.4.42 on page 204 the time-domain attenuation convergence is shown.

The two WH methods investigated provide almost identical ANR performance (Ae(t) = 13− 21 dB)
while Ae(t) = 9− 14 dB for the αγΠε-NLMS algorithm. Moreover, owing to the fewer weights in-
volved (M

�
w1,1 = 512 while M

�

w1,1 = M
�

w2,1 = Mw = 2048 in the preceding FFS examples) the
αγΠε-NLMS algorithm converges within 2.5 s.

The low-frequency ANR capabilities of the feedback topology is clearly exhibited in Simulation 3.4.43
on page 205. By comparison with similar results for the non-optimized earcup system in
Example 3.4.4 viz. Simulation 3.4.37 on page 198 we appreciate that by lowering the Q-factor
of the compliance-resistance-mass system the attenution barely increases for the FBS in contrast
to the improvements obtained from such hardware change in the FFS. However, a less resonant
design is in favor when considering the gain magins of the plant.

The reason why the t-domain WH filter and the z-domain WH filter yield similar ANR performance
in the FBS but not for the FFS is explained in Example 3.4.2.

Finally, by comparing Simulation 3.4.38 with Simulation 3.4.42 and Simulation 3.4.41 with Simulation 3.4.43
leads us to essentially the same conclusions regarding the relative performance of FFS and a FBS

solution as made in Example 3.4.4.

3.5 Spectral Factorization Method

In this section we will present two methods for spectral factorization for ACSV applications.

3.5.1 Cepstral Method

In AC applications the spectral factorization of scalar-valued reference signals or scalar-valued
secondary paths is often accomplished by using the cepstral method [10, Ch. 10] that works in
the discrete frequency-domain and involves the Hilbert transform. The cepstral method has been
used in the chapter in the examples to divide the secondary paths into their all-pass component
and minimum-phase components. The basic spectral factor is obtained from

L+(k) = exp
(

fft
(
c(n) ifft ln

(
Sxx(k)

)))
, (3.5.1)

where c(n) = 0 for n < 0, c(n) = 1
2 for n = 0 and c(n) = 1 for n > 0. Unfortunately, to the

author’s best knowledge no extension of the cepstral method to the vector-valued signals is yet
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available. This might be explained by the fact that although the cepstral method effectively
operates on zeros and poles transmission zeros also enter the characterization of MC signals as
discussed in subsection 3.2.2 on page 107.

A more versatile framework is therefore required for MC ACSV systems. A candidate for MC

spectral factorization is provided by a method that involves a PEF.

3.5.2 Multi-Channel Prediction Error Filter Spectral Factorization Method

The connection between the PEF and the spectral factorization was investigated by Cook and Elliott
[4]. In this section we will demonstrate how actually to use a PEF to accomplish the MC canonical
spectral factorization in practice.

The PEF based method for obtaining the MC spectral factors MCPEFSF is constituted from two
parts. In the first part the PEF filters out any predictable part of the reference signals. In
the second part an estimate of the causal whitening filter L−1(eıω) is obtained directly from
the resulting auto- and cross-spectral density functions. This filter has a stable causal inverse
namely the modeling filter L(eıω). Actually, for MCWH filtering it suffice to determine L−1(eıω)
as evident from (3.2.11) and (3.3.7).

A brief description of the operation of the PEF follows next. For more details the reader should
consult the original reference [4]. The PEF takes as input the set of reference signals and outputs
a set of error signals that are the unpredictable parts of the reference signal. In this section
(and only here) the term error signal accordingly will refer to the parts of the reference signals
that remain following the operation of the PEF and not to a signal acquired by an error sensor.
Hence, the operation of the PEF should not be confused with the operation of the ANCS.

In order to get acquainted with the first part of the MC spectral factorization we will next present
the results from applying the method to Example 3.3.1 where two reference sensors are exposed
to pink noise excitation.

For the topology in Example 3.2.1 - 3.3.1 the action of the PEF can be explained as follows: The
first reference signal, that is, x1(t) is constituted as a superposition of the random signals sC

1 (t)
and sC

2 (t) with propagation direction ŝC
1 = (−1, 0, 0) and ŝC

2 = (1, 0, 0) respectively. Provided
that filters with a sufficient high order are used, the PEF is in principle capable of removing any
predictable part of those signals10. Now reference sensor x1 itself can predict any part of both
signals with a strictly positive time lag which for a pink noise signal almost amounts to one half
of the signal energy contents, but amounts to nothing for a RWN signal. In addition reference
sensor x2 can predict sC

2 (t) with a lead time of 18 samples (3 ms), which corresponds to all part
of a RWN signal and more than the half of the energy in a pink noise signal. Moreover, that part
of random signal sC

1 (t) with time lag exceeding 18 samples can also be predicted by reference
sensor x2. This however, is of little use as reference sensor x1 offers much better predictability
for random signal sC

1 .

A WH filter with parameters M = 2048, α = 10−5, γ = 0, We = I, Π = 0 was selected for the
actual implementation of the PEF.

The auto spectral density functions in Simulation 3.5.1 demonstrate that the PEF effectively turns
the constant-slope pink noise spectra into a flat white noise spectra as desired. The magnitude

10A finite bandwidth, however, tends to smear the Dirac impulses such that a fraction of the energy in the
auto correlation functions appears with negative time index (see Appendix C on page 539 for details concerning
statistical data analysis (SDA)).
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and the phase of the cross-spectral density functions are illuminated in Simulation 3.5.2 - 3.5.3
respectively. As the reference signals are pink noise signals while the error signals are white noise
signal the magnitude of the cross-spectral density functions follows a pink noise spectral density
function. We can confirm that the phase of a reference signal and the corresponding error signal
coincide while a linear phase progression between cross reference sensors exists equivalent to a
propagation delay of 18 samples between the two reference sensors. The magnitude of the error
signal cross-spectral density function Se1e2(f) depicted in Simulation 3.5.4 is seen to be more
than 20 dB lower than the auto spectral density functions Se1e1(f) and Se2e2(f).

Finally, from the auto- and cross-correlation functions depicted in Simulation 3.5.5 - 3.5.6 we ob-
serve the slow decorrelation pattern of the pink noise reference signals (Rx1x1(τ), Rx2x2(τ)) in con-
trast with the Dirac-like impulse associated with the white noise error signals (Re1e1(τ), Re2e2(τ)).
Moreover, a very characteristic behavior of the PEF, namely the completely anti-symmetric cross-
correlation functions (Rx1e1(τ), Rx1e2(τ), Rx2e1(τ), Rx2e2(τ)) is also clearly exhibited. Hence,
considering the cross-correlation function between, e.g., the first reference signal and the first
error signal Rx1e1(τ) the PEF removes the part with negative time lag as expected. Similarly,
considerations apply to Rx2e2(τ). The cross-correlation function subsequently follows the pink
noise decorrelation pattern. For the cross-correlation function between the first reference signal
and the second error signal Rx1e2(τ) is shifted 3 ms or 18 samples as expected. The benefit
of the 3 ms acquisition lead-time can also be observed in terms of an increased high-frequency
predicability. This explains why the peak value of Rx1e2(τ) is almost twice as small as the peak
value of Rx1e1(τ). For large time lags corresponding to the low-frequency signal contents the two
cross-correlation functions more or less coincide. Similarly, discussion applies to Rx2e1(τ).

The ordinary coherence function γ2
e1e2

(f) is as seen in Simulation 3.5.8 on page 215 within
the graphically solution identical to zero. This vanishing coherence between the error signals
together with the cross-correlation function in Simulation 3.5.6 provide evidence that very little
correlation between the two error signals exists as desired.

In conclusion, following the operation of the PEF each error signal is uncorrelated with its past
values or with the past values of any other error signal, that is, Re1e1(τ) = Re2e2(τ) = Re1e2(τ) =
Re2e1(τ) = 0 and recalling that Re1e2(−τ) = Re2e1(τ) this pertains to τ ≶ 0. This in turn implies
that the entities in the error power spectral density matrix See(eıω) are all white.

We are now in a position to step to the second part of the PEF based MC spectral factorization
procedure, namely the determination of the whitening filter L−1(eıω) that is used in (3.2.11) and
(3.3.7). This part is not addressed in [4] and we will in the subsequent text provide a method
that to the authors experience works satisfactorily.

The transfer function of the PEF denoted by w̃PEF(z) is obtained from the whitening filter L−1(z)
and the power term L0(z) , that is, the first term in the expansion of the L(z) (refer to (3.2.4))
according to

w̃PEF(z) = L0(z)L−1(z). (3.5.2)

The transfer function (TF) of a linear time-invariant (LTI) filter can be determined from the input
spectra, output spectra and cross-input-output spectra according to11

11This definition is a consequence of the definition of z-cross-spectrum in Equation 3.2.1b on page 107 and
therefore deviates from, e.g., [2].
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w̃
(1)
PEF(eıω) = See(eıω)S−1

xe (eıω) (3.5.3a)

w̃
(2)
PEF(eıω) = S∗

xe(e
ıω)S−1

xx (eıω), (3.5.3b)

provide that the matrix inverse exists. In the present case the number of input channels equals
the number of output channels. Otherwise, the pseudo-inverse replaces the matrix inverse in
(3.5.3). The two methods in (3.5.3a) to (3.5.3b) have their own advantages and disadvantages
depending on, e.g., the signal-to-noise ratio (SNR) at the input/output channels (refer to [2]).

For the purpose of MC spectral factorization we will use some heuristic SC arguments and propose
two variants of (3.5.3). Sometimes it happens that the transfer function obtained from method
(3.5.3a) and method (3.5.3b) are of equal magnitude but with opposite arguments. Hence, it is
straightforward to define another transfer function as the average of w̃

(1)
PEF(eıω) and w̃

(2)
PEF(eıω),

that is,

w̃
(3)
PEF(eıω) = 1

2

(
w̃

(1)
PEF(eıω) + w̃

(2)
PEF(eıω)

)
. (3.5.4)

In other situations it might be that over certain frequency intervals that method w̃
(1)
PEF(eıω)

and w̃
(2)
PEF(eıω) are overestimating respectively underestimating the magnitude of the transfer

functions or vice-versa. This suggests that a better and more robust estimate might be obtained
from taking the square-root (in a matrix-sense) of the product of the transfer functions defined
in (3.5.3), that is,

w̃
(4)
PEF(eıω) = S1/2

ee (eıω)S−1/2
xe (eıω)S∗/2

xe (eıω)S−1/2
xx (eıω). (3.5.5)

In the multiple-input and multiple-output (MIMO) case the transfer function is matrix-valued
(w̃PEF(eıω) ∈ CNx×Nx) which complicates the error analysis considerably. Nevertheless, we will
next establish some performance measures in order to assess the four transfer function estimation
methods (3.5.3) to (3.5.5).

In [4] the power term L0(eıω) introduced in (3.5.2) is expressed as

L0(eıω) = QeΛ1/2
e , (3.5.6)

where Qe is the matrix of real eigenvectors of See(eıω) and Λe represents the diagonal matrix of
real eigenvalues of See(eıω), that is, See(eıω) = QeΛeQ

�
e . The elements of e(z) are decorrelated

by Q� while Λ−1/2 normalizes their variances. However, some care should be exercised as (3.5.6)
presents ambiguity in terms of the order of the eigenvalues/eigenvectors12.

A more straightforward approach is to obtain L0(eıω) from

L0(eıω) � S1/2
ee (eıω) = QeΛ1/2

e Q−1
e . (3.5.7)

It can readily be verified that this procedure for obtaining the power term is insensitive to
permutations in the eigenvalues/eigenvectors.

12Suppose Q =
[
q1 q2

]
and Λ = diag {λ1, λ2} is a solution to A = QΛQ�. Then, another solution is

obtained from permutations of the eigenvalues and eigenvectors, that is, A = Q′Λ′Q′� for Q′ =
[
q2 q1

]
and

Λ′ = diag {λ2, λ1}. However, in general QΛ �= Q′Λ′.
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A natural question is then, how should we actually measure the performance of the spectral
factorization? In a general context a candidate figure of merit for the spectral factorization
procedure could be the relative spectral factorization error that we denote by Δsxx(eıω) and
define by

Δsxx(eıω) � ‖ΔSxx(eıω)‖
‖Sxx(eıω)‖ , (3.5.8)

where the spectral factorization error ΔSxx(eıω) in turn is defined by

ΔSxx(eıω) � L̂(eıω)ReL̂
∗(eıω)− Sxx(eıω) (3.5.9)

and evaluated over the frequency range 0 ≤ f ≤ fs

2 . Moreover, the spectral factorization is
nonunique (see Footnote 4 on page 108).

Our main objective in this chapter is to establish an analysis method by which we can estimate
the performance of MC active noise control (ANC) systems as limited by the requirement on
causal operation of the system. Hence, we should consider the equation governing the optimal
causally constrained weights (3.2.11) or (3.3.7). In both these equations it is the whitening filter
L−1(z) and not the modeling filter L(z) that is used. Moreover, L−1(z) enters both inside the
plus operator (in a time reversed sense) and outside the plus operator. Concerning the later
term, that is, L−1(z) outside the plus operator we may argue that the weight estimation error is
linearly related to the whitening filter error ΔL(z) that we define by

ΔL−1(z) � L̂−1(z)− L−1(z), (3.5.10)

where L̂−1(z) is the whitening filter estimate.

It should, however, be recalled that the plus operator is nonlinear. In practice this means that
even a small factorization error might lead to relative large erroneous truncation effects. It might,
however, also be that even for a relative poor spectral factorization quality that the effects on
the estimated optimally constrained weights are negligible. It is therefore exceedingly difficult
to establish exact requirements to the quality of the spectral factorization.

Instead we will measure the efficiency of the spectral factorization method as the ability to
determine a whitening filter L−1(eıω) that when excited by the reference signals produce random
white noise signals v(t) that are mutually uncorrelated.

We may then define spectral factorization error averaged norm ΔSvv by

ΔSvv = 1
NDFT

NDFT∑
k=1

‖Svv(k)− I‖2, (3.5.11)

where the random white noise signal vector in turn is obtained from ṽ(z) = L−1(z)x̃(z), that is,
the deviation from the identity matrix. The matrix norm (largest singular value) of the deviation
is then averaged over the frequency bins.

We may now present the results from estimating the MC spectral factorization (3.5.2) using each
of the proposed methods for estimating the transfer functions of the PEF (3.5.3) (3.5.4) and
(3.5.5).
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The auto spectral density functions of the supposedly random white noise signals v1(t), v2(t)
using w̃

(1)
PEF(eıω) − w̃

(4)
PEF(eıω) can be found in Simulation 3.5.9 - 3.5.12 on pages 219–222. The

spectra are not perfectly flat, but exhibit ripples ranging from ±0.5 dB in peak-to-peak values
Δvpp by method (1) and up to±4 dB for method (2). Recalling that the for unit variance the auto
spectral density function should be 10 log10(fs/2)=−34.77 dBHz−1 we conclude that only method
(1) provides a unbiased estimate. Moreover, it can be observed that the minimum/maximum
values of the ripples in the auto spectral density functions occur at f = n

18
fs

2 , n ∈ Z. Referring to
Simulation 3.2.2 on page 117 and Simulation 3.2.12 on page 130 we recognize these frequencies
as the same frequency points where very deep troughs in the multiple coherence function for the
system without element directivity respectively small deviations from unity multiple coherence
function for the system with element directivity are observed. Accordingly, we may attribute
the periodicities in the auto spectral density functions as related to a potential rank-deficient
auto-spectral density matrix Sxx(eıω).

From inspection of the four different transfer function definitions (3.5.3) (3.5.4) and (3.5.5) it
can readily be observed that method (1) is less dependent on reference signal contents than the
other methods. This in turn explains why method (1) provides the best MC spectral factorization
results. The spectral factorization quality measure defined in (3.5.11) is ranging from 0.14 to
0.45 for method (1) and method (2) respectively. These findings are summarized in Table 3.1

Signal w̃
(1)
PEF w̃

(2)
PEF w̃

(3)
PEF w̃

(4)
PEF

Δvpp[dB] ±0.5 ±1.0 ±1.0 ±0.8
ΔSvv 0.14 0.45 0.25 0.21

Tab. 3.1: Quality Measures of Spectral Factorization, Transfer Functions.

In conclusion, method (1) provides the best MC spectral factorization results. It leads to unbiased
unit variance random white noise signals v1(t), v2(t) smallest ripples and also the smallest quality
number as defined in (3.5.11).

Henceforth, we will apply method (1), w̃PEF(eıω) ≡ w̃
(1)
PEF(eıω). In the subsequent text we present

more detailed results of the spectral factorization obtained from this method.

Ideally, the z-autospectrum matrix Svv(eıω) ≈ I. We therefore expect a vanishing cross-spectral
density function. From Simulation 3.5.13 on page 223 we see that the cross-spectral density
function is suppressed by approximately 8− 25 dB. as compared with the auto spectral den-
sity functions in Simulation 3.5.9 on the next page. The marginal correlateness between v1

and v2 is exhibited in the staircase pattern of phase of the cross-spectral density function in
Simulation 3.5.14 on page 224.

Some imperfections can be also seen in the auto correlation functions (Rv1v1(τ), Rv2v2(τ) depicted
in Simulation 3.5.15 where small time-domain side lobes can be observed at ±6 ms corresponding
to the turn-around time of 36 samples.

From the ordinary coherence function in Simulation 3.5.16 on page 226 and the cross-correlation
function in Simulation 3.5.17 on page 227 it can be observed that the two random white noise
signals are marginally correlated.

Finally, we return to the actual behavior of the modeling filter L(eıω). The magnitude and
phase are shown in Simulation 3.5.18 and Simulation 3.5.19 respectively. It can be observed
that the direct channel excitation is approximately 6 dB higher than the cross-channel excitation
independent of the frequency which agrees with the minimum element sensitivity bx = 1

2 . The
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phase of L(eıω) is decreasing and the phase shift amounts to −18 ·180◦ = 3240◦ at f = fs/2 as
desired (it is therefore L(z) and not L−∗(z−∗) that we end up with). Close examination of the
phase function of all four entities in L(eıω) reveals a function that decreases from 45◦ at f = 0 to
0◦ at f = fs/2. The initial phase lead of 45◦ can probably be attributed the fact that the PEF is
almost completely removing any low frequency contents. In the high frequency range, however,
the reference signal just passes by the PEF.

3.6 Conclusions

The theme of this chapter has been causality constraints pertaining to active control (AC).
Fundamental to the casuality analysis is the so-called plus operator that enters the formula that
defines the optimal causally constrained weight vector. Constructed examples, have revealed
some of the technicalities associated with the use of the nonlinear plus operator. Accordingly,
new insights to the actions of the plus operator

{
·
}

+
was provided. Moreover, a new expression

for the optimally constrained weight vector for a system that possess underlying structure was
obtained.

A practical framework for multiple-channel (MC) spectral factorization using the prediction error
filter (PEF) was developed. This technique is referred to as the multiple-channel prediction error
filter spectral factorization algorithm. For the purpose of MC spectral factorization a variant of
existing transfer function definitions was proposed. By using this definition more robust estimates
of the transfer function of the PEF was obtained. This multiple-channel prediction error filter
spectral factorization (MCPEFSF) algorithm has been used in all the presented examples in this
chapter. Another objective pursued in the chapter was to examine the consequence of using
the ordinary t-domain Wiener-Hopf (WH) filter instead of the more computational intensive z-
domain WH filter. It was demonstrated that by using the MCPEFSF algorithm that the associated
z-domain WH filter when exposed to random white noise signals even outperformed the t-domain
WH filter that is tailored to such flat spectral excitation. Moreover, for the single-channel (SC)
case the MCPEFSF algorithm even outperformed the cepstral method. However, the requirement
on a sufficient high filter order may be prohibitive in terms of realizable DFT sizes. Finally, from
the practical hearing protection device (HPD) with active noise reduction (ANR) system the two
WHs differed only marginally.

A suite of examples of increasing complexity was constructed in order to exhibit some of the
characteristics related to causality constraints. In order to make this exhibition more clear the
feedforward system (FFS) examples mainly considered the use of two reference sensors.

In one example the advantage of even small reference sensor directivity was exhibited. By
introducing element gain an underlying infinite sum of terms is shifted to an exponentially
decaying series with a decay constant that depends on the element directivity. In particular,
the decay constant coincides with the minimum directivity for an assumed cosine-on-a-pedestal
azimuthal pattern.

In another example, it was demonstrated that for a secondary path with a impulse response
function that takes form of a rectangular pulse, the inverse of the minimum-phase component
is constituted from an infinite sum of non converging terms. We may therefore expect that a
very large filter order in finite-duration impulse response (FIR) implementation is required for
successful ANR performance with such a plant involved. In a general context it can be concluded
that the inverse of the minimum-phase component of the plant is of profound importance.
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The all-pass component of the secondary path g̃ey,all(z) counteracts the benefits of the acquisition
lead time in g̃ex(z) provided by CFF.

Group delays are often considered in an initial design phase in order to assess the ANR capability
of a system. However, such analysis is often deemed to be to primitive and will often lead to an
underestimation of the achievable performance. It was, however, confirmed that the discrete-time
group delays have a direct impact on the achievable performance while the impact of continuous-
time group delays is less predictable. Hence, the performance analysis should preferably be
based on simulations involving one of the expressions for the optimal causally constrained and
finite-order constrained weight vector for the MC z-domain WH filter presented in this chapter.

The analysis also revealed that the current version of the Terma Earcup System is rather un-
fortunate being insufficiently damped. However, simulations did reveal that by decreasing the
Q-factors associated with the resonance of the passive spring-mass-damper system and the Q-
factor associated with the cross-over network of the tweeter unit would significantly improve the
ANR performance of the helmet system. Such improved design is beneficial both for a feedback
system (FBS) and a FFS.

In conclusion, a considerably amount of ANR performance is often available from a well-designed
HPD in particular the plant that in the present case coincides with the Terma Earcup system.
Accordingly, in the design of an active HPD the optimal choice of the secondary path and in
particular the resulting inverse of the minimum-phase component is crucial and should receive
much attention in the design phase.

Considering, the proposed confined feedforward system (CFFS) it was found that for the actual
HPD owing to the acquisition lead times provided this topology a higher AC attenuation is in
general obtained than by a FBS in particular if we use a FIR filter of sufficiently high order
and enforce the FBS to be robustly stable. However, owing to the fewer total weights involved
the FBS provides the fastest convergence. The examples also revealed that by optimizing the
HPD as discussed above the FBS will then typically provide the best ANR performance in the
low-frequency range while the CFFS is in favour at higher frequencies. Requirement on robust
stability, however, may severely limit the upper operational band width of the FBS.

3.A Spectral Factorization of a Pink Noise Signal13

We assume that an equal amount of colorization is present in the reference signals and the
disturbance signals. Accordingly, applying the model in section 3.3 we may in this example
consider the modeling filter Lx(z) as constituted by a cascade coupling of a colorization filter
Lwv(z) and a channel delay filter Lxw(z) that in turn coincides with Lx(z) in Example 3.2.2 on
page 119. Both modeling filter components are linear time-invariant (LTI) filters and Lx(z) can
therefore expressed as L(z) = Lxw(z)Lwv(z), where Lwv(z) in turn equals Lwv,1(z)I for some
scalar-valued colorization filter Lwv,1(z). Accordingly, we may express the z-autospectrum of
the random colored noise signals by

Sww(z) = Lwv(z)L∗
wv(z

−∗) (3.A.1)

and we wish to obtain an expression for Lwv,1(z) and therefore first consider the aspect of

13This appendix provides an attempt to carry out the spectral factorization of a pink noise signal in-hand that,
however, can be skipped on a first reading.
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colorization on a single channel. For pink noise signals we may obtain the z-autospectrum as
follows. On the unit circle the auto spectral density functions are given by

S(eıω) = S(e−ıω) =

{
A|ω1|−1; ω ≤ ω1

A|ω|−1; ω > ω1

(3.A.2)

for some normalization constant A, that for a unit variance signal and a two-sided spectrum is
obtained from

∫ π

−π

S(eıω) dω = 2
∫ ω1

0

Aω−1
1 dω + 2

∫ π

ω1

Aω−1 dω = 2A

[
1− ln

(ω1

π

)]
= 1, (3.A.3)

where ω1 > 0 is a lower cut-off frequency of the pink noise excitation that ensures the convergence
of the third integral in (3.A.3). Then using the relation ω = 2f

fs
π and that ln(z) evaluates to ıω

on the unit circle we obtain

S(z) =
2πı

fs ln fs

2f1
ln(z)

, z /∈ ∪{0, C±ω1}, (3.A.4)

where C±ω1 refers to the circular arc on the unit circle from −ω1 to ω1
14. In order to proceed

we may use the following Taylor expansion for ln(z) [1]

ln(z) = 2
[(z − 1

z + 1

)
+

1
3

(z − 1
z + 1

)3

+
1
5

(z − 1
z + 1

)5

. . .

]
= 2

∞∑
k=0

1
2k + 1

(z − 1
z + 1

)2k+1

; �{z} ≥ 0, z �= 0.

(3.A.5)

Moreover, as ln(−z) = ln∗(z) (3.A.5) can be used everywhere except for z = 0. By insertion of
(3.A.5) in (3.A.4) we get

S(z) =

⎧⎪⎨⎪⎩πı
[
fs ln fs

2f1

∑∞
k=0

1
2k+1

(
z−1
z+1

)2k+1
]−1

; �{z} ≥ 0, z /∈ C+ω1

πı
[
fs ln fs

2f1

∑∞
k=0

1
2k+1

(
z∗+1
z∗−1

)2k+1
]−1

; �{z} < 0z /∈ C−ω1 .
(3.A.6)

It can be shown that the following scalar-valued canonical spectral factorization holds

L11(z) = ln−1/2(z); re =
π

fs ln fs

2f1

; L∗(z−∗) = ln−∗/2(z−∗). (3.A.7)

Using the Taylor expansion (3.A.5) the modeling filter L(z) becomes

L11(z) = 2−
1
2

( ∞∑
k=0

1
2k + 1

(z − 1
z + 1

)2k+1
)− 1

2
; �{z} ≥ 0, z �= 0. (3.A.8)

14We ignore for a moment the problem related to the lack of analyticity in (3.A.2) at the points z = e±ıω1 .
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Although we have obtained a closed-form factorization of (3.A.6) in order to proceed we should
take the inverse of (3.A.8) evaluated in a time-reversed sense, that is,

L−1
11 (z−1) = 2

1
2

( ∞∑
k=0

−1
2k + 1

(z − 1
z + 1

)2k+1
)1

2
; �{z} ≥ 0, z �= 0 (3.A.9)

and applying a Taylor expansion for (1+z)
1
2 and subsequently inserting the expression obtained

in that way in (3.2.11). In addition the remarks made in Equation 14 concerning analyticity,
that is, the limited range of the pink noise excitation also has to be considered. Altogether,
however, this seems be a quite challenging task.

Moreover, we also appreciate that the normalization constraint L(∞) = 1 cannot be satisfied.
This is due to fact that S(z) has a nonrational z-spectrum. From section 3.2.2 the existence of
the spectral factorization is guaranteed provided Sxx(eıω) satisfies the finite-power requirement
and the Paley-Wiener condition. The finite-power requirement (3.2.7) is evidently satisfied. The
latter requirement can easily be verified from insertion of (3.A.2) in (3.2.8)

1
2π

∫ π

−π

ln
(
Sxx(eıω)

)
dω =

1
π

∫ ω1

0

ln
(
Aω−1

1

)
dω +

1
π

∫ π

ω1

ln
(
Aω−1

)
dω

=
1
π

ω1 ln
(
Aω−1

1

)
+

1
π

[
ω ln A− ω ln ω + ω

]π

ω1

=
1
π

[
ω1 ln

(
Aω−1

1

)
+ (1 + lnA)(π − ω1) + ω1 ln ω1 − π ln π

]
= ln

(
Aπ−1

)
+ 1− ω1

π

insertion of (3.A.3) gives

1
2π

∫ π

−π

ln
(
Sxx(eıω)

)
dω = 1− ln

(
2π

[
1− ln

(ω1

π

)])
− ω1

π
> −∞

(3.A.10)

for any value of ω1 ≥ 0 and the Paley-Wiener condition (3.2.8) is therefore evidently satisfied.
Hence, the choice of a lower cut-off frequency ω1 for the pink noise excitation to be strictly
greater than zero is only necessary for the finite power requirement. Then re can be obtained
from the Szegö formula

re = exp
[ 1
2π

∫ π

−π

ln
(
Sxx(eıω)

)
dω

]
. (3.A.11)

By insertion of (3.A.2) in the Szegö formula (3.A.11) and using (3.A.10) we readily obtain

re =
1
2π

[
1− ln

(ω1

π

)]−1

exp
(
1− ω1

π

)
. (3.A.12)

Still, the determination L11(z) remains. Although a closed-form expression for the basic spectral
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factorization involving an outer function and the Herglotz-Riesz transform can be found in, e.g.,
[3]

L+(z) =

√
exp

[
1
2π

∫ π

−π

ln
(
Sxx(eıω)

)e−ıω + z

e−ıω − z
dω

]
, (3.A.13)

the evaluation hereof and subsequent insertion of the expression obtained in that way in (3.2.11)
is rather difficult and most of all does not provide us with readily explainable terms as in the
preceding examples.

This Appendixhas revealed that the spectral factorization in general is exceedingly difficult to
carry out by ”hand calculations”. We could, however, construct colored signals with known
z-autospectrum as exponentially correlated signals.
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Part II

ACTIVE NOISE CONTROLLER





4. SYSTEM DESCRIPTION

4.1 Introduction

In this chapter the control subsystem involved in the active noise control (ANC) system depicted
in Figure 1.1 on page 7 will be presented. The aim is to set the hybrid MIMO feedforward-feedback
system (HMIMOFFFBS) presented in chapter 6 into an overall system perspective.

4.1.1 Chapter Outline

First section 4.2 introduces the topology of the overall control system. Next in section 4.3 a
description of the continuous-time controller part of the hybrid continuous-time discrete-time
topology (HCTDTT) is provided. Then section 4.4 considers the discrete-time controller part of
the HCTDTT. The advantages of combining a feedback- and a feedforward control system is
the theme of section 4.5. The internal model control (IMC) used in the discrete-time feedback
controller is presented in section 4.6. Finally, the use of an adaptive inverse controller is treated
in section 4.7.

4.2 Hybrid Continuous-Time Discrete-Time Topology

The single-input and single-output (SISO) controller topology depicted in Figure 4.1 on page 241
encompasses a hybrid1 feedback continuous-time and feedback discrete-time controller consist-
ing of an continuous-time inner loop and a discrete-time outer control loop [1, Ch. 7.5]. The
continuous-time controller (sometimes referred to as analogue controller) consists of the continuous-
time plant, GC(s), the continuous-time feedback filter HC(s). The digital to analogue converter
TDAC(s) in cascade with the reconstruction filter TRF (s), the analogue controller, the anti-
aliasing filter TAAF (s) and finally the analogue to digital converter TADC(s) constitute together
a physical plant denoted by g̃(z)2. As seen in Figure 4.1 the physical plant, g̃(z), is connected in
cascade with a plant correction filter, Ĉ(z). This plant correction filter (discussed in more details
in section 4.7 on page 245) is part of an adaptive inverse controller that is depicted in Figure 4.4
on page 247. The purpose of the adaptive inverse controller is to maintain the effective plant
experienced by the digital controller at some prescribed reference transfer function, g̃ref (z).

1The term hybrid is ambiguous as it is used within the active control (AC) community with different and
context dependent meanings. Hybrid may as here refer to the combination of continuous-time and discrete-time
controllers. In other contexts hybrid means a combination of feedback and feedforward control strategies (as in
chapter 6). Finally, the term hybrid sometimes refers to the combination of passive and active noise reduction
strategies.

2We will relax on notation and allow use of mixed domain representation of the various transfer functions
involved.
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In feedback control design a trade-off between noise suppression and stability will always exist.
By adaptively maintaining the effective plant at the prescribed frequency response or at least
reducing the variation from this level experienced during operation of the system we can effec-
tively reduce the controller margins normally enforced in a feedback design in order to ensure
robust stability. Hence, by reducing the requirement on stability margins the digital controller
can achieve a higher level of noise attenuation.
The adaptive inverse control will be pursued in more details in section 4.7.

The aim of combining continuous-time and discrete-time controllers can be found in [1, Ch. 7.5]
and summarized here:

HCTDTT 1. By using complementary advantages of a continuous-time controller and a discrete-
time controller better active noise reduction (ANR) performance can be achieved as compared
with either of the controllers operating alone. For stationary broad band noise signals a fixed
continuous-time controller may provide a cost effective solution. Therefore, by far most of the
ANR implementations for headsets hitherto have been based on pure analogue circuitry design.
For nonstationary disturbances, however, adaptivity becomes important. This functionality is
provided by an adaptive discrete-time controller. Inherent processing delays but also group
delays encountered in the anti-aliasing filter (AAF), analogue to digital converter (ADC), digital
to analogue converter (DAC) and reconstruction filter (RF) will limit the operational bandwidth
as explained in details in section A.3 on page 532. In a confined feedforward-feedback system as
presented in chapter 6 these delays, however, become less significant to the system performance.

HCTDTT 2. Reduction of impulse response time of plant g̃(z) due to the presence of the
continuous-time controller.

HCTDTT 3. Reduction of the variability of the plant response due to continuous-time feedback.
This reduction in plant uncertainty, however, is more important in systems that do apply adaptive
inverse control (AIC).

Hence, in principle the continuous-time controller is responsible for attenuation of stationary
broad band disturbances. This basically requires a relative smooth frequency response without
delays. The digital controller is responsible for suppression of any residual non-stationary de-
terministic (narrow band) noise signal not sufficiently attenuated by the action of the analogue
controller.

For testing purposes the analogue controller and the digital controller should both be able to
operate in stand-alone mode.
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This type of hybrid topology is also amendable to continuous-time feedback discrete-time feedforward-
feedback controller and to multiple-input and multiple-output (MIMO) cases as presented in
chapter 6 on page 273.

4.3 Continuous-Time Controller

The continuous-time controller is currently under development under a contract with Royal
Danish Air Force (RDAF) and will not be further detailed here.

4.4 Discrete-Time Controller

The HMIMOFFFBS will be presented in details in chapter 6.

4.5 Hybrid Feedforward-Feedback Control

The feedforward-feedback topology is illuminated in Figure 4.2 and detailed in chapter 6.

As stated in [1, Ch. 7] and also in [2, Ch. 6] by combining the advantages of feedback and
feedforward topologies a better active control performance can be achieved. The effective system
(plant) as seen from the adaptive feedforward controller is modified by the operation of a fixed
or adaptive feedback system. This can beneficial in the following ways:

FFFBS Pro.# 1. Provision of time-advanced information by the feedforward system (FFS) not
available to the stand alone feedback system. Accordingly the upper frequency of AC can be
increased (see section A.3 on page 532).

FFFBS Pro.# 2. Reduction of variability with time of effective plant response. This claim,
however, should be reconsidered if the feedback controller is adaptive.

FFFBS Pro.# 3. Reduction of amplitude in plant resonances rendering the system easier to be
controlled by the feedforward system.

FFFBS Pro.# 4. Reduction of convergence time in an adaptive feedforward system due to a
reduction in the effective transient response.

FFFBS Pro.# 5. The feedback system (FBS) can complement the operation of a stand alone
FFS that is dependent on the coherence function between the error sensors and the reference
sensors. Hence, even with the confined feedforward-feedback active control system (CFFFBACS)
topology the multiple coherence function will attain values less than unity at certain frequencies.
In a multiple source environment and in particular in a diffuse sound field spatial under sampling
will eventually take place with increasing frequency viz. (G.4.9) on page 714. Another potential
source of a nonunity multiple coherence function is the presence of nonlinearities and sensing
noise in feedforward system viz. section 2.2 on page 18. Moreover, in some ANC applications the
reference sensors might be exposed to very high sound pressure levels or vibration levels beyond
the linear dynamic range of these sensors. The error sensors, however, are often exposed to a
reduced sound pressure level (SPL) due to the passive attenuation provided by the system and
by the operation of the active controller.
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In such nonunity multiple coherence environment the feedback controller will the be responsi-
ble for attenuation of high-frequency noise components, but might also provide supplementary
attenuation in the lower and middle frequency range.

However, the following disadvantage is encountered:

FFFBS Con.# 1. Increase in system complexity.

In AC applications using adaptive filters a filtered-x (Fx) method is usually applied to compensate
for the group delay and frequency transfer function of the plant as explained in section 6.3 on
page 275. But when the effective plant seen from either of the feedback- or the feedforward-
controller is modified by the actions of the other controller which plant transfer function should
be invoked when applying the Fx. We will return to this issue in chapter 6 on page 273.
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ĝey

m′,t2
m′

dm(rm, t)

+

�̂
eΔw

ml
(t2m)

�
x′

j(t
1
j)

+

Fig. 4.2: Hybrid Feedforward-Feedback Controller.



244 4. System Description

4.6 Internal Model Control

The digital controller is based on an internal model control IMC architecture [3, Ch. 3] and [1,
Ch. 6-7] depicted in Figure 4.3. The IMC architecture is used to transform the adaptive filter
feedback topology into an apparent feedforward topology. The main advantages of implementing
the IMC model in a feedback system is that the system then is guaranteed to be stable provided
that the plant model is sufficiently accurate, that is, ˆ̃g(z) ≈ g̃(z).

As stated in [1, Ch. 6-7] the adaptive filter weights are able to compensate for small deviations
in the plant model. However, as the filtered-reference signal is obtained by filtering the reference
signal by a model of a plant response and not the plant response itself the gradient estimates
will become more noisy with increasing level of plant modeling error. As a consequence the
adaptive process will converge to a non-optimal point and the estimate can no longer be assumed
unbiased. The elements in the weight-error covariance matrix are similarly increased from their
values obtained under the assumption of a perfect plant model.

A point of more concern in connection with an imperfect plant model is that the feedback system
will not be perfectly transformed into a FFS. Hence, a residual level of feedback will remain. A
loop gain, l̃(z), around the control filter that is proportional to the plant error, Δg̃(z) will exist

l̃(z) = Δg̃(z)w̃(z). (4.6.1)
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ẙ

ĝy
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As a consequence the system may be become unstable. Moreover, as the discrete-time adaptive
controller during the adaptation process involves a convergence along a noisy error curve this
only increases the sensitivity of the system to such imperfect plant modeling. Therefore, an
otherwise stable system might transverse into an unstable region during adaptation.

A plant identification procedure must therefore be invoked in order to avoid problems associated
with an imperfect plant model described above. The plant identification should be repeated
on a regular basis depending on practical experiences with the time interval between succes-
sive changes of plant response functions. Alternatively, an adaptive inverse controller can be
used to reduce the excursion made by the system from the nominal frequency response curve.
As explained in more details in section 4.7 the adaptive inverse control also requires system
identification from time to time.

Finally, it should be remarked that the IMC controller involving two adaptive processes namely
for plant identification and for control filter adjustment respectively including feedback loops
poses great analytical challenges.

4.7 Adaptive Inverse Plant Correction

The concept of AIC was proposed by Widrow and Walach as a method to achieve adaptive control
of unknown and possible time-varying systems by using adaptive filters. The objective of the
plant correction transfer function Ĉ(z) is in cascade with the actual plant transfer function
P (z) to obtain a plant that seen from the digital controller equals the transfer function of a
predetermined Pref (z) reference plant transfer function. Hence,

Pref (z) = Ĉ(z)P (z). (4.7.1)

Such construction is referred to as model-reference control. The principle of AIC is illustrated in
Figure 4.4 on page 247. The estimated plant correction, Ĉ, is obtained using available control
input. The adaptive process for obtaining Ĉ(z) will always be lagging behind that for obtaining
P (z). To allow the adaptive process for Ĉ(z) to keep up with the changes in P̂ (z) without lag
an offline system identification process could be used [4, Ch. 5]. Moreover, by using white or
colored noise in an offline system identification process the sensitivity to nonstationarity and
insufficient spectral excitation in the control output signal can be avoided.

The dither scheme C in [4] is used for plant identification. Other configurations offering different
functionality and at various degree of complexity can be found in [4].

The purpose of introducing the AIC in an active control of sound and vibration (ACSV) system for
secondary path correction is twofold. Firstly, and as already argued in section 4.2 the adaptive
inverse controller can improve noise cancelation capabilities by relaxing requirements on stability
margins. Conversely, for the same ANR attenuation performance the system can be made more
tolerant to changes in the secondary path. However, it must be recalled that the stability analysis
is difficult due to the presence of (1) an inner loop constituted by the feedback controller, (2)
an outer loop in the adaptive filtering. Moreover, on-line addition of identification noise further
complicates the analysis. Secondly, the adaptive filtering process employing one kind of the Fx

method or the filtered-error (Fe) method discussed in section 6.3 - 6.4 involves filtering of the
disturbance with an estimated plant response. Then if this plant response is subject to control
the level of gradient bias will be reduced. The gradient based adaptive filters will be introduced
in chapter 8 of this report. Moreover, the loop gain l̃(z) in (4.6.1) can be reduced. In adaptive
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inverse control a potential risk of obtaining a biased plant response estimate from using an
insufficient number of tap-weights exists. However, as demonstrated in [4, Ch. 7] the adaptive
inverse control scheme C proves to be rather insensitive to possible truncation effects associated
with the choice of MP̂ and MĈ corresponding to the number of tap-weights used in model of
P̂ (z) and Ĉ(z) respectively.

The price to be paid for the integration of an AIC is additional system complexity and processing
delays, but also group delay in Ĉ(z).
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Finally is should be mentioned that the AIC benefits from feedforward-feedback integrated com-
munication on-line system identification system (FFFBICIDS) topology presented in section 7.6
on page 326 providing time-advanced communication signal. The AIC system using the model
reference involves an inverse of the model-reference plant transfer function [4, Ch. 5]. How-
ever, the plant is usually nonminimum-phase. In a causal system the model-reference plant will
consequently also be nonminimum phase. However, as is well known inverse of a nonminimum-
phase transfer function is unstable although causal. Instead a noncausal expansion of the inverse
should be made and the noncausal terms discarded which in turn leads to truncation effects and
performance degradation. Now if the communication signal is time-advanced by, say Δ samples
the number of terms discarded will decrease by Δ thereby improving the accuracy of the inverse
model-reference plant.
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5. MULTIRATE SYSTEMS

5.1 Introduction

Multirate signal processing is the branch of signal processing that deals with concepts, algorithms,
and architectures that embed sample rate changes at one or more sites in the signal flow path.
The ability to process signals at multiple sampling rates has made it possible to reduce costs
and improve performance in applications ranging from signal compression to wireless systems,
consumer entertainment products, laboratory instruments, cable modems and sensor networks.
Moreover, many systems have a sampled-data structure which is necessarily multirate to fit in
with the use of different data buses and digital sensors and actuators. Such systems therefore
lend themselves to multirate implementations. Accordingly the field of multirate signal processing
has witnessed a great deal of progress and an increasingly wide range of applications since the
publication of the first textbook by Crochiere and Rabiner [1983] [6].

5.1.1 Chapter Outline

Following this introduction a review of some application fields of multi-rate systems (MRSs) is
provided in section 5.2. Subsequently the theme of section 5.3 and section 5.4 is the processing
stages involved in sensing signals and actuating signals respectively. A general multirate sys-
tem scheme for active control of sound and vibration (ACSV) applications is developed. This
system involves three different sampling rates for maximum trade-off between different design
constraints. Moreover, the system is formulated in general ACSV context of a general hybrid
MIMO feedforward-feedback system (HMIMOFFFBS). In section 5.5 a decomposition of the total
group delay into individual group delays is carried out. A practical example of group delays
versus sampling frequencies encountered in a MRS is provided. Appendix 5.A is reserved for
more detailed information on group delays and phase delays.

5.2 Multirate System Applications

In the traditional DSP perspective, the sample rate is selected to satisfy the Nyquist criterion but
is otherwise incidental to the problem. In multirate signal processing, selection and modification
of the sample rate are primary considerations and options in the signal processing chain. Another
application of multirate systems is in realizing convolution algorithms with a reduced average
number of multiplications per output sample with some compromise in the average number of
additions per output sample [24]. In [9] a multirate architecture based on multirate subsystems
for such reduced multiplicative complexity is proposed.

In the control community multirate controllers have been used since the late 1950s. The overall
objective is to take into account that a system may involve multiple actuators operating at
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different bandwidths. Hence instead of designing a single-rate system that operates at the
highest sample rate required by the high bandwidth loops, a multirate control system where
different and bandwidth-dependent update rates should be considered as an alternative solution.

Usually we refer to either continuous-time or discrete-time systems. However, in between an
important class of so-called sampled-data control systems (SDCSs) exists. Systems involving
nonconventional sampling like multirate and/or nonsynchronous sampling belong to this class.
In SDCSs the times of input stimuli, state evaluation and output acquisition do not necessarily
coincide. In [1] a block multirate input-output (BMIO) and control design methodology for such
systems is presented. Matrix relations between controllability, observability, and impulse response
matrices, and those formed by transfer function coefficients are established.

An example of an everyday application of multirate control is found in personal computers (PCs).
Modern magnetic hard disc drive (HDD) storage technology often employ multirate techniques for
head positioning control. The ever increasing capacity densities implies that the control engineer
faces a similar increase in the requirement on estimation accuracy and robustness to parameter
uncertainty and unmodelled dynamics. Typically, for HDD control the measurement sampling
frequency is limited while a higher control input update rate is used for smoother control input
and wider control bandwidth. In [7, 12] it is demonstrated that the multirate implementations
achieve regulation performance of the position error signal at about the same level of the single-
rate implementation while realizing significant computation saving. A more elaborate multirate
control scheme including proportional integral and discontinuous error feedback is proposed in
[14]. It was experimentally verified that this seeking control scheme effectively reduces the level
of unwanted chattering.

Multirate solutions have also been considered within the ultrasound community. Owing to the
short wavelengths the characterization of a transducer for ultrasonic measurement usually in-
volves a large number of field points in order to satisfy Nyquist sampling criterion. In [16] a
multirate algorithm is developed in which the discretization of the velocity potential occurs at a
variable sampling rate, based specifically on the spatial coordinate. The complex acoustic sound
pressure is determined from this nonuniformly sampled field and the computational savings of
this zoom FFT technique was of the order of a factor 15 to 30.

In some applications, for instance, photonics, it may be expensive or even impossible to build a
measurement sensor with high enough sampling rate. In such cases the signal characteristics like
the power spectral density (PSD) is not directly obtainable but might instead be determined by
merging the information contained in a set of low-rate measurements. By considering a multirate
observer or multirate sensor system that outputs low-rate measurements of an unobservable
signal and by using the principle of maximum entropy (ME) Jahromi, Francis, and Kwong [11]
showed that now a unique solution for the PSD can determined. Some work on existence and
stability, however, remains. Other applications fields for such multirate sensor systems include
radar, remote sensing and sensor networks.

In many signal processing applications a reduction in the computational complexity is required
especially whenever finite-duration impulse response (FIR) filters of high order are used. This can
be accomplished by using multirate adaptive filters where the adaptive processing is performed
at a lower rate than the incoming rate. Both multirate time-domain adaptive filters (TDAFs)
and multirate frequency-domain adaptive filters (FDAFs) are at our disposition. The TDAF based
multirate system for active control (AC) to be presented next ensures shortest possible group
delays while trying to balance requirements on computational savings and tracking capabilities to
nonstationary data. Two classes of FDAF employing different frequency-domain-transformation
exist. One class of FDAF use subband filtering techniques where the signals are filtered be a set
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of filter banks [20, Ch. 5]. In subband adaptive filtering the input data are first processed by a
bank of narrow-band bandpass filters, that are approximately nonoverlapping. The transformed
signals are then decimated by a factor that depends on the degree of aliasing that can be tolerated,
resulting in computational savings. The other class of FDAF utilizes that efficient convolution
(linear or circular) is provided by the discrete Fourier transform (DFT). The advantage of FDAF is
in terms of the parallel configuration that often result in faster convergence rates than the time-
domain counterparts and they are more amenable to hardware implementations. However, as
the tap weights are frozen while a block of data is accumulated this might compromise tracking
capabilities. Moreover, in AC the effective group delay accompanied by this blocking process
might reduce the bandwidth of the system. An overview of several FDAFs is presented by Shynk
[19].

To the author’s best knowledge only a few records on multirate solutions to active noise control
(ANC) problems can be found in the open literature. Brammer, Pan, and Crabtree [4] proposed
a dual-rate system for helicopter active noise reduction (ANR) headsets [25]. Bai, Lin, and Lai
[2] investigated a fixed digital dual-rate system for a duct application. An oversampling factor of
8 (2/16 kHz) was used leading to a reduction in the delays in the analogue to digital converter
(ADC), digital to analogue converter (DAC) and computation delays together with avoidance of
an analogue low-pass filter. Such reduction in electrical delays is discussed in section A.3 lead to
an increased bandwidth and/or to a more physically compact system.

In section 5.3 and section 5.4 a general multirate system scheme for ACSV applications is de-
scribed. This system involves three different sampling rates for maximum trade-off between
different design constraints. Moreover, the system is formulated in a general ACSV context of
a HMIMOFFFBS. The details for multirate implementation in a HMIMOFFFBS, however, is post-
poned until chapter 6.

In section A.3 we appreciate how delays in the discrete-time part of the plants may compromise
the performance of an AC system. This pertains both to feedback systems and to feedforward
systems.

The novel general multirate (triple-rate) system for ACSV applications that is based on TDAF

will demonstrate the following advantages:

1. By using a very fast system (zeroth level) sampling frequency almost negligible conversion
delays are obtained viz. Table 5.1 on page 266.

2. Active control is conducted at a slower downsampled (first level) speed which, however,
is still largely oversampled compared with the operational bandwidth of the system. The
one sample control output delay viz Table 5.1 is therefore small while preserving the com-
putational effort required for the generation of the control output signals at an acceptable
level.

3. Tap-weight adaptation takes place at an even slower downsampled (second level) speed.
This sampling frequency is selected as a compromise between the computational burden
involved in the adaptive tap-weight updates and the requirement on fast update rates
to ensure fast convergence and tracking capabilities to nonstationary signals. Moreover,
by limiting the bandwidth subject to adaptive control well below the full frequency span
corresponding to the highest sampling frequency, potential problems of large eigenvalue
spread and poor frequency resolution leading to poor tap-weight convergence rates can be
alleviated. Furthermore, instead of operating at the highest sample rates but by restricting
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the bandwidth of adaptive control the corresponding requirement of very long FIR filters
for adaptive tap-weights and plant representation can be avoided.

4. By enforcing some reasonable constraints the multirate system can be employed in a
HMIMOFFFBS.

5.3 Sensed Signals

In the active noise control system (ANCS) signals are sensed by the reference sensors, error
sensors and possible performance sensors. The aim in this section is to describe the different
stages involved in the sensing process at these sensors. The process of sensing for the case of an
error sensor is depicted in Figure 5.1 on the facing page. Reference and performance signals are
processed in similar way.

In the following we let ψ(rm, t) represent an arbitrary scalar-valued continuous-time random
signal at position rm in space of the m-th error sensor at time t. The error signal will always
include both the disturbance and the rejection signal provided that the ANR system is switched
on. There is no provision of separating the disturbance and reference signals. Only estimates
of these signal quantities can be made. Similarly, the reference signals could also be subject to
contamination of rejection signals due to undesired feedback.

The sensors will transduce some physical continuous-time and spatially-distributed quantity into
an equivalent electrical signal represented here by ψM

m (t). For example, if we use a microphone
as error sensor we could use the pressure distribution over the membrane as reference. This
analogue, possibly noisy, nonlinear1 and also possibly time-variant transduction operation of the
sensor is represented by the function Mm(Am, t)

ψM
m (t)

Mm(Am,t)←−−−−−−− ψm(rm, t), t ∈ R+, (5.3.1)

where ψM
m (t) denotes the transduced m-th error signal at time t. The system time starts at

t0 = 0.

The system might be constituted from different sensor front-ends among the reference sensors,
error sensors and performance sensors, but also among these types of sensors themselves. Hence,
in general for m1 �= m2, j1 �= j2 and k1 �= k2, we have

Mm1 �=Mm2 �=Mj1 �=Mj2 �=Mk1 �=Mk2 , m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, k1, k2 ∈ ¯
Np. (5.3.2)

The quantity Am denotes the amplitude of a physical parameter, e.g., an instantaneous sound
pressure p(t) measured at the m-th error microphone2. Typically, signal preamplification and
conditioning will take place here.

The discrete-time controller operates on sampled (in time) signals. Moreover, the signals will be
quantized in amplitude level due to a finite number of bits in the ADC NADC . The sampling

1Nonlinearities are difficult to model in general. The specific nonlinearity should be properly accounted for.
2A complete model of a sensor would involve many parameters omitted here for simplicity.
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operation that also involves a sample and hold operation is represented by the (time-independent)
Sm( · ) sampling function. By ψS

m(t0m) we will refer to the sampled m-th error signal

ψS
m(t0m)

Sm(F 0
m(ıω),f0

s,m,NADC,m)
←−−−−−−−−−−−−−−−−− ψM

m (
]
(t0m − 1)T 0

m; t0mT 0
m

]
), t0m ∈ N, (5.3.3)

where t0m is the sample index, f0
s,m is the sampling frequency which is the reciprocal of the

sampling period T 0
m (T 0

m � 1/f0
s,m). The superscript 0 refers to the 0th multirate level. The

semi-open interval
]
(t0m − 1)T 0

m; t0mT 0
m

]
represents the time interval from the previous sampling

operation to the current sampling time. In the present case involving oversampled A/D con-
version [15, Ch. 4.8] Sm includes a simple continuous-time anti-aliasing filter (AAF) F 0

m(ıω) .
Sometimes the sensor transduction Mm itself might provide sufficient high-frequency attenua-
tion to avoid aliasing problems. Nevertheless, because of the possibility of high-frequency noise
in the sensing system and the severe consequences of aliasing, it is recommended that analog
low-pass filtering be performed on all sensors prior to the analog-to-digital conversion, no matter
how high the sampling rate.

The clock generator that is responsible for f0
s is usually implemented in hardware in order to avoid

performance loss and instability problems associated with sampling jitter due to variable-length
loops. All reference sensors and error sensors will use the same system clock. The performance
sensors, however, do not partake in the control and may use their own system clock. Hence, in
general

f0
s,m1

= f0
s,m2

= f0
s,j1 = f0

s,j2 �= f0
s,k1

= f0
s,k2

, m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, k1, k2 ∈ ¯
Np.
(5.3.4)

The same considerations apply to the number of conversion bits NADC . Following the discus-
sion in section N.3 on page 803 different requirements on the AAFs function among the reference
sensors, error sensors and performance sensors exist, but not among these types of sensors them-
selves. Hence, in general

F 0
m1

(ıω) = F 0
m2

(ıω) �= F 0
j1(ıω) = F 0

j2 (ıω) �= F 0
k1

(ıω) = F 0
k2

(ıω),

m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, k1, k2 ∈ ¯
Np. (5.3.5)

and accordingly

Sm1 = Sm2 �= Sj1 = Sj2 �= Sk1 = Sk2 , m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, k1, k2 ∈ ¯
Np. (5.3.6)

It should be recalled that in a single-rate ACSV application ψS
m(t0m) is used both for control

and control weight adaptation. However, a multirate system involves discrete-time signals at
different sampling rates. In order to comply with computational constraints control will take
place at the reduced sampling frequency f1

s,m with corresponding sampling period T 1
m � 1/f1

s,m.
The superscript 1 refers to the 1st multirate level where a sample index t1m will be used.

As depicted in Figure 5.1 this input sampling rate shift is accomplished by the time-independent
resampling function D1

m( · ) that in turn takes three arguments. The first argument is the discrete-
time decimation interpolation filter (DIF) F 1

m(eıθ) . The second and third arguments are the
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downsampling factor in resampling M1
↓,m and the upsampling factor in resampling L1

↑,m that

together determine the resampling factor R1
�,m according to R1

�,m � f1
s,m

f0
s,m

= L1
↑,m

M1
↓,m

. Hence R1
�,m

is a rational number (R1
�,m ∈ Q).

We may then write

ψD1

m (t1m)
D1

m(F 1
m(eıθ),M1

↓,m,L1
↑,m)

←−−−−−−−−−−−−−−−− ψS
m(t0m), t1m ∈ N, (5.3.7)

where ψD1

m (t1m) denotes the resampled (1st level) m-th error signal at sample index t1m.

For computational efficiency a polyphase implementation of the DIF which for our application
is a low-pass filter (LPF) is employed [21, Ch. 4], [22]. The concept of polyphase was devel-
oped by Bellanger, Bonnerot, and Coudreuse [3] and Vary [23]. The basic idea of the polyphase
implementation is to commute the filtering operation to a low sampling rate whereby the com-
putational efficiency is achieved. The polyphase technique work well for reasonable sample rate
changes, but not for very large decimation or interpolation factors.

Multistage decimators and interpolators were introduced by Rabiner and Crochiere [17] [5]. It
was demonstrated that multistage implementation can lead to a greatly reduced number of
multiplications per second in the realization over standard direct form implementations. An
efficient method for general sampling conversion by a rational number as opposed to an integer
number was devised by Hsiao [10]. Murakami [13] proposed a cyclic sampling rate conversion
system by a rational factor that due to the inherent DFT is computational more efficient than
the polyphase implementation when the filter length is large. Ramstad [18] presented filtering
methods for interfacing time-discrete systems with different sampling frequencies. The methods
developed are applicable for sampling rate conversion between any two sampling frequencies. For
the ANR application we will use the ordinary polyphase implementation for integer decimation
or integer interpolation [21, Ch. 4]. For sampling conversion by a rational number the scheme
by Hsiao will be used as only small rational resampling ratios are considered.

In order to achieve a high degree of flexibility and to reduce the computational burden different
sampling rates might be used at the error sensors and reference sensors. This could, for instance,
allow us to operate the feedforward and feedback controllers in a hybrid continuous-time discrete-
time topology (HCTDTT) at different speeds. However, in order to reduce the complexity of the
multirate system feedforward and feedback control will operate at the same sampling frequency.
Moreover, as already mentioned the performance sensors do not partake in the control and may
use their own sampling rates. Hence,

f1
s,m1

= f1
s,m2

= f1
s,j1 = f1

s,j2 �= f1
s,k1

= f1
s,k2

, m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, k1, k2 ∈ ¯
Np.
(5.3.8)

The constraints on the sampling frequencies (5.3.8) therefore also apply to the resampling func-
tions. Hence, in general

D1
m1

= D1
m2

= D1
j1 = D1

j2 �= D
1
k1

= D1
k2

, m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, k1, k2 ∈ ¯
Np. (5.3.9)

Similar considerations therefore also apply to F 1
m(eıθ), M1

↓,m and L1
↑,m.

Adaptation of the tap-weights in control filters takes place at a lower sampling frequency f2
s,m
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with corresponding sampling period T 2
m � 1/f2

s,m. The superscript 2 refers to the 2nd multirate
level where a sample index t2m will be used. The second level of input sampling rate in the
multirate system is as depicted in Figure 5.1 accomplished by the time-independent resampling
function D2

m( · ) that takes arguments F 2
m(eıθ), M2

↓,m and L2
↑,m similar to D1

m( · ) and the R2
�,m �

f2
s,m

f1
s,m

=
L2

↑,m

M2
↓,m

is defined as resampling factor (2nd level).

Formally, we then write

ψD2

m (t2m)
D2

m(F 2
m(eıθ),M2

↓,m,L2
↑,m)

←−−−−−−−−−−−−−−−− ψD1

m (t1m), t1m, t2m ∈ N, (5.3.10)

where ψD2

m (t2m) denotes the resampled (2nd level) m-th error signal at sample index t2m.

The remarks made above concerning the benefits of operating the feedforward and feedback
controllers in a HCTDTT at different speeds also apply to the adaptive part. But, again in
order not to increase the complexity of the multirate system further feedforward- and feedback
adaptive control will operate at the same sampling frequency. We therefore enforce the following
constraints on the second level sampling frequencies

f2
s,m1

= f2
s,m2

= f2
s,j1 = f2

s,j2 �= f2
s,k1

= f2
s,k2

, m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, k1, k2 ∈ ¯
Np.
(5.3.11)

The constraints on the sampling frequencies (5.3.11) therefore also apply to the resampling
functions. Hence, in general

D2
m1

= D2
m2

= D2
j1 = D2

j2 �= D
2
k1

= D2
k2

, m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, k1, k2 ∈ ¯
Np. (5.3.12)

Similar considerations therefore also apply to F 2
m(eıθ), M2

↓,m and L2
↑,m.

A single rate system can easily be configured by selecting unity for the up- and downsampling
factors and by omitting the DIFs

F 1
m(eıθ) = F 2

m(eıθ) = F 1
j (eıθ) = F 2

j (eıθ) = F 1
k (eıθ) = F 2

k (eıθ) = 1, θ ∈ [−π, π] (5.3.13)

and

M1
↓,m = L1

↑,m = M2
↓,m = L2

↑,m = 1, m ∈
¯
Ne, (5.3.14a)

M1
↓,j = L1

↑,j = M2
↓,j = L2

↑,j = 1, j ∈
¯
Nx, (5.3.14b)

M1
↓,k = L1

↑,k = M2
↓,k = L2

↑,k = 1, k ∈
¯
Np. (5.3.14c)

In this case the time indices coincide (t0m = t1m = t2m) and the same applies to the sensed signals,
that is, ψS

m = ψD1

m = ψD2

m .

In Part III we will replace the sample index t2m by the iteration index i as it is customary in the
literature on adaptive filtering, that is,

ψD2

m (t2m) −→ ψm(i) −→ ψ(i), (5.3.15)
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where ψm(i) � ψD2

m (t2m) also represents the m-th error signal at sample index i. We may also as
indicated suppress the sensor index for notational convenience.

Referring to Figure 5.1 the collective effects of Mm( · ) and Sm( · ) constitute the receiver (0th

level) part of plants
�

gm
t0m

. The cascade-coupling of
�

gm
t0m

and D1
m( · ) is the receiver (1st level) part

of plants
�

gm
t1m

. Finally, the cascade-coupling of
�

gm
t1m

and D2
m( · ) in turn constitutes the receiver

(2nd level) part of plants denoted by
�

gm
t2m

. The time-independent function D2
m( · ) will also be

referred to as receiver (down conversion) part of plants involving the m’th error sensor
�

gm
↓ . The

receiver part of a plant will be subject to further discussions in chapter 6 on page 273.

5.4 Actuated Signals

In the ANCS control output signals are actuated by the controllers. The aim in this section is to
describe the different stages involved in the process actuating as illuminated in Figure 5.2.

As depicted in the bottom of Figure 5.2 provision is made for upsampling of some discrete-time
low-frequency signal represented by l-th control output signal ψl(j) � ψU2

l (t2l ).

Let f2
s,l represent sampling frequency with corresponding sampling period T 2

l � 1/f2
s,l. The

superscript 2 refers to the 2nd multirate level where a sample index t2l will be used.

The first multirate level on both the input and output sides is reserved for the control output
generation. Accordingly we have the following constraints on the sample frequencies pertaining
to the error sensors, reference sensors and actuators for m1 �= m2, j1 �= j2 and l1 �= l2:

f1
s,m1

= f1
s,m2

= f1
s,j1 = f1

s,j2 = f1
s,l1 = f1

s,l2 , m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, l1, l2 ∈ ¯
Ny, (5.4.1)

where we by f1
s,l refer to the sampling frequency with corresponding sampling period T 1

l � 1/f1
s,l.

The superscript 1 refers to the 1st multirate level where a sample index t1l will be used.

The constraints in (5.4.1) also apply to the sample indices

t1m1
= t1m2

= t1j1 = t1j2 = t1l1 = t1l2 , m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, l1, l2 ∈ ¯
Ny. (5.4.2)

The transition from the second to the first level of output sampling rate in the multirate system is
as depicted in Figure 5.2 accomplished by the time-independent resampling function U2

l ( · ) that
takes arguments F 2

l (eıθ), M2
↓,l and L2

↑,l similar to D2
m( · ) defined in (5.3.10) on the preceding

page and R2
�,l � f1

s,l

f2
s,l

=
L2

↑,l

M2
↓,l

is the resampling factor (2nd level). Hence,

ψU1

l (t1l )
U2

l (F 2
l (eıθ),M2

↓,l,L
2
↑,l)←−−−−−−−−−−−−−− ψU2

l (t2l ), t1l , t
2
l ∈ N, (5.4.3)

where ψU1

l (t1l ) denotes the resampled (1st level) l-th control output signal at sample index t1l .

The conversion between the continuous-time and discrete-time part of the system takes place
at the zeroth multirate level on both the input and output sides. Accordingly we have the
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Ll(Al, t)

Sl(F 0
l (ıω), f0

s,l)

U1
l (F 1

l (eıθ), M1
↓,l, L

1
↑,l)

U2
l (F 2

l (eıθ), M2
↓,l, L

2
↑,l)

ψl(rl, t)

ψS
l (t)

ψU0

l (t0l )

ψU1

l (t1l )

ψU2

l (t2l )

ψl(j)

�

gl
t0l

�

gl
↑

�

gl
t1l

�

gl
t2l

Fig. 5.2: Plant Transmit Part
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following constraints on the sample frequencies pertaining to the error sensors, reference sensors
and actuators for m1 �= m2, j1 �= j2 and l1 �= l2:

f0
s,m1

= f0
s,m2

= f0
s,j1 = f0

s,j2 = f0
s,l1 = f0

s,l2 , m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, l1, l2 ∈ ¯
Ny. (5.4.4)

where we by f0
s,l refer to the sampling frequency with corresponding sampling period T 0

l � 1/f0
s,l.

The superscript 0 refers to the 0th multirate level where a sample index t0l will be used.

The constraints in (5.4.4) also apply to the sample indices

t0m1
= t0m2

= t0j1 = t0j2 = t0l1 = t0l2 , m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, l1, l2 ∈ ¯
Ny. (5.4.5)

Now in order to minimize conversion delays, we will as depicted in Figure 5.2 upsample ψU1

l (t1l ) to
the zeroth level of output sampling rate in the multirate system by means of the time-independent
resampling function U1

l ( · ) that takes arguments F 1
l (eıθ), M1

↓,l and L1
↑,l similar to D1

m( · ) defined

in (5.3.7) on page 255 and R1
�,l � f0

s,l

f1
s,l

= L1
↑,l

M1
↓,l

is defined as a resampling factor (1st level)

ψU0

l (t0l )
U1

l (F 1
l (eıθ),M1

↓,l,L
1
↑,l)←−−−−−−−−−−−−−− ψU1

l (t1l ), (5.4.6)

where ψU0

l (t0l ) denotes the resampled (0th level) l-th control output signal at sample index t0l .

The conversion from the discrete-time domain to the continuous-time domain is governed by the
hold function in DAC (0th order) represented by Hl(ıω) and by the reconstruction filter (RF)
(lowpass filter) represented by F 0

l (ıω) that smoothes the output from the DAC

ψS
l (t)

Sl(Hl(ıω),F 0
l (ıω),f0

s,l)←−−−−−−−−−−−−−− ψU0

l (t0l ), (5.4.7)

where Sl( · ) denotes the sampling function. The actuators will transduce an electrical signal
represented here by ψS

l (t) into some equivalent physical parameter (, e.g., sound pressure).
This analogue, possibly nonlinear and also possibly time-variant operation of the actuator is
represented by the function Lm(Al, t). The output is represented by scalar-valued continuous-
time signal ψ(rl, t) present at position rl in space at time t. The control output signal will
include both the rejection signal (provided that the ANR system switched on) and possibly a
control output signal

ψl(rl, t)
Lm(Al,t)←−−−−−− ψS

l (t). (5.4.8)

The quantity Al denotes the amplitude of physical parameter, e.g., an instantaneous voltage v(t)
applied to a loudspeaker3.

Referring to Figure 5.2 the collective effects of Ll( · ) and Sl( · ) constitute the transmitter (0th

level) part of plants �

gl
t0
l

. The cascade-coupling of �

gl
t0
l

and U1
l ( · ) is the transmitter (1st level) part

of plants �

gl
t1l

. Finally, the cascade-coupling of �

gl
t1l

and U2
l ( · ) in turn constitutes the transmitter

3A complete model of an actuator would involve many parameters omitted here for simplicity.
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(2nd level) part of plants denoted by �

gl
t2l

. The time-independent function U2
l ( · ) will also be

referred to as transmitter (up conversion) part of plants involving the l’th actuator �

gl
↑ . The

transmitter part of a plant will be subject to further discussions in chapter 6 on page 273.

5.5 Group Delays

5.5.1 Decomposition of Group Delays

The total group delay τg exhibited by a plant is obtained as the sum4 of the group delay from
transmitter part of plant �

τg, the group delay from propagation part of plant ∼
τg and the group

delay from receiver part of plant
�

τg
5, that is,

τg = �

τg + ∼
τg +

�

τg. (5.5.1)

In some cases it is useful to express the total group delay as the sum of the group delay τct
g and

τdt
g contributed by the continuous-time part and discrete-time part of the plant respectively:

τg = τct
g + τdt

g . (5.5.2)

In the design of the stand alone continuous-time controller or a continuous-time controller em-
ployed in the hybrid continuous-time discrete-time controller presented in section 4.5 on page 242
only the continuous-time part of the plant is considered.

The group delay caused by the discrete-time part of the system, however, can normally be
estimated using fairly reasonable arguments as will be explained in the subsequent text. Then
using (A.3.1), (A.3.2) in Appendix A on page 529 and (5.5.1) it can be assessed if an ANC-
system with sufficient low group delay can be synthesized. We may decompose the delays in the
continuous-time part of the plant by

τct
g = �

τg
ct + ∼

τg +
�

τg
ct, (5.5.3)

where �

τct
g denotes the group delay from transmitter part of the continuous-time part of plant

and
�

τct
g is the group delay from receiver part of the continuous-time part of plant.

These group delays in turn coincide with the group delay associated with transduction in the
transmitter part of the plant τL

g and group delay associated with transduction in the receiver
part of the plant τM

g respectively (see section 5.3 - 5.4), that is,

�

τct
g = τL

g (5.5.4a)
�

τct
g = τM

g . (5.5.4b)

4For a linear cascade-coupled system the magnitude and the phase of the resulting transfer functions is
obtained as the product and sum respectively of the individual system elements. Hence, the group delays and
phase delays are also obtained as a linear sum of the individual delays.

5Refer to subsection 7.2.1 on page 292 and subsection 7.3.1 on page 303.
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We may similarly break down the delays encountered in the discrete-time part of the system as

τdt
g = �

τg
dt + τw

g +
�

τg
dt, (5.5.5)

where �

τdt
g denotes the group delay from transmitter part of the discrete-time part of plant,

τw
g represents the group delay associated with the generation of the control output and

�

τdt
g is

the group delay from receiver part of the discrete-time part of plant. In our MRS described in
section 5.3 - 5.4 τw

g will coincide with the sampling period at the 1st multirate level, that is,
τw
g = 1/f1

s . Referring to section 5.4 the total group delay from transmitter part of the discrete-
time part of plant �

τdt,tot
g , is the sum of the group delays involved in the upsampling stages and

the sample and hold stage of the plant τU2

g , τU1

g , τH
g , that is,

�

τdt,tot
g = τU2

g + τU1

g + τH
g . (5.5.6)

The total group delay from receiver part of the discrete-time part of plant
�

τdt,tot
g consists of the

group delays involved in the sampling stage and downsampling stages of the plant τS
g , τD1

g , τD2

g

(see section 5.3 on page 252)

�

τdt,tot
g = τS

g + τD1

g + τD2

g . (5.5.7)

Now, the total transmit and receive group delay are pertinent to adaptive control. However,
the control loop itself does not involve the 2nd multirate level. Hence, for the assessment of the
attenuation capabilities of the ANCS it is �

τdt
g ,

�

τdt
g that are obtained from

�

τdt
g = τU1

g + τH
g (5.5.8)

and

�

τdt
g = τS

g + τD1

g (5.5.9)

respectively and not �

τdt,tot
g ,

�

τdt,tot
g that should be considered.

5.5.2 Examples of Group Delays

In the subsequent text we will present practical group delay decomposition results for the MRS

employed in the Terma Earcup Audio System installed on a Gentex HGU-55/P helmet.

Unlike the design in [2] where FIR filters are considered for decimation and interpolation, we will
use elliptic infinite-duration impulse response (IIR) filters due to their low group delay well below
the transition band. Moreover, we choose to use the same decimation filter (DF) and interpolation
filter (IF), that is, F1

m(eıθ) = F1
j (eıθ) = F1

l (eıθ) and F2
m(eıθ) = F2

j (eıθ) = F1
l (eıθ), m ∈

¯
Ne, j ∈

¯
Nx, l ∈

¯
Ny. The following emperically determined parameters are used: Elliptic LPF (fstop =

L↑
M↓

fs

2 , fpass = 11
12fstop, Apass = 2 dB, Astop = 40 dB).

In Simulation 5.5.1 - 5.5.2 on pages 262–263 the magnitude response and group delay for F1(eıθ)
are shown. The corresponding results for F2(eıθ) are shown in Simulation 5.5.3 - 5.5.4 on
pages 264–265.
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In Table 5.1 group delays for three different choice of sampling rate combinations, namely
(f0

s , f1
s , f2

s ) = (192, 48, 6) kHz, (192, 24, 3) kHz and (192, 12, 3) kHz are presented.

f0
s f1

s f2
s τS

g τD1
g τD2

g τw
g τU2

g τU1
g τH

g τdt
g

192 48 6 5.2 16.7 136 20.8 136 16.7 2.6 62
192 24 3 5.2 33.3 271 41.7 271 33.3 2.6 116
192 12 3 5.2 66.7 262 83.3 262 66.7 2.6 224

Tab. 5.1: Group Delay Decomposition, MRS, Terma Earcup Audio System, Gentex HGU-55/P helmet.
Sampling frequencies in kHz, delays in µs.

Owing to the close to unity ratio between fpass and fstop the group delays obtained here are
roughly one half the group delays predicted in [8, Ch. 10]. We find that the upsampling and
downsampling delays τU2

g , τU1

g , τD1

g and τD2

g may be approximated by

τU1

g = τD1

g ≈ 3.2
8f1

stop

(5.5.10a)

τU2

g = τD2

g ≈ 3.2
8f2

stop

. (5.5.10b)

These results should be compared with the group delays in a single-rate system (SRS) as listed
in Table 5.2

fs τS
g τw

g τH
g τdt

g

192 5.2 5.2 2.6 13.0
48 20.8 20.8 10.4 52.0
24 41.7 41.7 20.8 104
12 83.3 83.3 41.7 208
6 167 167 83.3 416

Tab. 5.2: Group Delay Decomposition, Terma Earcup Audio System, Gentex HGU-55/P helmet. Sam-
pling frequency in kHz, delays in µs.

From a system identification to be carried out in section 11.5 on page 489, however, we will
indeed see that τct

g and therefore also τg will exhibit considerably variation with the frequency.
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5.A Group and Phase Delays

In general an information bearing signal is characterized by a carrier frequency enveloped by some
modulating signal. This signal when transmitted through a media or some filter will experience
two related but different types of delays. The propagation delay of the carrier is determined by
the phase delay τp(ω) whereas the propagation delay of the envelope is determined by the group
delay τg(ω).

In audio system design the group delay is often used as a measure of the phase linearity of a
device. Since a phase delay occurs at the output of a filter, it is important to know if this phase
shift is linear with frequency. If the phase shift is nonlinear with frequency the output waveform
will be distorted.

The group delay is defined as the negative derivative of the phase shift versus frequency [2, Ch. 5]

τg(ω) � − d
dω

�H(ıω), (5.A.1)

where ω denotes the continuous-time angular frequency and H(ıω) is the transfer function. A
linear phase shift will result in a constant group delay, since the derivative of a linear function
is a constant.

The phase delay gives the time delay in seconds experienced by each sinusoidal component of
the input signal

τp(ω) � − 1
ω

�H(ıω). (5.A.2)

Similarly, in the discrete-time domain the group delay τg(θ) and the phase delay τp(θ) are defined
according to

τg(θ) � − d
dθ

�H(ıθ) (5.A.3)

and

τp(θ) � −1
θ
�H(ıθ), (5.A.4)
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where θ denotes the discrete-time angular frequency (θ ∈ [−π, π]).

The continuous-time and discrete-time angular frequencies are linked through the sampling pe-
riod T :

θ = ωT = 2πfT, (5.A.5)

where the sampling frequency ω is obtained as

ω = 2π/T. (5.A.6)

5.A.1 Anti-Aliasing and Decimation/Interpolation Filter Constraints

As a rule of thumb the following relation between the group delay and the number of filter poles
Np and the number of filter zeroes Nz

τg(f) ≈
{

NpT
8 ; 0 ≤ f � fstop; IIR filter,

NzT
2 ; 0 ≤ f ≤ fs/2; FIR filter

(5.A.7)

could be used, however, with some precautions as Tchebychev and elliptic filters exhibit large
group delays at fstop.

In ANC applications analogue filters are predominantly used for AAF and RF. Anti-imaging
functionality can also be obtain by digitally filtering the control output signals. Digital low-
order Butterworth filter (BWF) are often suitable as they provide a low-pass response with a
relative flat group delay characteristic. Such group delay can then initially be estimated from
(5.A.7).

The group delay involved in the sampling stage S(ıω) is

τS
g (f) = τS

g = T 0. (5.A.8)

Referring to the discussion in chapter 6 the output from the digital controller is first to the
disposition to the outside at the next iteration cycle. The digital controller therefore contributes
by a one sample delay. Hence, the associated group delay τw

g is then

τw
g (f) = τw

g = T 1. (5.A.9)

Most DACs have a built-in zero-order sample and hold device. Such devices increase the overall
phase corresponding to half a sample-time. Hence, the group delay of the zero-order sample and
hold device H(ıω) is then

τH
g (f) = τH

g =
T 0

2
. (5.A.10)

From the expressions for the group delay τw
g , τS

g (f) and τH
g all exhibit linear proportionality

with the common sample period T in a single-rate system. Hence, by doubling the sampling
frequency these group delays will all be halved. However, doubling the sampling frequency will
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approximately lead to a quadrupling of the computational requirements [1, Ch. 10]. A doubling
of the computational requirements occur since the time available has been halved. The second
doubling of the computational effort stems from the expressions involving the quantity Mmax

ĝl
y

involved in obtaining the filtered-reference signal. But now each plant model requires twice as
many tap-weight as before for the same amount of time represented by ĝey. Now by employing
MRS design we can maintain low values of τS

g and τH
g and to some extent also τw

g while preserving
a the computational effort at an acceptable level.

However, this argumentation only applies to the use of FIR filter representation of the plants.
The main problem with the FIR filter topology is that each tap-weight effectively only represents
a short fraction of time T = 1/fs of the full plant response. In Appendix I we will introduce
more computational efficient filter topologies that can represent the entire plant response for a
fixed number of tap-weights independent of the sampling frequency.

From a practical viewpoint we can use (5.A.11) presented next in order to estimate the collective
contributions to τct

g . If we make a system identification with a very high sampling frequency
(fs � fu) and defer from using AAFs and RFs then we obtain a plant estimate and therefore also
a group delay estimate from system identification τ̂SI

g

τ̂SI
g (f) = τH

g + τct
g (f) + τw

g . (5.A.11)

Then τct
g (f) can readily be obtained from (5.A.11) by subtraction of τH

g and τw
g using (5.A.10)

and (5.A.9).
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Part III

ADAPTIVE FILTERS FOR ACTIVE NOISE CONTROL





6. ADAPTIVE FILTERING FOR ACTIVE CONTROL OF SOUND AND
VIBRATION

6.1 Introduction

Before entering a more detailed description of the adaptive filtering processing schemes considered
in the subsequent chapters of this Part III some remarks, however, should be made in general
on the application of adaptive filtering algorithms to the domain of active control of sound and
vibration. This chapter establishes a link between the domain of control system to the domain
of adaptive filtering. The pertinent terminology will also be established.

The main body of the literature in the field of adaptive digital filtering exclusively consider purely
electrical problems that are characterized by the absence of a physical plant.

Briefly described for a digital controller the plant is defined as the transfer function between the
output of the adaptive filter and the sensed error signal. Hence, the plant in a pure electrical
system is constituted by the transformation from the sampled-time domain to the continuous-
time physical domain and back to the sampled-time domain. The plant therefore includes the
digital to analogue converter, reconstruction filter, anti-aliasing filter and analogue to digital
converter. However, in active control of sound or vibration systems a physical plant will inevitably
also be present. A more exhaustive description of the concept of a plant is provided in Part II
of this report.

Unfortunately, in practice the physical plant will be non-minimum phase due to propagation
delays and possibly exhibit non-linear behavior. Moreover, the physical plant is unknown and
in general time-varying and therefore repeatedly has to be identified. Therefore, as compared
with their purely electrical counterparts adaptive robust control of sound and vibration poses a
considerably amount of extra challenges to the designer.

If the plant response is not adopted then the ordinary least-mean-squares (LMS), normalized
LMS (NLMS) and recursive least-squares (RLS) algorithms described in chapter 8 will degrade in
performance in terms of a lower convergence rate, an increased residual power and will possibly
exhibit instability problems. The main problem arise due to the lack of synchronization between
the output y( · ) of the adaptive filter and the resulting error e( · ) due to the filtering and inherent
time-delays caused by the plant. In all of the adaptive filtering algorithm presented in chapter 8
the disturbance d( · ) is referred to a point coinciding with the output terminal of the adaptive
filter viz. Figure I.1 on page 731 in contrast to active control (AC) systems presented in chapter 7
on page 291.
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6.1.1 Chapter Outline

After this introduction some general remarks on the accommodation of the plants for adaptive
filters is made in section 6.2. Next the well-established filtered-reference signal method and
the more advanced variant hereof referred to as the modified filtered-reference signal method
used to accommodate the presence of a plant is described in section 6.3. Owing to the fast
convergence property of the modified filtered reference signal method this method will extensively
be used in the subsequent chapters. Next the theme of section 6.4 is the family of filtered-error
methods that provide cost effective alternatives to the modified-filtered-x (mFx) method which is
of particular importance in multiple-input and multiple-output (MIMO) systems. In AC acoustical
and structural feedback from the control output signals to the reference signals may present a
threat to the overall system performance. In section 6.5 the problem of acoustical and structural
feedback is detailed. Both the family of filtered-reference methods and the family of filtered-
error methods rely on estimates of the secondary pathes involved in the AC system. Accordingly
section 6.6 discusses the aspects of the system identification of these plants. Next in section 6.7
some discussions of the use of infinite-duration impulse response (IIR) filters for AC is made.
Finally, in section 6.8 some comments on the use of non-linear AC is made.

A review of the filtered-reference methods can be found in [19, Ch. 3] and [37, Ch. 3].

6.2 Accommodation of Plants for Adaptive Filters

Hitherto the physical plant has been accommodated in the adaptive filtering algorithms by
incorporating a model of the plant response. The stochastic gradient methods used for adaptive
filtering, e.g., the famous least-mean-squares are all based on instantaneously estimating the
local gradient of the ensemble-averaged error-surface with respect to the tap-weights. However,
in active noise control applications, the measured error stems from a control output signal that
is filtered by virtue of the presence of the plant. The same lack of alignment between the
measured error and the error used for tap-weight recursion also applies to the deterministic
(’exact’) methods.

The adaptive processing schemes discussed in the subsequent chapters of this Part III will all
apply an performance feedback scheme as discussed in section I.1. What basically differentiates
the methods presented in this chapter is the specific error signal used for tap-weight update
denoted here by eΔw( · ), the reference signal used for tap-weight update represented by uΔw( · )
and the tap-weight update time that we designate by iΔw( · ). Hence, we can generally write the
tap-weight adaptation process as ΔW(t2B, {uΔw}, {eΔw}), where t2B designates the block index
time that corresponds to the time where the tap-weight are updated. As will be detailed in
Appendix J in the literature it is customary to use wi−1, where i denotes the iteration number,
to signify that the error e(i) is an a priori error, that is, the error is calculated on the basis of
previous tap-weights [57]. Moreover, we also make provision for time-block update as presented
in Appendix J. For adaptive filtering not using block-time update the tap-weight update time is
identical to the previous iteration, that is, t2B = i− 1. In the general case the two iteration are
subject to t2B < i.

In the development we will address the ”plant-less” case as a special case for which the plant
response equals unity, that is, in the z-domain g̃(z) � 1. The plant-less control system will also
be identified as electrical control as opposed to acoustical/structural control system or just active
control system. If the adaptive filter (AF) is used in a plant-less case the measured error e( · ) and
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eΔw( · ) will coincide.

6.3 Family of Filtered-x Method

In the family of filtered reference methods the reference signal used for tap-weight update is
obtained from filtering the original reference signal with a model of the physical plant response.
Historically the input signal or reference signal has been denoted by x. Hence, the notation
filtered-x (Fx).

6.3.1 Ordinary Filtered-x Method

The fundamental assumption made in the ordinary filtered-x method is that the system is linear
and the tap-weights vary slowly, so that

wt2B
≈ wt2B−1 ≈ . . . ≈ wt2B−Mĝey +1, t2B < i (6.3.1)

holds. The filter order used to represent the secondary path is denoted by Mĝey . This assumption
of ”slow” adaptation means that the controller → plant response can be replaced by plant →
controller response [19, Ch. 3]. Strictly speaking, however, this interchange operation is only
valid in linear time-invariant(LTI) systems.

The applicability of this assumption will be dependent both on the adaptation rate and the
duration of the plant response. Therefore (6.3.1) will usually apply better for the least-mean-
squares than the recursive least-squares. For fast adaptation rates and long impulse responses
more advanced Fx-methods discussed in the subsequent sections will provide better performance.

In the Fx method the error signal eΔw used for tap-weight recursion will coincide with the
measured error

eΔw(i) = e(i). (6.3.2)

6.3.2 Modified Filtered-x Method

Although the filtered reference technique was originally developed for stochastic gradient based
methods it also works with algorithms with roots in deterministic problem formulation provided
that the adaptation rate is sufficiently slow [10, 29]. In order to extend the applicability of
the filtered-reference technique to situations were the enforcement on the requirement on a slow
adaptation (6.3.1) is prohibitive as may be the case with the recursive least-squares algorithm
the modified filtered reference approach abbreviated mFx has been invented [10, 29, 55].

Instead of using the measured error signal e(i) for tap-weight recursion it is arguable more
correct to use an estimate of what the error signal would have been provided that the tap-
weights had been frozen for a period corresponding to the impulse response of the plant. Then
eΔw(i) � e(i|wi′ = wt2B

), i′ = i−Mĝey , i−Mĝey +1, . . . , i−1. This error in turn is obtained by
superposing the disturbance estimate at time i d̂(i) and the cancelation signal estimate (frozen
filter) at time i r̂Δw(i) defined by r̂Δw(i) � r(i|wi′ = wt2B

), i′ = i−Mĝey , i−Mĝey +1, . . . , i−1
where Mĝey introduced in (6.3.1) denotes the order of the secondary path model.
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The details of the mFx technique will be revealed during the presentation of the multi-channel
feedback and feedforward systems in section 7.2 and section 7.3.

Finally, êΔw(i) is obtained from

êΔw(i) = d̂(i) + r̂Δw(i). (6.3.3)

This technique is also referred to as modified error algorithm [19]. A (minor) disadvantage of
the mFx method in general is associated with the additional calculation of d̂m(i) and r̂Δw

m (i). In
a feedback IMC configuration d̂m(i), however, should be determined anyway. The FxLMS requires
2

�

M +Mĝey or 2(
�
M +Mĝey) operations per update cycle in a feedforward implementation and in

a feedback IMC configuration respectively. For the same case the mFxLMS requires of the order
of 3

�

M + 2Mĝey respectively 3
�
M + 2Mĝey operations per cycle. For the ordinary (as opposed to

FAST) recursive least-squares the extra computational load of mFxRLS over the ordinary FxFx is
usually acceptable.

A major problem associated with the filtered-x technique is encountered in large multi-channel
applications [18] where computational difficulties arise. Moreover, the multi-channel filtered-x
LMS algorithm also suffers from excessive data storage requirements. In the literature other
methods have therefore been proposed to account for the presence of the plant. In [55] two vari-
ants of the mFx approach referred to as mFxLMS-1 and mFxLMS-2 respectively were presented.
The main advantages of applying the proposed mFxLMS-1 and mFxLMS-2 approaches are com-
putational and storage savings. The computational effort can be reduced from 3M + 2M l,m

ĝey
to

2(M + M l,m
ĝey

) while simultaneously reducing the requirement on storage from 3M + M l,m
ĝey

to

M + M l,m
ĝey

as compared with the ordinary mFxLMS technique. Moreover, in [55] conditions for
robustness and optimal choice of step-size parameter is derived.

Bibliographic Notes on Filtered Reference Techniques1

The analysis of the adaptive filters based on an instantaneous stochastic gradient estimation in
general is a very complicated task as treated in more detailed in chapter 8. Moreover, the presence
of a plant and the subsequent application of the filtered reference technique further complicates
the analysis even under the assumption of the availability of a perfect plant model. By invoking
an assumption of the input data to stem from a spherical invariant random process Bjarnason
[5] made a stochastic analysis of the convergence behavior and steady-state performance of the
FxLMS algorithm. The expressions governing the convergence/stability behavior and excess error
are quite involved and depends heavily on the plant response that commonly is modeled by a
FIR filter. Particular emphasis was given to simple delay systems.

The presence of the secondary path also has an impact on the optimal adaptation rates. It is well
known from LMS adaptive filter theory that the maximum adaptation coefficient is determined
by the eigenvalues of the signal and the filter length [57]. However, in AC the system operates
with delayed adaptation. As studied in details in [20], [42], [43] and [59] the maximum stable
value of the convergence coefficient is greatly influenced by the time delay that occurs between
a change in the digital filter and the change being reflected in the error signal. In [63] the AC

performance of a lightly damped structural single-input and single-output (SISO) feedforward

1This subsection provides supplementary bibliographic information on filtered reference techniques that, how-
ever, can be skipped on a first reading.
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FxLMS system was assessed with regards to final mean square error, speed of convergence and
excitation of unreferenced frequency components. By simply calculating the tap-weight update
each N sample and discarding the interim (N − 1) samples different update rates were obtained
from varying N . For this system it was found that by using every sample has the undesired effect
of greatly reducing the maximum stable value of the convergence speed. This in turn implied that
the weight updates were stucked by quantization effects. As a consequence better attenuation
figures could obtained be discarding 4 out of 5 samples. The time required to reach steady state
with optimized values of the adaptation coefficient was quite insensitive to the discardation of
input samples. The reason is that the use of larger adaptation coefficient counterbalanced for
the lack of interim tap-weight updates. During the adaptation process the filter will exhibit
time-variance and process the input nonlinearly. As a consequence the error signal is to some
degree heterodyned over the reference signal on its path to the signal output. From applications
involving adaptive notch filters it is well known that the bandwidth increases with adaptation rate
and the magnitude of the adaptation coefficient [31]. Consequently, it was found that by slowing
the adaptation rate can improve the system performance by reducing the level of excitation of
unreferenced signal components. The investigations in [63], however, were restricted to a specific
lightly damped system using ordinary FxLMS. Hence, the conclusions are not directly amendable
to broad band system using, e.g., mFxNLMS with floating point precision. On the other hand it
can indeed be stated that faster adaptation rates in general does not necessarily imply better
system performance.

The adaptive delay filter (ADF) has been developed for feedforward narrow band applications
where it suffice to iteratively to determine the gain and delay of the controller that in turn com-
pensates for the ratio of primary path to secondary path gain and difference in delays encountered
in the primary path and secondary path [36]. In applications involving a periodic noise that con-
tains several harmonics, multiple ADFs connected in parallel to form a cost-effective active noise
control (ANC) system has been proposed [36].

The influence of the eigenvalue contribution and the associated slow convergence speed of a
lightly damped system under using FxLMS has been analyzed [46] and is derived from computer
simulations in [60].

It should also be remarked that FxLMS and filtered-error (Fe)LMS find use in adaptive inverse
control (AIC) in order largely to reduce the dependence of the inverse controller C(z) on the
estimate of the plant gey [72, Ch. 7].

Suggested literature on the mFx method includes [2, 5, 6, 8, 13, 16, 17, 21–23, 25, 27, 33, 33, 38,
42, 44, 48, 50, 51, 54, 67] and [71, Ch. 8].

6.4 Family of Filtered-Error Method2

The family of FeLMS algorithms is widely used in MIMO ANC systems as an alternative to FxLMS to
reduce the computational complexity and memory requirements. As discussed in section 6.3 the
aim of the Fx- and mFx is to establish synchronization between the reference signal and the error
signal. Instead of filtering the reference signal with an estimate of the secondary path we could
filter the error signal by an error filter denoted by A(z). In the subsequent text two commonly
available FeLMS methods will be described; the adjoint LMS (ALMS) [69], [49] and the secondary

2The algorithms presented in this section are considered candidate methods for accommodating the plants
in a multiple-channel (MC)active noise control system (ANCS). However, these algorithms are currently not
implemented and the section can therefore be skipped on a first reading.
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path equalization (SPE) [45] [37, Sec. 3.3.3]. Next the hybrid Fe (HFe)LMS method introduced
recently [14] will be presented.

6.4.1 Adjoint LMS

The derivation of the FeLMS algorithm can be found in [19, Sec. 3.4.6, 5.4.2]. The error signal
eΔw used for tap-weight recursion is now obtained by causally filtering the measured error signal
using a time-reversed version of the estimated plant response. The update time iΔw has a time
lag of Mĝey − 1 samples compared with the current time i in order to ensure causality. The
reference signal used for the tap-weight update uΔw is an in time aligned version of x. Hence,

eΔw(i) =
Mĝey−1∑

j=0

ĝMĝey−1−je(i− j), (6.4.1)

uΔw
i = xi−Mĝey +1, iΔw = i−Mĝey + 1. (6.4.2)

Accordingly in the z-domain we may express the error filter in terms of the adjoint (time-reversed)
secondary path function as

A(z) = z−β ˜̂gey(z−1), (6.4.3)

where the delay number is determined from

β = Mĝey . (6.4.4)

A disadvantage of the FeLMS algorithm is the Mĝy − 1 delay introduced in (6.4.1) to (6.4.2) in
order to ensure causal filtered error operation. This further reduces the maximum convergence
speed as compared with the ordinary In [69] it is demonstrated that FxLMS and FeLMS algorithms
lead to similar active noise reduction (ANR) performance provided that the convergence rate is
sufficiently slow.

6.4.2 Secondary Path Equalization

The error filter in the SPELMS method is obtained from.

A(z) = {z−β ˜̂g−1
ey (z)}+, (6.4.5)

where the delay number is determined from

β = CMĝey,max + Mĝey,UC (6.4.6)

and C is a constant chosen as to approximate ˜̂g−1
ey (z).

eΔw(i) =
Mĝey−1∑

j=0

ĝMĝey−1−je(i− j), (6.4.7)



6.4. Family of Filtered-Error Method 279

uΔw
i = xi−Mĝey +1, iΔw = i−Mĝey + 1. (6.4.8)

The main disadvantages of the SPELMS method is that an error-weighting filter explicitly is
invoked viz. (6.4.5). Hence the SPELMS algorithm minimize the error filtered by ˜̂g−1

ey (z) rather
than the (unfiltered) error. As remarked in [37, Sec. 3.3.3] if there is a dip in ˜̂g−1

ey (ω) there will
be no content in eΔw(ω) at this frequency and the disturbance noise therefore left unattenuated.

6.4.3 Hybrid FeLMS

The FeLMS algorithms described above, however, introduce significant delays in updating the
adaptive filter coefficients that slow the convergence rate. Recently an algorithm called the
HFeLMS aimed at (1) increasing the convergence rate, (2) reducing the excess-mean-square error
(EMSE) and (3) shaping the excess noise power as compared with the ordinary FeLMS has been
introduced [14].

The central point in the development of the hybrid FeLMS (HFeLMS) technique is to exploit that
the system function of any finite-duration impulse response (FIR) linear phase system, say, H(z)
can be factored into a minimum-phase lag term Hmin(z) , a maximum-phase lag term Hmax(z)
and a delay term HUC(z) containing only zeros on the unit circle [47, ch. 5], that is,

H(z) = Hmin(z)HUC(z)Hmax(z). (6.4.9)

Moreover the HFeLMS technique relies on factorizing the error filter A(z) into parts related to the
ALMS- and SPE methods respectively according to the overall system objectives

A(z) = AALMS(z)ASPE(z), (6.4.10)

where the ALMS part of error filter in HFeLMS AALMS(z) is similarly defined by

AALMS(z) =
∏

i

z−βALMS
i ˜̂gey,i(z−1) (6.4.11)

and H(z−1) denotes the adjoint (time-reversed) transfer function of H(z),

and where SPE part of error filter in HFeLMS ASPE(z) is defined by

ASPE(z) =
∏

i

z−βSPE
i ˜̂g−1

ey,i(z). (6.4.12)

Now in order to reduce the delays due to the presence of a nonminimum secondary path as
far as possible the contribution from the minimum phase lag part should be addressed by the
SPE algorithm as the βSPE = 0 in this case. Accordingly ˜̂gey is divided as in (6.4.9) into
three parts. The error filter A(z) is chosen as the combination of the adjoint of the maximum
phase part (AALMS(z) = ˜̂gey,max(z−1)), the inverse of the minimum phase part and the delay
(ASPE,1(z) = z−βSPE

1 ˜̂gey,min(z), ASPE,2(z) = {z−βALMS
2 ˜̂gey,UC(z)}+) where βALMS

1 = Mĝey,max

and βSPE
1 = 0, βSPE

2 = CMĝey,min . Other design objectives are possible with this method [14].
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As regards computational load in a MIMO system the HFeLMS will be in favor of mFx. Unfortu-
nately no comparison with the mFx was conducted in [14]. For the practical use in a ANR-system
where requirements on system identification of the secondary paths usually exist, a method auto-
matically to factorize ˜̂gey must be found. The inverse of a transfer function is readily obtainable
using adaptive filtering techniques, e.g., [72, Ch. 5]. Although as reported in [14] the ALMS and
FxLMS exhibit similar convergence performance for a simple secondary path (Mĝey = 6), it is an
open question whether this statement also applies when the notorious slow-converging LMS is
replaced by one of the so-called fast algorithms, e.g., fast array recursive least-squares (FARLS)
in particular for secondary paths with a large nonminimum-phase lag part is doubtful3.

6.5 Solutions to Acoustic or Structural Feedback

In feedforward ANC applications and in particular the duct ANR systems the control output
signals might contaminate the reference sensors thereby formally transferring the feedforward
system into a feedback system. It has been found from theory and confirmed by experimental
investigations that the acoustical feedback significantly complicates the control design and de-
grades the performance and stability of the active control system. In fact the feedback path gxy

turns an else stationary (in some sense) reference signal x(t) into a nonstationary reference signal
x′(t) during tap-weight adaptation and presents a source of instability.

By introducing close-loop poles to the system the feedback path might have a destabilizing effect
on the ANC system if the feedback loop gain becomes too large. In addition, it changes the direc-
tion of the adaptive control filter updating. Since the primary noise is highly correlated with the
anti-noise and therefore also the feedback signals, the adaptation of the feedback neutralization
filter must be inhibited when the ANC system is in operation [28].

Simple steady-state analysis of a SISO feedforward ANR-system we can express the transformed
error ẽ(z) as

ẽ(z) = g̃ex(z)x̃′(z)− g̃ey(z)ỹ(z) (6.5.1)

= g̃ex(z)x̃′(z)− g̃ey(z) �̃

w(z)x̃′(z)

1−
�̃

w(z)x̃′(z)
. (6.5.2)

From [53] and [37, Ch. 3] we find the following expression for the optimal feedforward steady-state
tap-weights transfer function

�̃

wo(z) in SISO case (using our terminology)

�̃

wo(z) =
β(z)g̃ex(z)

g̃ey(z) + β(z)g̃ex(z)g̃xy(z)
, (6.5.3)

where

β(z) =
SNRx(z)

1 + SNRx(z)
(6.5.4)

and SNRx denotes the signal-to-noise ratio at the reference sensor.
3Information from [37, Ch. 3.7], [35, 68] to be included
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From (6.5.3) we see that when the open-loop phase-lag ∠β(eıω)g̃ex(eıω)g̃xy(eıω) reaches 180 degrees
while the open-loop gain |β(eıω)g̃ex(eıω)g̃xy(eıω)| is greater than unity instability occurs.

Some remedies to the feedback problem have been presented in the literature including the
use of directional microphones and loudspeakers, neutralization filter, dual microphone refer-
ence sensors, use of the FuLMS algorithm, nonacoustic sensors, motional feedback loudspeakers
etc. [37, Ch. 3]. The first adaptive feedback canceling architecture for AC was proposed by
Warnaka, Poole, and Tichy [70]. In this scheme, however, due to the operation of the ANR-
system the primary noise, that is, the reference signal is highly correlated with the feedback
signal.

Another technique to compensate for the acoustic or structural feedback is to use an adaptive
IIR filter [26].

Bai and Wu [4] applying modal matching and adopting Youla’s parameterizations [74] expressions
for the controller that guarantees internal stability of the closed loop system and minimizing with
the residual pressure with respect to either of the l1− or l2-norm was derived. In an industrial
duct setup the system was tested with various noise stimuli and the performance of the l1-
norm based optimization was compared with filtered-u (Fu)LMS method. Depending on the noise
excitation the proposed methods performed equally to FuLMS method, but exhibited transient
noise suppression capabilities as opposed to the FuLMS algorithm.

In a recent paper [1] an architecture involving a threefold of adaptive filters for on-line system
identification in an feedforward SISO ANR system is proposed.

6.6 System Identification: Plants

6.6.1 Motivation

Modern AC systems usually use plant estimates for various purposes. This also applies to the
rather complex hybrid MIMO feedforward-feedback system (HMIMOFFFBS) presented in chapter 7
on page 291. From section 6.3 - 6.4 we appreciate that both the family of filtered-reference
methods and the family of filtered-error methods rely on estimates of the secondary pathes
involved in the AC system. Moreover, in feedback system (FBS) design the internal model control
(IMC) technique (refer to section 4.6) is usually employed to cast the FBS to a feedforward
system (FFS). The IMC involves an estimate of the secondary path ĝey. Similarly, as discussed
in section 6.5 in FFS a feedback cancelation scheme that requires an estimate of the feedback
paths is used to compensate for the corruption by feedback from the actuators on the reference
sensors.

6.6.2 Performance

In [59, 61] an analysis of the effect of transfer function estimation errors on the FxLMS is provided.

The performance of the system identification process is determined by

SID 1. The number of tap-weights used to represent the theoretical infinite impulse response
function of the plant (Mĝ < ∞). Hence, Mĝ should be sufficiently large to contain almost the
entire energy content of the plant response function. On the other hand the covariance of the
error vector of a LMS-based adaptation scheme varies linearly with the number of tap-weights
[72, App. A].
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SID 2. Sufficient spectral excitation of the signal applied for system identification. Dither noise
may be used for persistent excitation However, the effect of dither noise will experienced at the
error sensors and most likely also at the performance sensors which can cause annoyance. In [72,
Ch. 4] three different dither schemes referred to as A, B and C representing distinctively different
approaches to the use of dither signals for plant modeling can be found. The introduction of
such schemes, however, is at the expense of some extra system complexity.

SID 3. Insufficient time span for the system identification preventing steady-state convergence.
This is particular important if the LMS algorithm is used and a large eigenvalue-value spread is
present in the system identification signal. The remedy to this problem is to use white noise
dither and/or a higher adaptation coefficient (LMS case) or to use the FARLS algorithm. In all
cases a sufficient amount of time for the process should be allowed. The resulting convergence
time of course should be smaller than the time-constant of the plant disturbances.

SID 4. In an ANC system the disturbance signal ”surviving” the operation of the control system
that correlates with system identification signal represents noise to the system identification
process. Moreover, if the power ratio of system identification signal to disturbance signal is to
small convergence in the adaptive filter process might not occur.

With the adaption coefficient μ selected, the dither power may then be selected. Usually, a
small dither power will result in a large time constant, and by increasing the dither power,
the adaptive process will converge more rapidly. Reducing the dither power will reduce the
contribution of dither power at the performance sensors but slow down the adaption process.
Since the uncanceled disturbance is irreducible, there is no point in making the output dither
noise power substantially less than the uncanceled disturbance power. A reasonable compromise
between the objectives of fast adaptation and low residual noise power would be to make the
dither power equal to the uncanceled disturbance power.

Bibliographic Notes on Secondary Path Modeling Errors4

An estimate of the plant response will normally be obtained from a system identification pro-
cedure. Any imperfect plant modeling will lead to bias error and possible instability problems.
Loosely speaking for small plant estimate errors the performance degradation will be small, but
for large inaccuracies the result can be disastrous [30, Ch. 7].

Unfortunately the secondary path may be noisy, that is, subject to disturbances. As discussed
in section 4.7 on page 245 the plant uncertainty can largely be compensated for by using an
AIC. Hereby, the cascade of the inverse controller C(z) and the plant gey. In any case system
identification of the time-varying secondary path is required at regular intervals depending on
the rate of fluctuations.

In one of the earlier investigations of the least-mean-squares (LMS) involving an ”auxiliary path”
it was found that convergence a fairly mild criteria of the phase error being numerical less than
90◦ prevails [45].

The limits on the adaptation coefficient in a FxLMS configuration subject to secondary path
modeling errors for a single sinusoidal was examined in [59]. If the magnitude of the frequency
response |g̃ey(eıω)| deviates from the correct value the maximum allowable tap-weight update

4This subsection provides supplementary bibliographic information on secondary path modeling errors that,
however, can be skipped on a first reading.
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coefficient μmax decreases inversely proportional to the magnitude error which follows directly
from the tap-weight update recursion viz. (8.6.30) on page 402.

In [56] the performance degradation versus plant modeling error was investigated through sim-
ulations for a vehicle cabin equipped with a SISO feedforward FxLMS system designed to cancel
random noise. Invoking the independence theory (IT) assumption analytical expressions for
stability, convergence performance and noise cancelation was developed. As described the Fx

scheme involves a filtering of the reference signal with an estimate of the secondary path. How-
ever, if the secondary path is not perfectly modeled a pertubated filtered-reference signal u′ which
generally differs from the ”correct” filtered-reference signal u. Essential to the analysis is the
cross-correlation matrix between the correct filtered-reference signal and the pertubated filtered-
reference signal, Ruu′(i), and the cross-correlation between the pertubated filtered-reference sig-
nal and the desired response Rdu′(i) defined in (B.1.2) on page 537. In fact convergence analysis
of the gradient-based adaptive filters discussed in details in chapter 8 should be based on Ruu′ (i)
which in general is complex instead of the real autocorrelation matrix Ruu(i). The aforemen-
tioned criteria on the phase error was deduced by considering eigenvalues of Ruu′ . As regards
ANR performance it is shown that provided that the cross-correlation matrix Ruu′ is nonsingular
and the primary path can be expressed as a cascade coupling of the adaptive filter operating
with optimal tap-weights and the secondary path (which would be the case in the duct case)
then the adaptive filter in principle exactly can compensate for the modeling errors. The ANR

system had a nominal performance of 9 dB noise reduction. The analysis revealed performance
robustness to even large modeling errors. However, as will be shown through the course of this
report such conclusions cannot in general be transferred to system with a nominal performance
of, say 20− 25 dB.

The secondary path is usually estimated using an adaptive system identification procedure as
described in section 7.6 using white noise as excitation signal which, however, in tends to be
annoying. Instead as demonstrated in [39] music can be used for secondary path and feedback
path modeling. In this reference an excellent secondary path estimation accuracy was obtained
using music as excitation source. The convergence time as compared with white noise excitation,
however, was not reported.

6.7 Active Control using IIR Filters5

Owing to the inherent stability FIR filters have most commonly been employed in the AC commu-
nity for the adaptive tap-weights and for secondary path and feedback path modeling. However,
it has also been proposed instead to use potentially more efficient IIR filters [26] [25] and [37,
Ch. 3.6], [19, Ch. 2.9] and [30, Sec. 6.12]. As is well known and detailed in section I.3 an IIR filter
employs both direct and recursive coefficients. For the direct coefficients the Fx or the mFx might
be employed to the reference signals to obtain filtered-reference signals. Similarly the recursive
tap-weight update uses the control output signals filtered by the secondary paths.

The main benefit of using IIR filter instead of FIR filter is that the same response can be obtained
with a IIR filter using fewer adaptive tap-weights. In Appendix K on page 759 a class of so-called
orthonormal filters with large inherent modeling capabilities are presented.

In particular, the recursive LMS (RLMS) algorithm discussed in section I.3 has received much

5The algorithms presented in this section are considered candidate methods for accommodating the plants in
a MCANCS. However, these algorithms are currently not implemented and the section can therefore be skipped
on a first reading.
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attention over the years. The same arguments made in section 6.2 for the use of filtering methods
to take the presence of the plant into account for the least-mean-squares (LMS) apply to the
RLMS algorithm. The Furecursive LMS (RLMS)6 algorithm was developed in [24] based on a crude
gradient estimate and the filtered-v RLMS (FuRLMS) algorithm [12] using a more correct gradient
estimate. However, both the filtered-u RLMS (FuRLMS) and FuRLMS may converge to a local minima
on the error surface. The FuRLMS can also be used to compensate for the influence of feedback
from control output signal to reference signal in a feedforward system. An algorithm that under
the assumption of a perfect plant model and noise free measurements ensures global convergence
was proposed in [66]. A Steiglitz-McBride-type adaptive IIR filter algorithm [52] that according
to the authors guarantees global convergence while ensuring robustness to imperfect secondary
path modeling errors and measurement noise provided that no feedback signals are present was
proposed in [65].

Laugesen and Elliott [41] presented an adaptive IIR filter algorithm referred to as multiple error
recursive leaky LMS (MERLLMS) for multi-channel (Nx = 1, Ny = 4, Ne = 8) active control (AC)
of random noise in a reverberant room. The details can be found in [40]. It was found that
for this particular reverberant room that was excited by a loudspeaker inside the room that no
apparent benefit in terms of global cost function of using an IIR filter with Ma = Mb = 32 as
compared with a FIR filter M = 32 was obtained. However, it is an open question if a smaller
IIR filter, say Ma = Mb = 16, could have been used without sacrificing the performance. For the
secondary paths, however, only FIR filters of the order Mgey = 32 were considered. An IIR filter
expectably has the potential to model the secondary paths with fewer tap-weights. However,
system identification of secondary paths was not specifically investigated in this reference. In
an other arrangement where a more complicated primary path was obtained by moving the
loudspeaker to an adjoining room coupling to the receiving room through a plywood panel. In
this case very long impulse responses of the controller were required. The practical benefit of
using an adaptive IIR filter in this particular setup was clearly demonstrated. Hence, adaptive IIR

filters or the class of orthonormal filters discussed in Appendix K most likely and in particular
in reverberant cases constitute cost effective alternatives to the FIR filter implementations.

Additional readings on the use of IIR filter for system identification and for AC can be found in
[25] [27] [23] [15] [64] [58] [34] [3] [32] [73].

6.8 Bibliographic Notes on Nonlinear Active Control7

As mentioned previously the actuators used in active control systems might exhibit nonlinear
characteristics, or in some cases a structure to be controlled exhibits a nonlinear behavior. In such
cases nonlinear active controllers may be required. For active control of sound and vibration,
the use of neural networks as nonlinear control structures has been reported in [62]. In [9] and
[7] training algorithms for a multilayer perceptron (MLP) artificial neural network (ANN) based
nonlinear active control structure were investigated. The control structure comprised two MLP

feedforward ANN (one as a nonlinear controller and one as a nonlinear plant model). Steepest
descent algorithms based on two distinct gradient approaches were introduced for the training
of the controller network. Experiments of feedforward active sound control in a duct using a
nonlinear actuator with linear and nonlinear controllers were performed. Control results also

6We will consistently use the term RLMS instead of LMS to signify the underlying recursive topology of the
filter.

7This subsection provides some bibliographic information on nonlinear AC. However, these algorithms are
currently not implemented and the section can therefore be skipped on a first reading.
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showed that a multilayered perceptron neural-network control structure could outperform linear
controllers for the experimental nonlinear system. Learning rates and computational load for
various ANN algorithms were compared.

In [11] a Fx Cerebellar Model Articulation Controller (CMAC) ANN is analyzed. As compared
with the aforementioned MLP based solution the CMAC controller exhibits better convergence
properties and at the same time with less computational effort.
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[67] Orlando J. Tobias, José Carlos M. Bermudez, and Neil J. Bershad. Mean weight behaviour
of the filtered-XLMS algorithm. IEEE Transactions on Signal Processing, 48(4):1061–1075,
2000.

[68] J. Tsai. Active Noise Control Systems: Secondary Source Arrangements Frequency Shaping
and Electroacoustic Path Modelling. M. sc., Northern Illinois University DeKalb, 1993.

[69] Eric A. Wan. Adjoint LMS: An efficient alternative to the filtered-x ms multiple error
LMS algorithms. In IEEE Int. Conf. Acoust., Speech, Signal Processing, volume 3, pages
1842–1845, Atlanta, GA, 1996.

[70] G. E. Warnaka, L. A. Poole, and J. Tichy. Applications for active noise control, 25 September
1984.

[71] Bernard Widrow and Samuel D. Stearns. Adaptive Signal Processing. Prentice-Hall, New
Jersey, 1985.

[72] Bernard Widrow and Eugene Walach. Adaptive Inverse Control. Prentice Hall, 1996.

[73] Tuk Keuizg Yeuizg and Sze Fong Yuu. Feedforward ANC system using adaptive FIR filters
with on-line secondary path identification. pages 675–678, 1999.

[74] Dante C. Youla, Jr. Joseph J. Bongiorno, and Hamid A. Jabr. Modern wiener -hopf design
of optimal controllers part ii: The multivariate case. IEEE Transactions on Automatic
Control, 21(3):319–338, 1976.



290 BIBLIOGRAPHY



7. HYBRID MULTIPLE-INPUT-MULTIPLE-OUTPUT FEEDFORWARD
FEEDBACK SYSTEM

7.1 Introduction

The active noise reduction (ANR) system is shown in Figure 1.1. The sensor suite comprises
Ne error sensors, Nx reference sensors and Np performance monitoring sensors. A total of Ny

actuators excite the secondary signals. We will present the general multi-channel multirate
case right away. The superscripts j, k, l and m will be used to designate reference sensor-,
performance-, actuator- and error sensor index respectively. These indices are subject to the
constraints j ∈

¯
Nx, k ∈

¯
Np, l ∈

¯
Ny and m ∈

¯
Ne. Moreover, in order to prevent ambiguity

between feedback and feedforward quantities we will apply an underaccent
�
to indicate a feedback

topology quantity and similarly an underaccent
�

to indicate a feedforward topology quantity. For
feedforward-feedback signals we will use an underaccent

�
and finally for signals that include the

contributions from signal sources an underaccent
�
will be used. For pure signals an underaccent

�

will be employed. For ease of presentation we may suppress the explicit reference of superscripts
j, l, k and m.

7.1.1 Chapter Outline

After this introduction from section 7.2 to section 7.6 we gradually build the multi-channel
feedforward-feedback integrated communication on-line system identification system (FFFBICIDS).
section 7.2 presents the topology of the multi-channel adaptive feedback controller. In addition a
detailed discussion of the various signals involved is provided. Then in section 7.3 we similarly
describe the employed multi-channel adaptive feedforward controller. Some quantities specific
to the feedforward system (FFS) are also defined. After presentation of the feedback- and the
feedforward controller the road is paved for the introduction of the combination of the two which
is referred to as a multi-channel adaptive feedforward-feedback controller in section 7.4. A re-
quirement of distortion-free transmission of communication signals is often imposed on modern
ANR headset equipment. In section 7.5 a technique to prevent unintentional suppression of such
signals is presented. In section 7.6 we add provision for on-line system identification. This sys-
tem will be referred to as a multi-channel FFFBICIDS. Finally, in section 7.7 and section 7.8
some simulation results of system identification and active control (AC) will be presented. In the
Appendix 7.A an array description of the feedforward-feedback system (FFFBS) is provided.



292 7. Hybrid Multiple-Input-Multiple-Output Feedforward Feedback System

7.2 Feedback Controller - Adaptive Filter Topology

7.2.1 Introduction

The feedback controller - adaptive filtering - interface is depicted in Figure 7.1 on the next page.
Specifically, Figure 7.1 illuminates the error feedback (refer to section I.1) interaction between
the l’th secondary source and the m’th error sensor. In total Ne × Ny such controller-error
sensor combinations exist. The system uses a multirate structure as detailed in chapter 5. The
zeroth multirate level (refer to Figure 5.1 and Figure 5.2) contains the conversion stages that
are operated at high sampling rates leading to very low delays. The non-adaptive controller
constitute the first multirate level where moderate sampling speeds prevail. The first multirate
level is still highly oversampled compared with the operational bandwidth of the system. As
discussed in chapter 5 a tradeoff between delay and computation effort determines these sampling
frequencies. The tap-weight adaptation takes place at the slower downsampled second multirate
level. This sampling frequency is selected as a compromise between the computational burden
involved in the adaptive tap-weight updates and the requirement on fast update rates to ensure
fast convergence and tracking capabilities to nonstationary signals. Furthermore, by restricting
the bandwidth of adaptive control the corresponding requirement on very long finite-duration
impulse response (FIR) filters for adaptive tap-weights and plant representation can be avoided.

In order to achieve a high degree of flexibility and to reduce the computational burden different
sampling rates might be used at the error sensors and reference sensors. This could, for instance,
allow us to operate the feedforward and feedback controllers in a hybrid continuous-time discrete-
time topology (HCTDTT) at different speeds. The presentation of the hybrid MIMO feedforward-
feedback system (HMIMOFFFBS) to follow has partly been prepared for such advanced system
configuaration. However, in order to reduce the complexity of the multirate system feedforward
and feedback control will operate at the same sampling frequency. Moreover, as already men-
tioned the performance sensors do not partake in the control and may use their own sampling
rates. These constraints also apply to the sample indices. Hence, for m1 �= m2, j1 �= j2 and
l1 �= l2

t1m1
= t1m2

= t1j1 = t1j2 = t1l1 = t1l2 , m1, m2 ∈ ¯
Ne, j1, j2 ∈ ¯

Nx, l1, l2 ∈ ¯
Ny. (7.2.1)

The system comprises a physical plant gl,m
ey,t1 ∈ K

M
g

l,m
ey linking the l’th secondary source output

to the m’th error sensor input, the estimate of gl,m
ey,t1 (copy weights) at multirate level 1 denoted

by
©

ĝl,m
ey,t1G

∈ K
M

ĝ
l,m
ey and the estimate of gl,m

ey,t1 (copy weights) at multirate level 2 denoted by
©

ĝl,m
ey,t2G

∈ K
M

ĝ
l,m
ey , the physical plant gl,k

py,t1 ∈ K
M

g
l,k
ey linking the l’th secondary source output to

the k’th performance sensor input, the adaptive tap-weights
�
wm′,l

t2B
∈ K�

Mm′,l

at multirate level
2, where adjustability is indicated by an arrow through the box in Figure 7.1, and the adaptive

tap-weights copy of
�
wm′,l

t2B
at multirate level 1 represented by

�
©
wm′,l

t1B
∈ K�

Mm′,l

.

The number of adaptive controller units amounts to Ne × Ny. Moreover, we will allow each
controller unit to employ an individual adaptive filtering paradigm. The plant subscript ey

establishes the link between an error input e in response to a control output signal y. In total
Ne × Ny secondary plant and tap-weight vectors exist. The time indices t1G ∈ N, t2G ∈ N are
used as a plant estimation counter and therefore also emphasize the possible time-variance of the
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�
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�
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�

gm
e,↓

�

gm
e,↓

c©
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Fig. 7.1: Feedback Multirate Controller using IMC and mFx based Adaptive Filter.
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plant. The plant estimation scheme is detailed in section 7.6. The time indices t1B ∈ N, t2B ∈ N
refer to the time of block-update of the adaptive tap-weight.

The physical plant in turn has been divided into a transmission part �

gl
y,t1 , a propagation part

∼
gl,m

ey,t1 and a receive part
�

gm
e,t1 . The transmission part of the plant �

gl
y,t1 links a scalar quantity

namely the digital control output signal y(t1l ) to some actuator depending spatial-distributed
continuous-time physical quantity represented here by y(rl, t). By rl we refer to a position in
space of the l’th actuator and t denotes the time. For example for a loudspeaker we could let
the volume velocity source distribution over the surface of the membrane in the present context
be represented by y(rl, t) appreciating the underlying spatially-distributed nature of such signal
(refer to Appendix F on page 619). The transmission part of the plant is common to all secondary
paths gl,m

ey , m ∈
¯
Ne comprises the digital to analogue converter (DAC), interpolation filter (IF),

reconstruction filter (RF), amplification stage, and some transducer characteristics.

The propagation part of the plant ∼
gl,m

ey,t1 links the aforementioned generally spatially-distributed
signal provided by the l’th secondary source to some likewise spatially-distributed continuous-
time physical quantity at the m’th error sensor. By rm we refer to the position in space of
the m’th error sensor. For example if we use a microphone as error sensor we could use the
pressure distribution over the membrane as reference. The propagation part will be dependent
on the physical environment surrounding the secondary source and the error sensor. In the
acoustical field theory the propagation part could mathematically be modeled in terms of Green
functions [3, Ch. 9] and Appendix F of this report. The receive part

�

gm
e,t1 takes us back from

the physical domain to a scalar quantity namely the error signal e(tlm). The receive part that
is common to all secondary paths gl,m

ey , l ∈
¯
Ny comprises some transducer characteristic, anti-

aliasing filter (AAF), decimation filter (DF), the analogue to digital converter (ADC) and pre-
amplification stage. Often the propagation part mainly contributes in terms of delays. We will
return to the physical models of the various plants involved in much more details in Part I of this
report. Finally, Figure 7.1 depicts the physical plant gl,k

py,t1G
that links the l’th secondary source

to the k’th performance monitoring sensor. In total Np × Ny such control-performance path
combinations exist. This control-performance path in turn is constituted by the transmission
part �

gl
t1G

, a propagation path ∼
gl,k

py,t1G
and a receive part

�

gk
p,t1 . The transmission part �

gl
t1G

is therefore

also common to all performance pathes gl,k
py , l ∈

¯
Ny. The receive part is likewise common to all

secondary paths gl,k
py , j ∈

¯
Np. It should be emphasized that performance sensors by definition

are only monitoring the performance of the active control system. Hence, there will be no error
feedback (refer to section I.1) from any of the Np performance sensors to the control system.

The quantities and signals depicted in Figure 7.1 on the previous page will be introduced along
the presentation to follow. It is the authors experience that some students experience difficulties
in identifying the order of signal flow in active control configuration similar to the one depicted
in Figure 7.1 on the preceding page. Hopefully, this should be clarified during the course of
this presentation. Firstly, we will use the first multirate level iteration index t1 to signify when
the signal actually is available. It should be emphasized that this definition has an impact on
the computation of the control output signal

�
y(t1l + 1) and rejection signal

�
rm(t1m + 1) defined

in subsection 7.2.6 and subsection 7.2.7 respectively. Although both
�
y(t1l + 1) and

�
rm(t1m +

1) are determined in the i’th iteration following the adaptive weight update they are first at
the disposition to the control hardware at the next iteration. Secondly, it should be recalled
that due to the sampling function or more precisely time-discretization the first element in any
plant impulse response will always be zero i.e. g(0) = 0. As a consequence there will be no
instantaneous feedback . The signals can then relative easily be determined sequently from one
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iteration to the next iteration. The active control system will typically be embedded in real-time
platform that facilitates interrupt driven I/O control. For simplicity we consider all Ne error
signals as well as all Ny control output signals to be driven by the same interrupt. Each iteration
cycle then commence following such an interrupt.

7.2.2 Error Signals

The feedback error signal
�
em(t1m) is a sensed signal cf. section 5.3. Referring to Figure 7.1 we

identify viz. (5.3.15)

eD
1

m (t1m) −→
�
em(t1m). (7.2.2)

The error signal is the result of the superposition of the disturbance signal dm(t1m) and the total
rejection signal

�
rm(t1m)

�
em(t1m) = dm(t1m)±

�
rm(t1m). (7.2.3)

The disturbance signal dm(t1m) will be discussed in subsection 7.2.3. The rejection signal
�
rm(t1m)

in turn is a superposition of in total Ny secondary source driven rejection signals
�
rml

(t1m). The
rejection signal is subject for discussion in subsection 7.2.7 and an expression for

�
rm(t1m) can be

found in (7.2.29).

In the active control community no firm sign convention exists for the summation of dm(t1m) and

�
rm(t1m). For example in [1] a + sign is used while [2] applies the − sign. In order to enforce
compatibility with results from both definitions and in order to reuse the mathematical expression
and derived software we will apply the ± notation where the upper + signifies superposition of
two physical signals, which is arguably more correct in the domain of active control of sound
and vibration (ACSV). The lower − sign indicates subtraction, which is the convention most
often used when adaptive filters are applied to pure electrical signals. This issue will be further
commented in section I.2.

7.2.3 Disturbance Signals

The number of disturbance signals dm(t1m) corresponding to dm(rm, t) equals Ne. It should
be remarked that the disturbance signal dm(t1m) is only directly measurable when the rejection
signals are turned-off1.

Importantly, is should be recalled that in a feedback system (FBS) employing the internal model
control (IMC) the feedback reference signal at multirate level 1

�
xm′(t1m′) ∈ K and the estimated

disturbance coincide, that is,

�
xm′(t1m′) � d̂m(t1m). (7.2.4)

1The disturbance dm(t1m) is considered a source signal. Hence, it is independent of the operation of the
active control system.
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Therefore the number of reference signals equals Ne. The reason for using both unprimed and
primed m indices will be explained soon. A disturbance signal estimate at multirate level 1
d̂m(t1m) ∈ K can be computed as

d̂m(t1m) =
�
em(t1m)∓

�̂
rm(t1m). (7.2.5)

The estimated rejection signal
�̂
rm(t1m) will be defined in subsection 7.2.7 viz. (7.2.26). Moreover,

the ∓ signs correspond to the ± signs in (7.2.3).

In the multirate system introduced in chapter 5 on page 249 the disturbance signal estimate at
multirate level 2 d̂m(t2m) ∈ K is obtained from

d̂m(t2m)
D2

m(F 2
m(θ),M2

↓,m,L2
↑,m)

←−−−−−−−−−−−−−−− d̂m(t1m), (7.2.6)

where the downsampling function D2
m(F 2

m(θ), M2
↓,m, L2

↑,m) in turn was introduced in section 5.3
on page 252 and is represented by the receive (down conversion) plant part

�

gm
e,↓ in Figure 7.1.

We appreciate the following identity between the feedback reference signal
�
xm′(t2m′) and the

decimated disturbance estimate

�
xm′(t2m′) � d̂m(t2m). (7.2.7)

7.2.4 Unfiltered and Filtered Reference Signals

For later use in subsection 7.2.6 it is useful to create a unfiltered reference signal time-reversed
buffer at multirate level 1

�̊
xw

m′,t1
m′
∈ K�

Mmax
wm′ according to

�̊
xw

m′,t1
m′

=
[

�
xm′(t1m′) �

xm′(t1m′ − 1) . . .
�
xm′(t1m′ − �

Mmax
wm′ + 1)

]
. (7.2.8)

The superscript w indicates that the reference signal is used in connection with the copy tap-
weights. In the general case each of the controllers might apply a different adaptive filtering
paradigm and consequently also use different model order

�
Mm′,l

w,1 . The quantity
�
Mmax

wm′ ∈ NNe

represents the maximum filter order used for the adaptive tap-weights
�

©
wm′,l

t1B
and is obtained

from2

�
Mmax

wm′ �
1≤l≤Ny
max{

�
Mm′,l

w,1 }. (7.2.9)

All filtered reference methods will be based on creating a filtered-reference signal at multirate
level 2

�
u(t2l ).

Each triplet of elements
�
um,l,m′(t2l ) ∈ K filtered-reference signal at multirate level 2 where

m′ refers to the reference sensor and l, m refer to the secondary path is obtained by filtering

2In the literature the controller algorithms will normally be assumed identical and the same applies to the
model order viz. �M

max
wm′ � M .
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the m′th reference signal by the secondary path estimate
©

ĝl,m
ey . It is necessary here also to

use a prime in order to distinguish the reference signal, that as discussed in subsection 7.2.3
stems from the error sensor, from the destination of secondary path that also is at an error
sensor. In general, however, the two error sensors differ i.e., m′ �= m (in Figure 7.1 on page 293,
however, m′ = m). Therefore, a total of N2

e × Ny filtered-reference signals exists. However, as

�
um,l,m′(t2l ) =

�
um,l,m′(t2l ) only Ne×Ny×(Ne+1)

2 will be different. The filtering operation by the

plant is modeled by Ĝl,m
ey (y, t2G)

�
um,l,m′(t2l )

Ĝl,m
ey (x,t2G)

←−−−−−−−
�
xm′(t2m). (7.2.10)

If Gl,m
ey (x, t2G) can be modeled by a linear FIR filter then

�
um,l,m′(t2l ) is simply obtained by mul-

tiplying an auxiliary reference signal time-reversed buffer
�̊
x

ĝey

m′,t2
m′
∈ KMmax

ĝey defined as

�̊
x

ĝey

m′,t2
m′

=
[

�
xm′(t2m′) �

xm′(t2m′ − 1) . . .
�
xm′(t2m′ −Mmax

ĝey
+ 1)

]
(7.2.11)

and
©

ĝl,m
ey,t2G

, that is,

�
um,l,m′(t2l ) =

�̊
x

ĝey

m′,t2
m′

(1 : M l,m,2
ĝey

)
©

ĝl,m
ey,t2G

, (7.2.12)

where
�̊
x

ĝey

m′,t2
m′

(1 : M l,m,2
ĝey

) refers to the first M l,m,2
ĝey

elements of
�̊
x

ĝey

m′,t2
m′

. The accent̊ signifies that
reference signal possesses shift-structure and possibly lends itself to a computational efficient
ring buffer implementation.

The quantity Mmax
ĝey

∈ N is the maximum filter order used in the secondary path models. Hence,

Mmax
ĝey

�
1≤m≤Ne

1≤l≤Ny

max{M l,m,2
ĝey

}. (7.2.13)

We will also create a collection of (Ne×Ny×Ne) time-reversed filtered auxiliary reference signals

�̊
uw

m,l,m′,t2l
(1×

�
Mmax

u row vectors) defined by

�̊
uw

m,l,m′,t2
l

=
[

�
um,l,m′(t2l ) �

um,l,m′(t2l − 1) . . .
�
um,l,m′(t2l − �

Mmax
u + 1)

]
. (7.2.14)

For each reference signal m′ an amount of
�
Mmax

u elements is required. The quantity
�
Mmax

u ∈ N
is the maximum regressor length involved in the adaptive tap-weights update for each m =
1, 2, . . . , Ne error sensor and l = 1, 2, . . . , Ny combination. Hence,

�
Mmax

u �
1≤m′≤Ne

1≤l≤Ny

max{
�
Mm′,l,2

u }, (7.2.15)

where the quantity
�
Mm′,l,2

u ∈ N in turn is the regressor length used for adaptive tap-weights
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�
wm′,l

t1B
that is closely link to the corresponding weight length

�
Mm′,l,2

u =

{
�
Mm′,l,2

w + 1, FARLS

�
Mm′,l,2

w , else.
(7.2.16)

7.2.5 Tap-Weight Update Signals

The adaptive tap-weight update will take place at each block-update time. We will use the
adaptive tap-weight time index multirate level 1 t1B ∈ N and adaptive tap-weight time index
multirate level 2 t2B ∈ N to represent the time where the adaptive tap-weight update takes place.

The error used for tap-weight adaptation e(i) coincides with
�̂
eΔw

m (t2m), that in turn is obtained
from

�̂
eΔw

m (t2m) = d̂m(t2m)±
�̂
rΔw
m (t2m), (7.2.17)

where
�̂
rΔw
m (t2m) will be defined in subsection 7.2.7 viz. (7.2.31) and the ± signs correspond to the

± signs in (7.2.3).

In the remaining part of Part III extensive references will be made to the reference signal or
regressor ui that is a 1×Mu row vector. In the domain of active control it is the filtered-reference
signal

�̊
uw

t2l
that will be used for tap-weights update, that is,

ui ← �̊
uw

m,l,m′,t2
l

AC. (7.2.18)

7.2.6 Control Output

In general the adaptive filter output (control output signal)
�
yl(t1l ) depicted in Figure 7.1 on

page 293 is obtained as a summation of control output signal
�
ylm(t1l ) components in response to

the Ne reference signals. Each component
�
ylm(t1l ) in turn is obtained by filtering the reference

signal
�
xm′,t1

m′
in some possible non-linear and indeed time varying sense, that is,

�
ylm′ (t1l + 1) �

Wm′,l(x,t1
m′ ,t

1
l )

←−−−−−−−−−−
�
xm′,t1

m′
. (7.2.19)

The adaptive filtering function is described by the function
�
Wm′,l(x, t1m′ , t1l ) .

Similarly to the discussion above, if
�
Wm′,l(x, t1m′ , t1l ) is of finite-duration and linear we can use

�̊
xw

m′,t1
m′

defined in (7.2.8). For a FIR filter implementation
�
yl′m(t1l + 1) is simply obtained by

multiplying
�̊
xw

m′,t1
m′

defined in (7.2.8) and
�
©
wm′,l

t1B
, that is,

�
ylm(t1l + 1) =

�̊
xw

m′,t1
m′ �

©
wm′,l

t1B
. (7.2.20)
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The total control output signal delivered by the l’th secondary source is under the assumption
of linearity obtained by summing the contribution from each of the Ne reference signals

�
yl(t1l + 1) =

Ne∑
m′=1

�̊
xw

m′,t1
m′ �

©
wm′,l

t1B
. (7.2.21)

For later use we will define a set of Ny auxiliary time-reversed control output signal buffers
�
ẙ

ĝy

l,t1
l
+1

(1 ×Mmax
ĝl

y
row vectors) according to

�
ẙ

ĝy

l,t1l +1
=

[
�
yl(t1l + 1)

�
yl(t1l ) . . .

�
yl(t1l −Mmax

ĝl
y

+ 2)
]
, (7.2.22)

where the superscript ĝy indicates that reference signal is used in connection with an estimate of
the plant (secondary path). The quantity Mmax

ĝl
y

will be defined in subsection 7.2.8 viz. (7.2.34).

7.2.7 Rejection Signals

The rejection signal component
�
rml

(t1m + 1) depicted in Figure 7.1 on page 293 sensed by the
m’th error sensor is a consequence of the control output signal

�
yl up to time (t1l + 1) that

subsequently is filtered in some possible non-linear and time varying sense by the plant. As in
subsection 7.2.4 the filtering operation by the plant is described by Gl,m

ey (y, t1)

�
rml

(t1m + 1)
Gl,m

ey (y,t1)
←−−−−−−

�
yl(t1l + 1). (7.2.23)

The rejection signal is also commonly referred to as cancelation signal or anti-noise signal.
Usually perfect knowledge of Gl,m

ey (y, t1) is unavailable and has instead to be estimated from
some system identification process. If we by Ĝl,m

ey (y, t1G) denote the estimate of Gl,m
ey (y, t1) we can

obtain an estimate of the anti-noise signal
�̂
rm(t1m + 1) by

�̂
rm(t1m + 1)

Ĝl,m
ey (y,t1G)

←−−−−−−−
�
yl(t1l + 1). (7.2.24)

If the digital controller is based on an IMC architecture depicted in Figure 4.3 an estimate of the
cancelation signal

�̂
rm(t1m + 1) is required anyway.

If Gl,m
ey (y, t1) is of finite-duration we can use

�
ẙ

ĝy

l,t1l +1
defined in (7.2.22). It should be recalled that

each control output signal yl(t1l +1) is linked to Ne error sensors by the secondary plants. Different
plant model order M l,m,1

ĝey
might exist, but it suffices to store the first Mmax

ĝl
ey

�
1≤m≤Ne

max{M l,m,1
ĝey

}
control output signal

�
yl elements for each l = 1, 2, . . . , Ny actuator.

Moreover, if Gl,m
ey (y, t1) can be modeled by a linear FIR filter then

�̂
rm(t1m + 1) is simply obtained

by multiplying the first M l,m,1
ĝey

elements of
�
ẙ

ĝy

l,t1
l
+1

and
©

ĝey,t1G
, that is,

�̂
rml

(t1m + 1) =
�
ẙ

ĝy

l,t1l +1
(1 : M l,m,1

ĝey
)
©

ĝl,m
ey,t1G

. (7.2.25)
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An estimate of the total rejection signal present at the m’th error sensor is then obtained as a
superposition of the contribution from each of the Ny secondary sources

�̂
rm(t1m + 1) =

Ny∑
l=1

�
ẙ

ĝy

l,t1l +1
(1 : M l,m,1

ĝey
)
©

ĝl,m
ey,t1G

. (7.2.26)

Similarly, for evaluation purposes and assuming perfect knowledge of the plant response the
”true” cancelation term

�
rm(t1m + 1) output

�
ylm(t1l + 1) by the physical plant gl,m

ey,t1 according to

�
rml

(t1m + 1) =
�
ẙ

ĝy

l,t1l +1
(1 : M l,m

gey
)gl,m

ey,t1 , (7.2.27)

where
�
ẙ

ĝy

l,t1l +1
was defined in (7.2.22), but the requirement Mmax

ĝl
ey

on Mmax
ĝl

y
should now be com-

puted as

Mmax
ĝl

ey
� max

{
1≤m≤Ne

max{M l,m,2
ĝey

},
1≤m≤Ne

max{M l,m
gey
}
}

, l = 1, 2, . . . , Ny. (7.2.28)

The total rejection signal present at the m’th error sensor is likewise obtained as a superposition
of the contribution from each of the Ny secondary sources

�
rm(t1m + 1) =

Ny∑
l=1

�
ẙ

ĝy

l,t1l +1
(1 : M l,m

gey
)gl,m

ey,t1 . (7.2.29)

Finally, we will estimate the artificial rejection signal
�̂
rΔw
m (t2m + 1) used for the computation of

�̂
eΔw

m (t2m+1). If the system is linear then the principle of interchanging the plant and the controller
discussed in connection with filtered-x (Fx)-assumption viz. (6.3.1) applies and

�̂
rΔw
ml

(t2m +1) then
is readily obtainable from (7.2.14)

�̂
rΔw
ml

(t2m + 1) =
Ne∑

m′=1
�̊
uw

m,l,m′,t2l
(1 :

�
Mm′,l,2

u )
�
wm′,l

t2B
. (7.2.30)

By inspection of (7.2.11), (7.2.12) and (7.2.14) we observe that elements of
�
xm dating back up

to
�
Mmax

u + Mĝl,m,2
ey

− 1 iterations back in time are used. The total rejection signal
�̂
rΔw
m (t2m + 1)

”received” by the m’th error sensor is under an assumption of linearity obtained by summing
the contribution from each of the Ny rejection signals

�̂
rΔw
m (t2m + 1) =

Ny∑
l=1

Ne∑
m′=1

�̊
uw

m,l,m′,t2l
(1 :

�
Mm′,l,2

u )
�
wm′,l

t2B
. (7.2.31)

7.2.8 Performance Signals

By inspection of Figure 7.1 on page 293 we recognize that the resulting performance error at the
k’th performance sensor

�
ep

k(t1k) is obtained as the superposition of the disturbance signal dp
k(t1k)
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and the total rejection signal
�
rp
k(t1k)

�
ep

k(t1k) = dp
k(t1k)±

�
rp
k(t1k), (7.2.32)

where rp
k(t1k) in turn is obtained from an expression equivalent to (7.2.29)

�
rp
k(t1k + 1) =

Ny∑
l=1

�
ẙ

ĝy

l,t1l +1
(1 : M l,k

gpy
)gl,k

py,t1G
. (7.2.33)

Here it suffices to store the first Mmax
gl

py
�

1≤k≤Np
max{Mgl,k

py
} control output signal

�
yl elements for

each l = 1, 2, . . . , Ny actuator. Now we are in a position to determine Mmax
ĝl

y
introduced in

subsection 7.2.6 viz. (7.2.22) that defines the buffer size of
�
ẙ

ĝy

l,t1l +1

Mmax
ĝl

y
� max

{
Mmax

ĝl
ey

, Mmax
gl

py

}
, l = 1, 2, . . . , Ny, (7.2.34)

where the requirement Mmax
ĝl

ey
for the secondary paths was defined in (7.2.28).

7.2.9 Tap-Weight Estimates Copying

When the weights
�
wm′,l

t2B
have converged the copy weights

�
©
wm′,l

t1B
are updated using the upsampling

function U2
l (F 2

l (θ), M2
↓,l, L

2
↑,l) defined in section 5.4 on page 257

�
©
wm′,l

t1B

U2
l (F 2

l (θ),M2
↓,l,L

2
↑,l)←−−−−−−−−−−−−−

�
wm′,l

t2B
. (7.2.35)

7.2.10 Feedback Algorithm Summary

The feedback control adaptive filtering algorithm is constituted by first sensing the error signal

�
em(t1m) (7.2.2) then estimating the disturbances d̂m(t1m) (7.2.5) and d̂m(t2m) (7.2.6), next creat-

ing the unfiltered reference buffers
�̊
xw

m′,t1
m′

(7.2.8) and
�̊
x

ĝey

m′,t2
m′

(7.2.11). Thereafter the filtered

reference triplet
�
um,l,m′(t2l ) (7.2.12) is determined leading to

�̊
uw

m,l,m′,t2l
(7.2.14). Next

�̂
eΔw

m (t2m)

used for tap-weight adaptation is determined viz. (7.2.17). The tap-weights
�
wm′,l

t2B
are subse-

quently updated (at least at each block-update time) following one of the algorithms detailed in
chapter 8 and Appendix J. Then the control output signals

�
yl(t1l + 1) provided by the system

at the next iteration are computed (7.2.21) followed by the creation of
�
ẙ

ĝy

l,t1l +1
in (7.2.22). Fi-

nally, also in preparation for the next iteration the rejection signals
�̂
rm(t1m + 1) and successively

�̂
rΔw
m (t2m + 1) are determined from (7.2.26) and (7.2.31). At regular intervals the copy weights

�
©
wm′,l

t1B
are updated from (7.2.35).

For simulation purpose we also need the error signals
�
em(t1m) (7.2.3), rejection signals

�
rm(t1m +1)

and
�
rp
k(t1k + 1) determined from (7.2.29) and (7.2.33) respectively. Finally, (7.2.32) provides a

performance assessment.
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7.2.11 Feedback Algorithm Computational Considerations

In order to assess the computational burden we will next rewrite our expressions. Starting with
the expression (7.2.11) involving the reference signal time-reversed buffer used in connection
with the plant estimate filtering

�̊
x

ĝey

m′,t2
m′

, that in turn is constituted from feedback reference

signal
�
xm′(t2m′). The feedback reference signal are obtained from decimation of the disturbance

signal estimate cf. (7.2.5), (7.2.6) and (7.2.7). Essential for the determination of d̂m(t1m) and
therefore also of

�̊
uw

m,l,m′,t2l
is the estimate of the rejection signal r̂m(t1m) which will be done below.

From (7.2.26) the expression for
�̂
rm(t1m) is

�̂
rm(t1m + 1) =

Ny∑
l=1

�
ẙ

ĝy

l,t1l +1
(1 : M l,m,1

ĝey
)
©

ĝl,m
ey,t1G

insertion of (7.2.22) gives

�̂
rm(t1m + 1) =

Ny∑
l=1

Ml,m,1
ĝey∑

ig=1
�
yl(t1l − ig + 2)

©

ĝl,m
ey,t1G

(ig)

using (7.2.21) leads to

�̂
rm(t1m + 1) =

Ny∑
l=1

Ml,m,1
ĝey∑

ig=1

Ne∑
m′=1

�̊
xw

m,t1
m′−ig+1�

©
wm′,l

t1B

©

ĝl,m
ey,t1G

(ig)

finally by insertion of (7.2.8) we obtain

�̂
rm(t1m + 1) =

Ny∑
l=1

Ml,m,1
ĝey∑

ig=1

Ne∑
m′=1

�
Mm′,l∑
iw=1

�
xm′(t1m′ − ig − iw + 1)

�
©
wm′,l

t1B
(iw)

©

ĝl,m
ey,t1G

(ig).

(7.2.36)

We appreciate from (7.2.36) that in order to obtain an estimate of the rejection signals used
by the IMC the amount of multiplications is determined from the upper limits in the quadruple
summation, that is, Ny, M l,m,1

ĝey
, Ne and

�
Mm′,l. Hence, if we had used matrix structures instead

of cell structures the computational effort would have been proportional to the product Ny ×
Mmax

ĝey
× Ne × �

Mmax
wm′ . Accordingly, if both the number of feedback weights and the number of

weights used to represent the secondary paths are uniformly distributed between 0.5
�
Mmax

wm′− �
Mmax

wm′

and 0.5Mmax
ĝey

−Mmax
ĝey

respectively then the computational savings of the proposed cell structure
approach would be approximately 37.5%.
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Actually, (7.2.36) also implictly accounts for calculations that lead to the expression (7.2.14) for
the filtered-reference signal buffer

�̊
uw

m,l,m′,t2
l

that is used by the mFx scheme.

7.3 Feedforward Controller - Adaptive Filter Topology

7.3.1 Introduction

The FFS - adaptive filtering - interface is depicted in Figure 7.2 on the following page.

By comparison with Figure 7.1 on page 293 we see that the two topologies are very alike. There-
fore, we will primarily focus on the differences between the FFS and FBS.

Also for the feedforward controller we have decided to illuminate the error feedback (refer to
section I.1) interaction between the l’th secondary source and the m’th error sensor and the k’th
performance sensor. Moreover, only the j’th reference sensor is included. By rj we refer to the
position in space of the j’th reference sensor. In total Ne × Ny such control-performance path
and Np ×Ny controller-performance sensor combinations exist.

As in the FBS case the FFS comprises a physical plant gl,m
ey,t1 , the two models of the plant (copy

weights)
©

ĝl,m
ey,t1G

and
©

ĝl,m
ey,t2G

and the physical controller-performance path glk
py,t1G

. Moreover, the

FFS includes the adaptive tap-weights
�

wj,l
t2B
∈ K�

Mj,l

at multirate level 2, where adjustability
is indicated by an arrow through the box in Figure 7.2, and the adaptive tap-weights copy of

�

wj,l
t2B

at multirate level 1 represented by
�

©
wj,l

t1B
∈ K�

Mj,l

. In addition to the FBS the FFS uses in
total Nx reference sensors to obtain time-advanced information to the control system. Moreover,
the potential feedback of the control output signal to the reference sensors are modeled by the
physical plant

physical feedback plant gl,j
xy,t1 ∈ K

M
g

l,j
xy linking the l’th secondary source output to the j’th

reference sensor input, the estimate of gl,j
xy,t1 (copy weights) at multirate level 1 denoted by

©

ĝl,j
xy,t1G

∈ K
M

ĝ
l,j
ey The plant subscript xy establishes the link between an reference input x in

response to a control output signal y. The number of adaptive controller units amounts to
Nx×Ny. Moreover, we will allow each controller unit to employ an individual adaptive filtering
paradigm.

The physical feedback plant in turn has also been divided into a transmission part �

gl
t1G

, a propa-

gation part ∼
gl,j

xy,t1G
and a receive part

�

gj
x,t1. The transmission part that is common to all secondary

paths gl,m
ey , m ∈

¯
Ne but also to all feedback paths gl,j

xy , j ∈
¯
Nx. The same remarks made

to the propagation part ∼
gl,m

ey in subsection 7.2.1 applies to the feedback paths ∼
gl,j

xy . Finally, the
receive part

�

gj is common to all feedback pathes gl,j
xy, l ∈

¯
Ny.

The feedback path is normally undesired as it left alone can lead to performance degradation
and more seriously to instability problems. Therefore, a feedback cancelation scheme [4–6] will
be employed.

The quantities and signals depicted in Figure 7.2 on the following page will be introduced along
the presentation to follow. The same remarks made to the signal flow made in subsection 7.2.1
applies to Figure 7.2.
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⊗

�
wm′,l

t2B

�
c©
wm′,l

t1B

�
c©
wm′,l

t1B

�

gl
y,t1

∼
gl,m

ey,t1

�

gm
e,t1

�

gm
e,↓

c©

ĝl,m
ey,t1G

c©

ĝl,m
ey,t1G

c©

ĝl,m
ey,t2G

ĝl,j
xy,t1G

�

gj
x,t1

�

gj
x,↓

∼
gl,j

xy,t1

gl,m
ey,t1

±

+

∓

±

(±)

+

dm(rm, t)

�

ejl(rm, t)

�

ejl(t1m)

d̂m(t1m)

�̂

eΔw
jl (t1m)

�̂

eΔw
jl (t2m)

�

rjl(rm, t)

�̂

rjl(t1m)

�̂

rΔw
jl (t1m)

�̂

rΔw
jl (t2m)

+�̊

xw
j,t1j

�̊

x
ĝey

j,t1j

�̊

x
ĝey

j,t2j

�̊

y
ĝy

l,t1l

�̊

uw
m,l,m′,t1l

�̊

uw
m,l,m′,t2l

x̂j(t2j )

�

fj(rj , t)±

�

x′
j(rj , t)

∓

�

f̂j(t1j)

xj(rj , t) +

x̂j(t1j)

x̂j(t2j )

�

rl(rl, t)

�

x′
j(t

1
j ) +

�

rl(t1l )

Fig. 7.2: Feedforward Multirate Controller using IMC and mFx based Adaptive Filter.



7.3. Feedforward Controller - Adaptive Filter Topology 305

7.3.2 Error Signals

The error signal
�

em(t1m) is a sensed signal cf. section 5.3. Referring to Figure 7.2 we identify
viz. (5.3.15)

eD
1

m (t1m) −→
�

em(t1m). (7.3.1)

The error signal is the result of the superposition of the disturbance signal dm(t1m) and the total
rejection signal

�

rm(t1m)

�

em(t1m) = dm(t1m)±
�

rm(t1m). (7.3.2)

The disturbance signal dm(t1m) is discussed in subsection 7.3.3. The rejection signal
�

rm(t1m) in
turn is a superposition of in total Ny secondary source driven rejection signals

�

rml
(t1m). The

rejection signal is subject for discussion in subsection 7.3.7 and an expression for
�

rm(t1m) can be
found in (7.3.29). The sign convention is described in subsection 7.2.2.

7.3.3 Disturbance Signals

The disturbance signals are only directly measurable when the rejection signals are turned-off.
In the FFS the feedforward reference signal are as discussed in subsection 7.3.4 derived from
the sensed reference signal and should therefore not be internally generated from the estimated
disturbance as in the feedback topology employing the IMC. A disturbance signal estimate at
multirate level 1 d̂m(t1m) ∈ K, however, is still required for the mFx algorithm and is computed
as

d̂m(t1m) =
�

em(t1m)∓
�̂

rm(t1m). (7.3.3)

In (7.3.3) the estimated rejection signal
�̂

rm(t1m) defined in subsection 7.3.7 viz. (7.3.27) was
introduced. Moreover, the ∓ signs correspond to the ± signs in (7.3.2).

In the multirate system introduced in chapter 5 on page 249 we also need the downsampled
version of the disturbance estimate d̂m(t2m)

d̂m(t2m)
D2

m(F 2
m(θ),M2

↓,m,L2
↑,m)

←−−−−−−−−−−−−−−− d̂m(t1m), (7.3.4)

where the downsampling function D2
m(F 2

m(θ), M2
↓,m, L2

↑,m) in turn was introduced in section 5.3
on page 252.

7.3.4 Unfiltered and Filtered Reference Signals

The number of reference signals xj(t1j) corresponding to xj(rj , t) equals Nx. The reference signal

�

x′
j(t

1
j) is a sensed signal cf. section 5.3. Referring to Figure 7.2 we identify viz. (5.3.15)

�

x
′D1

j (t1j ) −→ �

x′
j(t

1
j). (7.3.5)
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Due to the feedback the actual reference signal sensed
�

x′
j(t

1
j) is a perturbed version of xj(t1j)

�

x′
j(t

1
j ) = xj(t1j)±

�

fj(t1j), (7.3.6)

where, the ± signs follows the sign convention in (7.3.2).

An estimate of the undisturbed reference signal is available from

x̂j(t1j ) =
�

x′
j(t

1
j)∓

�

f̂j(t1j). (7.3.7)

The calculation of
�

f̂j(t1j ) is described in subsection 7.3.8 viz. (7.3.35).

Importantly, is should be recalled that in a FFS employing the feedback cancelation scheme the
reference signal

�

xj(t1j) and the estimated reference signal coincide, that is,

�

xj(t1j ) � x̂j(t1j ). (7.3.8)

Therefore the number of reference signals equals Nx. For the multirate system a downsampled
version of the undisturbed reference signal estimate x̂j(t2j ) is similarly obtained from

x̂j(t2j )
D2

j (F 2
j (θ),M2

↓,j,L2
↑,j)←−−−−−−−−−−−−− x̂j(t1j), (7.3.9)

where the downsampling function D2
j (F 2

j (θ), M2
↓,j , L

2
↑,j) in turn was introduced in section 5.3 on

page 252 and is represented by the receive (down conversion) plant part
�

gj
x,↓ in Figure 7.2.

For later use in subsection 7.3.6 it is useful to create a unfiltered reference signal time-reversed
buffer at multirate level 1

�̊

xw
j,t1j
∈ K�

Mmax
wj according to

�̂̊

xw
j,t1j

=
[

�̂

xj(t1j ) �̂

xj(t1j − 1) . . .
�̂

xj(t1j − �

Mmax
wj + 1)

]
. (7.3.10)

The superscript w indicates that the reference signal is used in connection with the tap-weights.
In the general case each of the controllers might apply a different adaptive filtering paradigm
and consequently also use different model order

�

M j,l. The quantity
�

Mmax
wj ∈ NNx represents the

maximum filter order used for the adaptive tap-weights
�

©
wj,l

t1B
and is obtained from3

�

Mmax
wj �

1≤l≤Ny
max{

�

M j,l}. (7.3.11)

Equivalent to the FBS a triplet of elements
�

ul,m,j(t2l ) constitute the filtered reference signal
�

u(t2l ).
Each element in turn is obtained by filtering the j’th reference signal by the secondary path

estimate
©

ĝl,m
ey . A total of Nx ×Ny ×Ne filtered-reference signals exists. The filtering operation

by the plant is described by Gl,m
ey (x, t2G)

�

ul,m,j(t2l )
Ĝl,m

ey (x,t2G)
←−−−−−−−

�

xj(t2j ). (7.3.12)

3In the literature the controller algorithms will normally be assumed identical and the same applies to the
model order viz.

�

Mmax
wj � M .
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If Gl,m
ey (x, t2G) can be modeled by a linear FIR filter then

�

ul,m,j(t2l ) is simply obtained by multi-
plying an auxiliary unfiltered reference signal (1×Mmax

ĝey
row vector)

�̊

x
ĝey

j,t2j
defined as

�̊

x
ĝey

j,t2j
=

[
�

xj(t2j ) �

xj(t2j − 1) . . .
�

xj(t2j −Mmax
ĝey

+ 1)
]

(7.3.13)

and ĝl,m
ey,t2G

, that is,

�

ul,m,j(t2l ) =
�̊

x
ĝey

j,t2j
(1 : M l,m,2

ĝey
)
©

ĝl,m
ey,t2G

, (7.3.14)

where
�̊

x
ĝey

j,t2j
(1 : M l,m,2

ĝey
) refers to the first M l,m,2

ĝey
elements of

�̊

x
ĝey

j,t2j
.

The quantity Mmax
ĝey

defined in subsection 7.2.4 is the maximum filter order used in the secondary
path models .

We will also create a collection of (Nx×Ny×Ne) time-reversed filtered auxiliary reference signals

�̊

uw
l,m,j,t2l

(1×
�

Mmax
u row vectors) defined by

�̊

uw
l,m,j,t2l

=
[

�

ul,m,j(t2l ) �

ul,m,j(t2l − 1) . . .
�

ul,m,j(t2l − �

Mmax
u + 1)

]
. (7.3.15)

For each reference signal j an amount of
�

Mmax
u elements is required. The quantity

�

Mmax
u ∈ N is

the maximum regressor length involved in the adaptive tap-weights representation
�

wj,l
t2B

. update
for each j = 1, 2, . . . , Nx reference sensor and l = 1, 2, . . . , Ny combination. Hence,

�

Mmax
u �

1≤j≤Nx

1≤l≤Ny

max{
�

M j,l
u }, (7.3.16)

where the quantity
�

M j,l
u ∈ N is the regressor length used for the update of the adaptive tap-

weights
�

wj,l
t1B

in turn is the regressor length used for the update of the adaptive tap-weights
�

wj,l
t1B

that is closely link to the corresponding weight length

�

M j,l,2
u =

{
�

M j,l,2
w + 1, FARLS

�

M j,l,2
w , else.

(7.3.17)

7.3.5 Tap-Weight Update Signals

The error
�̂

eΔw
m (t2m) used for tap-weight adaptation is obtained from

�̂

eΔw
m (t2m) = d̂m(t2m)±

�̂

rΔw
m (t2m), (7.3.18)

where
�̂

rΔw
m (t2m) will be defined in subsection 7.3.7 viz. (7.3.31) and the ± signs correspond to the

± signs in (7.3.2).
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In the remaining part of Part III extensive references will be made to the reference signal or
regressor ui that is a 1×Mu row vector. As discussed in subsection 7.2.5 in the domain of active
control it is the filtered-reference signal

�̊

uw
i that will be used for tap-weights update, that is,

ui ←
�̊

uw
l,m,j,t2l

AC. (7.3.19)

7.3.6 Control Output

In general the adaptive filter output (control output signal)
�

yl(t1l ) depicted in Figure 7.2 on
page 304 is obtained as a summation of control output signal

�

ylj (t
1
l ) components in response to

the Nx reference signals. Each component
�

ylj (t1l ) in turn is obtained by filtering the reference
signal

�

xj,i in some possible non-linear and indeed time varying sense, that is,

�

ylj (t
1
l + 1) �

Wj,l(x,t1j ,t1l )
←−−−−−−−−

�

xj,i. (7.3.20)

The adaptive filtering function is described by the function
�

Wj,l(x, t1j , t
1
l ) .

Similarly to the discussion above, if
�

Wj,l(x, i) is of finite-duration and linear we can apply a FIR

filter implementation and
�

ylj (t1l + 1) is simply obtained by multiplying
�̊

xw
j,t1j

defined in (7.3.10)

and
�

©
wj,l

t1B
, that is,

�

ylj(t
1
l + 1) =

�̊

xw
j,t1j �

©
wj,l

t1B
. (7.3.21)

The total control output signal delivered by the l’th secondary source is under the assumption
of linearity obtained by summing the contribution from each of the Nx reference signals

�

yl(t1l + 1) =
Nx∑
j=1

�̊

xw
j,t1j �

©
wj,l

t1B
. (7.3.22)

For later use we will define a set of Ny auxiliary time-reversed control output signal buffers
�̊

y
ĝy

l,t1l +1

(1×Mmax
ĝl

y
row vectors) according to

�̊

y
ĝy

l,t1l +1
=

[
�

yl(t1l + 1)
�

yl(t1l ) . . .
�

yl(t1l −Mmax
ĝl

y
+ 2)

]
. (7.3.23)

The quantity Mmax
ĝl

y
will be defined in subsection 7.3.9 viz. (7.3.41).

7.3.7 Rejection Signals

The rejection signal component
�

rml
(t1m + 1) depicted in Figure 7.2 on page 304 sensed by the

m’th error sensor is a consequence of the control output signal
�

yl up to time (t1l + 1) that



7.3. Feedforward Controller - Adaptive Filter Topology 309

subsequently is filtered in some possible non-linear and time varying sense by the plant. As in
subsection 7.3.4 the filtering operation by the plant is described by Gl,m

ey (y, t1)

�

rml
(t1m + 1)

Gl,m
ey (y,t1)

←−−−−−−
�

yl(t1l + 1). (7.3.24)

Using the same arguments as in subsection (7.2.7) for the FBS we will obtain an estimate of the
anti-noise signal

�̂

rm(t1m + 1) by

�̂

rm(t1m + 1)
Ĝl,m

ey (y,t1G)
←−−−−−−−

�

yl(t1l + 1). (7.3.25)

If the digital controller is based on an IMC architecture depicted in Figure 4.3 an estimate of the
cancelation signal

�̂

rm(t1m + 1) is required anyway.

If Gl,m
ey (y, t1) is of finite-duration we can use

�̊

y
ĝy

l,t1l +1
defined in (7.3.23). Moreover, if Gl,m

ey (y, t1)

can be modeled by a linear FIR filter then
�̂

rm(t1m +1) is simply obtained by multiplying the first

M l,m,1
ĝey

elements of
�̊

y
ĝy

l,t1l +1
and

©

ĝl,m
ey,t1G

, that is,

�̂

rml
(t1m + 1) =

�̊

y
ĝy

l,t1l +1
(1 : M l,m,1

ĝey
)
©

ĝl,m
ey,t1G

. (7.3.26)

An estimate of the total rejection signal present at the m’th error sensor is then obtained as a
superposition of the contribution from each of the Ny secondary sources

�̂

rm(t1m + 1) =
Ny∑
l=1

�̊

y
ĝy

l,t1l +1
(1 : M l,m,1

ĝey
)
©

ĝl,m
ey,t1G

. (7.3.27)

Similarly, for evaluation purposes and assuming perfect knowledge of the plant response the
”true” cancelation term

�

rm(t1m + 1) is obtained by filtering the control output signal
�

ylj (t1l + 1)

by the physical plant gl,m
ey,t1 according to

�

rml
(t1m + 1) =

�̊

y
ĝy

l,t1l +1
(1 : M l,m

gey
)gl,m

ey,t1 , (7.3.28)

where
�̊

y
ĝy

l,t1l +1
was defined in (7.3.23) but the requirement Mmax

ĝl
ey

on Mmax
ĝl

y
should be computed

from (7.2.28).

The total rejection signal present at the m’th error sensor is likewise obtained as a superposition
of the contribution from each of the Ny secondary sources

�

rm(t1m + 1) =
Ny∑
l=1

�̊

y
ĝy

l,t1l +1
(1 : M l,m

gey
)gl,m

ey,t1 . (7.3.29)

Finally, we will estimate the artificial rejection signal
�̂

rΔw
m (t2m + 1) used for the computation

of
�̂

eΔw
m (t2m + 1). If the system is linear then the principle of interchanging the plant and the
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controller discussed in connection with Fx-assumption viz. (6.3.1) applies and
�̂

rΔw
ml

(t2m + 1) then
is readily obtainable from (7.3.15)

�̂

rΔw
ml

(t2m + 1) =
Nx∑
j=1

�̊

uw
l,m,j,t2l

(1 :
�

M j,l,2
u )

�

wj,l
t2B

. (7.3.30)

By inspection of (7.3.13), (7.3.14) and (7.3.15) we observe that elements of
�

xm dating back up
to

�

Mmax
u + Mĝl,m,2

ey
− 1 iterations back in time are used. The total rejection signal

�̂

rΔw
m (t2m + 1)

”received” by the m’th error sensor is under an assumption of linearity obtained by summing
the contribution from each of the Ny rejection signals

�̂

rΔw
m (t2m + 1) =

Ny∑
l=1

Nx∑
j=1

�̊

uw
l,m,j,t2l

(1 :
�

M j,l,2
u )

�

wj,l
t2B

. (7.3.31)

7.3.8 Feedback Signals

The feedback signal component
�

fjl
(t1j +1) depicted in Figure 7.2 on page 304 sensed by the j’th

sensor is a consequence of the control output signal
�

yl up to time (t1l + 1) that subsequently is
filtered in some possible non-linear and time varying sense by the feedback plant. By analogy
with subsection 7.3.4 the filtering operation by the feedback plant is described by Gl,j

xy (y, t1G).

�

fjl
(t1j + 1)

Gl,j
xy (y,t1G)

←−−−−−−
�

yl(t1l + 1). (7.3.32)

Usually perfect knowledge of Gl,j
xy (y, t1G) is unavailable and has to be estimated from some system

identification process. If we by Ĝl,j
xy(y, t1G) denote the estimate of Gl,j

xy(y, t1G) we can obtain an
estimate of the feedback signal

�

f̂j(t1j + 1) by

�

f̂j(t1j + 1)
Ĝl,j

xy (y,t1G)
←−−−−−−

�

yl(t1l + 1). (7.3.33)

If Gl,j
xy (y, t1G) is of finite-duration we can use

�̊

y
ĝy

tl+1 defined in (7.3.23). It should be recalled that
each control output signal yl(t1l + 1) is linked to Nx reference sensors by the feedback plants.
Different plant model order M l,j

ĝxy
might exist, but it suffices to store the first Mmax

ĝl
xy

�
1≤j≤Nx
max{M l,j

ĝxy
}

control output signal
�

yl elements for each l = 1, 2, . . . , Ny actuator.

Moreover, if Gl,j
xy(y, t1G) can be modeled by a linear FIR filter then

�

f̂j(t1j + 1) is simply obtained

by multiplying the first M l,j
ĝxy

elements of
�̊

y
ĝl,j

xy

l,t1l +1
and

©

ĝl,j
xy,t1G

, that is,

�

f̂jl
(t1j + 1) =

�̊

y
ĝy

l,t1l +1
(1 : M l,j

ĝxy
)
©

ĝl,j
xy,t1G

. (7.3.34)

An estimate of the total feedback signal present at the j’th reference sensor is then obtained as
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a superposition of the contribution from each of the Ny secondary sources

�

f̂j(t1j + 1) =
Ny∑
l=1

�̊

y
ĝy

l,t1l +1
(1 : M l,j

ĝxy
)
©

ĝl,j
xy,t1G

. (7.3.35)

Similarly, for evaluation purposes and assuming perfect knowledge of the plant response the
”true” feedback term

�

fjl
(t1j + 1) is obtained by filtering the control output

�

ylj (t1l + 1) by the

physical plant gl,j
xy,t1G

according to

�

fjl
(t1j + 1) =

�̊

y
ĝy

l,t1l +1
(1 : M l,j

gxy
)gl,j

xy,t1G
, (7.3.36)

where
�̊

y
ĝy

l,t1l +1
was defined in (7.3.23) but the requirement Mmax

ĝl
xy

on Mmax
ĝl

y
should be computed

as

Mmax
ĝl

xy
� max

{
1≤j≤Nx
max{M l,j

ĝxy
},

1≤j≤Nx
max{M l,j

gxy
}
}

, l = 1, 2, . . . , Ny. (7.3.37)

The total feedback signal
�

fj(t1j + 1) present at the j’th reference sensor is likewise obtained as a
superposition of the contribution from each of the Ny secondary sources

�

fj(t1j + 1) =
Ny∑
l=1

�̊

y
ĝy

l,t1l +1
(1 : M l,j

gxy
)gl,j

xy,t1G
. (7.3.38)

7.3.9 Performance Signals

By inspection of Figure 7.2 on page 304 we recognize that the resulting performance error at the
k’th performance sensor

�

ep
k(t1k) is obtained as the superposition of the disturbance signal dp

k(t1k)
and the total rejection signal

�

rp
k(t1k)

�

ep
k(t1k) = dp

k(t1k)±
�

rp
k(t1k), (7.3.39)

where
�

rp
k(t1k) in turn is obtained from an expression equivalent to (7.3.29)

�

rp
k(t1k + 1) =

Ny∑
l=1

�̊

y
ĝy

l,t1l +1
(1 : M l,k

gpy
)gl,k

py,t1G
. (7.3.40)

Now we are in a position to determine Mmax
ĝl

y
introduced in subsection 7.3.6 viz. (7.3.23) that

defines the buffer size of
�̊

y
ĝy

l,t1l +1

Mmax
ĝl

y
� max

{
Mmax

ĝl
ey

, Mmax
ĝl

xy
,
1≤k≤Np

max{M l,k
gpy
}
}

, l = 1, 2, . . . , Ny, (7.3.41)

where the requirement Mmax
ĝl

ey
and Mmax

ĝl
xy

pertinent to the secondary paths and feedback paths
were defined in (7.2.28) and (7.3.37) respectively.
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7.3.10 Tap-Weight Estimates Copying

When the weights have converged the copy weights
�

©
wj,l

t1B
are updated with the new values using

the upsampling function U2
l (F 2

l (θ), M2
↓,l, L

2
↑,l) described in section 5.4 on page 257

�

©
wj,l

t1B

U2
l (F 2

l (θ),M2
↓,l,L

2
↑,l)←−−−−−−−−−−−−−

�

wj,l
t2B

. (7.3.42)

7.3.11 Feedforward Algorithm Summary

The feedforward control adaptive filtering algorithm is constituted by first sensing the error
signal

�

em(t1m) (7.3.1) then estimating the disturbances d̂m(t1m) (7.3.3) and d̂m(t2m) (7.3.4) and
estimating the reference signals x̂j(t1j ) (7.3.7) and downsampled x̂j(t2j) (7.3.9); next creating

the unfiltered reference buffers
�̊

xw
j,t1j

(7.3.10) and
�̊

x
ĝey

j,t2j
(7.3.13). Thereafter the filtered reference

triplet
�

ul,m,j(t2l ) (7.3.14) is determined leading to
�̊

uw
l,m,j,t2l

(7.3.15). Next
�̂

eΔw
m (t2m) used for tap-

weight adaptation is determined viz. (7.3.18). The tap-weights
�

wj,l
t2B

are subsequently updated
(at least at each block-update time) following one of the algorithms detailed in chapter 8 and
Appendix J. Then the control output signals

�

yl(t1l + 1) provided by the system at the next

iteration are computed (7.3.22) followed by the creation of
�̊

y
ĝy

l,t1l +1
in (7.3.23). Moreover, the

rejection signals
�̂

rm(t1m + 1) and successively
�̂

rΔw
m (t2m + 1) are determined from (7.3.27) and

(7.3.31). Finally, also in preparation for the next iteration the feedback signals
�

f̂j(t1j + 1) are

computed from (7.3.35). At regular intervals the copy weights
�

©
wj,l

t1B
are updated from (7.3.42).

For simulation purpose we also need the error signals
�

em(t1m) (7.3.2), the reference signal
�

x′
j(t

1
j)

(7.3.6), rejection signals
�

rm(t1m+1) determined from (7.3.29), feedback signals
�

fjl
(t1j +1) (7.3.38).
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7.3.12 FeedForward Algorithm Computational Considerations

Following the same procedure as subsection 7.2.11 we will here use (7.3.27) to reexpress
�̂

rm(t1m)

�̂

rm(t1m + 1) =
Ny∑
l=1

�̊

y
ĝy

l,t1l +1
(1 : M l,m,1

ĝey
)
©

ĝl,m
ey,t1G

insertion of (7.3.23) gives

�̂

rm(t1m + 1) =
Ny∑
l=1

Ml,m,1
ĝey∑

ig=1
�

yl(t1l − ig + 2)
©

ĝl,m
ey,t1G

(ig)

using (7.3.22) leads to

�̂

rm(t1m + 1) =
Ny∑
l=1

Ml,m,1
ĝey∑

ig=1

Nx∑
j=1

�̊

xw
m,t1j−ig+1�

©
wj,l

t1B

©

ĝl,m
ey,t1G

(ig)

finally by insertion of (7.3.10) we obtain

�̂

rm(t1m + 1) =
Ny∑
l=1

Ml,m,1
ĝey∑

ig=1

Nx∑
j=1

�

Mj,l∑
iw=1

�

xj(t1j − ig − iw + 1)
�

©
wj,l

t1B
(iw)

©

ĝl,m
ey,t1G

(ig).

(7.3.43)

We appreciate from (7.3.43) that in order to obtain an estimate of the rejection signals used
by the IMC the amount of multiplications is determined from the upper limits in the quadruple
summation, that is, Ny, M l,m,1

ĝey
, Nx and

�

M j,l. Hence, if we had used matrix structures instead of
cell structures the computational effort would have been proportional to the product Ny×Mmax

ĝey
×

Nx ×
�

Mmax
wj . Accordingly, if both the number of feedback weights and the number of weights

used to represent the secondary paths are uniformly distributed between 0.5
�

Mmax
wj −

�

Mmax
wj and

0.5Mmax
ĝey

− Mmax
ĝey

respectively then the computational savings of the proposed cell structure
approach would be approximately 37.5%.

Actually, (7.3.43) also implictly accounts for calculations that lead to the expression (7.3.15) for
the filtered-reference signal buffer

�̊

uw
m,l,j,t2l

that is used by the mFx scheme. Moreover, for the
FFS the same degree of computational savings in the determination of the feedback signals are
obtained.
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7.4 Feedforward Feedback Controller - Adaptive Filter Topology

7.4.1 Introduction

The FFFBS - adaptive filtering - interface is depicted in Figure 7.3 on the next page.

By comparison with Figure 7.1 on page 293 and Figure 7.2 on page 304 it is observed that the
FFFBS is basically obtained by combining the FBS and FFS topologies. As mentioned in the
introduction in section 7.1 an underaccent

�
will be enforced to signify that both the FBS and the

FFS contribute to the pertinent signals.

Also for the feedforward-feedback controller we illuminate the interaction between the l’th sec-
ondary source, the j’th feedforward reference sensor and the m’th error sensor. In total Nx×Ny

such reference sensor- secondary source and Ny × Ne secondary source-error sensor combina-
tions exist. By employing feedforward-feedback technique the estimated disturbance signals are
also used as reference signal in the feedback part as discussed in subsection 7.2.1. The effective
number of reference sensors amounts to

Nex = Ne + Nx. (7.4.1)

For a description of the various components depicted in Figure 7.3 the reader should consult
subsection 7.2.1 and subsection 7.3.1. In total Nex ×Ny reference to control output signal tap-
weight vectors exist.

In the presentation to follow we will explain how the various feedback and feedforward signals
should be combined.

7.4.2 Error Signals

The error signal
�
e(t1m) is a sensed signal cf. section 5.3. Referring to Figure 7.3 we identify viz.

(5.3.15)

eD
1

m (t1m) −→
�
em(t1m). (7.4.2)

The error signal is the result of the superposition of the disturbance signal dm(t1m) and the total
rejection signal

�
rm(t1m)

�
em(t1m) = dm(t1m)±

�
rm(t1m). (7.4.3)

The disturbance signal dm(t1m) is discussed in subsection 7.4.3. The rejection signal
�
rm(t1m) in

turn is a superposition of in total Ny secondary source driven rejection signals
�
rml

(t1m). The
rejection signal is subject for discussion in subsection 7.4.7 and an expression for

�
rm(t1m) can be

found in (7.4.14). The sign convention is described in subsection 7.2.2.
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ĝl,m

ey,t2G

c©

ĝl,m
ey,t2G

�

gj
x,t1G

∼
gl,j

xy,t1G

�

gj
x,↓

c©
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+
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eml
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∓
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rml
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d̂m(t2m)

+

vj(rj , t)
+

�
x′

j(rj , t)

�

fjl
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�
yl(t1l ) + �
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+
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∓
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+
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±
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rΔw
ml

(t2m)

+
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x
ĝey
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xw

m′,t1
m′

�̊
x

ĝey

m′,t2
m′

dm(rm, t)

+

�̂
eΔw

ml
(t2m)

�
x′

j(t
1
j)

+

Fig. 7.3: Feedforwardback Controller using IMC and mFx based Adaptive Filter.
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7.4.3 Disturbance Signals

The disturbance signals are only directly measurable when the rejection signals are turned-off.

In the FFFBS the feedforward part
�

x(t1j) of the reference signal is a sensed signal but the feedback
part supposedly employing the IMC

�
x(t1m) should be internally generated from the estimated

disturbance.

A disturbance signal estimate at multirate level 1 d̂m(t1m) ∈ K, however, is required anyway for
the mFx algorithm. It is computed as

d̂m(t1m) =
�
em(t1m)∓

�̂
rm(t1m). (7.4.4)

In (7.4.4) the estimated rejection signal
�̂
rm(t1m) defined in subsection 7.4.7 viz. (7.4.13) was

introduced. Moreover, the ∓ signs correspond to the ± signs in (7.4.3).

7.4.4 Unfiltered and Filtered Reference Signals

The set of reference signals in a FFFBS is constituted by the union of the set
�
x(t1m) of feedback

reference signals and the set
�

x(t1j ) of feedforward reference signals. In a FFFBS the feedback
signal and feedforward signals will be mutually coupled. This also applies to the reference
signals. Therefore, some corrections to the equations for the feedback and feedforward reference
signal provided in subsection 7.2.4 and subsection 7.3.4 respectively should be made.

Unfiltered and Filtered Reference Signals Feedback Part

In analogy with the discussion in subsection 7.2.4 we obtain the reference signals
�
xm′(t1m) as in

(7.2.4), but now taking the effects of the feedforward system into account

�
xm′(t1m) � d̂m(t1m), (7.4.5)

where d̂m is obtained from (7.4.4).

The time-reversed unfiltered auxiliary reference feedback signal buffers
�̊
x

ĝey

m′,t2
m′

and
�̊
xw

m′,t1
m′

are

obtained from (7.2.11) and (7.2.8) respectively. From (7.2.12) and (7.2.14) we obtain the filtered
reference feedback triplet

�
um,l,m′(t2l ) and filtered feedback reference buffer

�̊
uw

m,l,m′,t2l
.

Unfiltered and Filtered Reference Signals Feedforward Part

In subsection 7.4.8 the calculation of the feedback terms
�

f̂m(t1j ) and
�

fj(t1j ) including the effects

of the FFFBS will be made viz. (7.4.15) and (7.4.16).

From subsection 7.3.4 we have the following expressions for the sensed reference signals
�
x′

j(t
1
j)

and estimate of the undisturbed reference signals x̂j(t1j ) viz. (7.3.6) and (7.3.7), included here
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for convenience

�
x′

j(t
1
j) = xj(t1j)±

�

fj(t1j) (7.4.6)

x̂j(t1j ) =
�
x′

j(t
1
j )∓

�

f̂m(t1j ). (7.4.7)

The feedback terms
�

f̂m(t1j) and
�

fj(t1j), however, should now be determined from (7.4.15) and

(7.4.16) respectively (see subsection 7.4.8).

Also in the FFFBS employing the feedback cancelation scheme
�

xj(t1j) will be used as reference
signal, that is,

�

xj(t1j) � x̂j(t1j). (7.4.8)

The time-reversed unfiltered auxiliary reference feedforward signal buffers
�̊

x
ĝey

j,t2
m′

and
�̊

xw
j,t1

m′
are

obtained from (7.3.13) and (7.3.10) respectively. From (7.3.14) and (7.3.15) we obtain the filtered
reference feedforward triplet

�

ul,m,j(t2l ) and filtered feedforward reference buffer
�̊

uw
l,m,j,t2l

.

7.4.5 Tap-Weight Update Signals

We will first estimate
�̂
rΔw
m (t2m) used for the determination of

�̂
eΔw

m (t2m). If the system is linear
we can superpose the feedback

�̂
rΔw
m (t2m) and feedforward

�

rΔw
m (t2m) contributions to the rejection

signal. Moreover, due to the assumption of frozen tap-weights the system can be considered
time-invariant and then the principle of interchanging the plant and the controller discussed in
connection with Fx-assumption viz. (6.3.1) applies and

�̂
rΔw
m (t2m) then is readily obtainable from

(7.2.31) and (7.3.31)

�̂
rΔw
m (t2m) =

�̂
rΔw
m (t2m) +

�̂

rΔw
m (t2m). (7.4.9)

Finally,
�̂
eΔw

m (t2m) is obtained from

�̂
eΔw

m (t2m) = d̂m(t2m)±
�̂
rΔw
m (t2m), (7.4.10)

where the ± signs correspond to the ± signs in (7.4.3). The reference signal ui used for adaptive
tap-weights update follows from the discussion made in subsection 7.2.5 and subsection 7.3.5 viz.
(7.2.18) on page 298 and (7.3.19) on page 308.

7.4.6 Control Output

The adaptive filter output (control output signal)
�

yl(t1l + 1) depicted in Figure 7.3 on page 315
is obtained under the assumption of linearity as the sum of the feedback control output signal

�
yl(t1l + 1) and the feedforward control output signal

�

yl(t1l + 1)

�

yl(t1l + 1) =
�
yl(t1l + 1) +

�

yl(t1l + 1), (7.4.11)
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where
�
yl(t1l + 1) and

�

yl(t1l + 1) in turn are determined in (7.2.21) and (7.3.22) respectively.

For later use we will define a set of Ny auxiliary time-reversed control output signal buffers
�

ẙ
ĝy

l,t1l +1

(1×M l
ĝy

row vectors) according to

�

ẙ
ĝy

l,t1l +1
=

[
�

yl(t1l + 1)
�

yl(t1l ) . . .
�

yl(t1l −Mmax
ĝl

y
+ 2)

]
. (7.4.12)

The quantity Mmax
ĝl

y
was defined in subsection 7.3.8 viz. (7.3.41).

7.4.7 Rejection Signals

The rejection signal
�
rm(t1m + 1) depicted in Figure 7.3 on page 315 sensed by the m’th sensor

is a consequence of the combined control output signals
�

yl up to time (t1l + 1) that subsequently
is filtered in some possible non-linear and time varying sense by the plant.

In analogy with subsection 7.2.7 and subsection 7.3.7 an estimate of the total rejection signal

�̂
rm(t1m + 1) present at the m’th error sensor is obtained as a superposition of the contribution
from each of the Ny secondary sources

�̂
rm(t1m + 1) =

Ny∑
l=1

�

ẙ
ĝy

l,t1l +1
(1 : M l,m,1

ĝey
)
©

ĝl,m
ey,t1G

, (7.4.13)

where
�

ẙ
ĝy

l,t1l +1
is expressed in (7.4.12). Similarly, for evaluation purposes and assuming perfect

knowledge of the plant response the ”true” total rejection signal
�
rm(t1m + 1) present at the m’th

error sensor is likewise obtained as a superposition of the contribution from each of the Ny

secondary sources

�
rm(t1m + 1) =

Ny∑
l=1

�

ẙ
ĝy

l,t1l +1
(1 : M l,m

gey
)gl,m

ey,t1 . (7.4.14)

7.4.8 Feedback Signals

The feedback signal component
�

fjl
(t1j + 1) depicted in Figure 7.3 on page 315 sensed by the

j’th sensor is a consequence of the combined control output signals
�

yl up to time (t1l + 1) that
subsequently is filtered in some possible non-linear and time varying sense by the feedback plant.
By analogy with subsection 7.3.8 we can under the usual assumption of linearity determine
an estimate of the total feedback signal

�

f̂j(t1j + 1) present at the j’th reference sensor as a
superposition of the contribution from each of the Ny secondary sources

�

f̂j(t1j + 1) =
Ny∑
l=1

�

ẙ
ĝy

l,t1l +1
(1 : M l,j

ĝxy
)
©

ĝl,j
xy,t1G

. (7.4.15)
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Similarly, for evaluation purposes and assuming perfect knowledge of the plant response the
”true” total feedback signal

�

fj(t1j + 1) present at the j’th reference sensor is likewise obtained as
a superposition of the contribution from each of the Ny secondary sources

�

fj(t1j + 1) =
Ny∑
l=1

�

ẙ
ĝy

l,t1l +1
(1 : M l,j

gxy
)gl,j

xy,t1G
, (7.4.16)

where
�

ẙ
ĝy

l,t1l +1
is defined in subsection 7.4.6 viz. (7.4.12).

7.4.9 Performance Signals

By inspection of Figure 7.3 on page 315 we recognize that the resulting performance error at the
k’th performance sensor

�
ep

k(t1k) is obtained as the superposition of the disturbance signal dp
k(t1k)

and the total rejection signal
�
rp
k(t1k + 1)

�
ep

k(t1k) = dp
k(t1k)±

�
rp
k(t1k), (7.4.17)

where
�
rp
k(t1k) in turn is obtained from an expression equivalent to (7.4.14)

�
rp
k(t1k + 1) =

Ny∑
l=1

�

ẙ
ĝy

l,t1l +1
(1 : M l,k

gpy
)gl,k

py,t1G
, (7.4.18)

where
�

ẙ
ĝy

l,t1l +1
is defined in subsection 7.4.6 viz. (7.4.12).

7.4.10 Feedforwardback Algorithm Summary

The feedforward-feedback control adaptive filtering algorithm is constituted by first sensing the
error signal

�
em(t1m) (7.4.2) then estimating the disturbances d̂m(t1m) (7.4.4) and estimating the

reference signals
�̂
x′

j(t
1
j ) (7.4.7); next creating the unfiltered reference buffers

�̊
x

ĝey

m′,t2
m′

and
�̊

x
ĝey

j,t2
m′

from (7.2.11) and (7.3.13);
�̊
xw

m′,t1
m′

and
�̊

xw
j,t1j

from (7.2.8) and (7.3.10).

Thereafter the filtered reference triplets
�
um,l,m′(t2l ) and

�

ul,m,j(t2l ) are computed from (7.2.12)
and (7.3.14) leading to the filtered buffers

�̊
uw

m,l,m′,t2l
and

�̊

uw
l,m,j,t2l

from (7.2.14) and (7.3.15).

Next
�̂
rΔw
m (t2m) and successively

�̂
eΔw

m (t2m) used for tap-weight adaptation are determined viz.
(7.4.9) and (7.4.10). The tap-weights are subsequently updated (at least at each block-update
time) following one of the algorithms detailed in chapter 8 and Appendix J. Then the control
output signals

�

yl(t1l + 1) provided by the system at the next iteration are computed (7.4.11)

followed by the creation of
�

ẙ
ĝy

l,t1l +1
in (7.4.12). Moreover, the rejection signals

�̂
rm(t1m + 1) are

determined from (7.4.13). Finally, also in preparation for the next iteration the feedback signals

�

f̂j(t1j + 1) are computed from (7.4.15).
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For simulation purpose we also need the error signals
�
em(t1m) (7.4.3), the reference signal

�
x′

j(t
1
j)

(7.4.6), rejection signals
�
rm(t1m+1) and

�
rp
k(t1k+1) determined from (7.4.14) and (7.4.18), feedback

signals
�

fjl
(t1j +1) (7.3.38). Finally, the performance measure

�
ek(t1k) can be assessed from (7.4.17).

7.5 Feedforwardback Integrated Communication Controller - Adaptive Filter
Topology

7.5.1 Introduction

In practical ANR systems a side requirement of distortion free transmission of communication
signals, audio signals etc. is often posed on the system. For example for airborne operation one
of the objective of introducing active noise reduction is to improve the speech intelligibility, but
also to increase the benefits from 3-D audio cuing signals. Another example is found in cars
equipped with an ANR facility. Here the system should provide substantial noise suppression
while preserving high fidelity sound in the entertainment system. Hence, the ANR-system shall
be designed so as to avoid cancelation of such information bearing signals. In this section
we will present a technique that was originally proposed in [7] that we will augment to the
multi-channel FFFBS that can be applied to warrant the objective of distortion free transmission
communication signals. Moreover, online-system identification which is the topic of section 7.6
on page 326 also requires the introduction of a well known identification signal without this
leading to a perceivable performance degradation. Hence, the following discussion also applies
to the ANR part of a FFFBICIDS.

The feedforward-feedback integrated communication system (FFFBICS) - adaptive filtering - in-
terface is depicted in Figure 7.4 on the next page.

In addition to the plain FFFBS topology in Figure 7.3 on page 315 the FFFBICS is basically
obtained by adding provision for communication. In center of Figure 7.4 we see the symbol 	
which refers to the signal source in a FFFBICS. In order to reduce the overall system complexity
and costs the communication signals are assumed to use existing hardware provided by the
secondary sources. In general a total of Ny signal sources exist.

For a description of the various components depicted in Figure 7.4 the reader should consult
subsection 7.2.1, subsection 7.3.1 and subsection 7.4.1. As mentioned in the introduction in
section 6.1 underaccent

�
is used to signify a pure signal source and an underaccent

�
will be

enforced to signify that contributions from the signal sources are included in the pertinent signals
in addition to the contributions from the plain FFFBS.

In the presentation to follow we will explain how the integrated communication (IC)-system and
the ANR-system successfully can operate simultaneously together.
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ĝl,m
ey,t2G

�

gj
x,t1G

∼
gl,j

xy,t1G

�

gj
x,↓

c©
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Fig. 7.4: Feedforwardback Integrated Communication Controller using IMC and mFx based Adaptive Filter.
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7.5.2 Error Signals

The error signal
�
e(t1m) is a sensed signal cf. section 5.3. Referring to Figure 7.4 we identify viz.

(5.3.15)

eD
1

m (t1m) −→
�
em(t1m). (7.5.1)

The error signal is the result of the superposition of the disturbance signal dm(t1m) and the total
rejection signal

�
rm(t1m)

�
em(t1m) = dm(t1m)±

�
rm(t1m). (7.5.2)

The disturbance signal dm(t1m) is discussed in subsection 7.5.3. The rejection signal
�
rm(t1m) in

turn is a superposition of in total Ny secondary source driven rejection signals
�
rml

(t1m). The
rejection signal is subject for discussion in subsection 7.5.7 and an expression for

�
rm(t1m) can be

found in (7.5.10). The sign convention is described in subsection 7.2.2

7.5.3 Disturbance Signals

The disturbance signals are only directly measurable when the rejection signals and the signal
sources are turned-off.

In the FFFBICS the feedforward part
�

x(t1j ) of the reference signal is a sensed signal but the
feedback part supposedly employing the IMC

�
x(t1m) should be internally generated from the

estimated disturbance.

A disturbance signal estimate at multirate level 1 d̂m(t1m) ∈ K, however, is required anyway for
the mFx algorithm. It is computed as

d̂m(t1m) =
�
em(t1m)∓

�̂
rm(t1m). (7.5.3)

In (7.5.3) the estimated rejection signal
�̂
rm(t1m) defined in subsection 7.5.7 viz. (7.5.9) was in-

troduced. Moreover, the ∓ signs correspond to the ± signs in (7.5.2). From Figure 7.4 it can
be observed that by employing the IMC the contribution from the signal source is automatically
canceled in the estimate d̂m(t1m) of the disturbance dm(t1m) provided that the secondary source
model is sufficiently accurate.

7.5.4 Unfiltered and Filtered Reference Signals

The generation of the unfiltered- and filtered-reference signals follows the procedure in subsection 7.4.4.
Hence, we will reestablish the pertinent equation and comment on the changes to be made.
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Unfiltered and Filtered Reference Signals Feedback Part

The reference signals
�
xm′(t1m) is obtained as in (7.2.4), but now taking the effects of the feedfor-

ward system and the effects of the audio signals into account

�
xm′(t1m) � d̂m(t1m), (7.5.4)

where d̂m is obtained from (7.5.3).

The time-reversed unfiltered auxiliary reference feedback signal buffers
�̊
x

ĝey

m′,t2
m′

and
�̊
xw

m′,t1
m′

are

obtained from (7.2.11) and (7.2.8) respectively. From (7.2.12) and (7.2.14) we obtain the filtered
reference feedback triplet

�
um,l,m′(t2l ) and filtered feedback reference buffer

�̊
uw

m,l,m′,t2l
.

Unfiltered and Filtered Reference Signals Feedforward Part

From subsection 7.3.4 we have the following expressions for the sensed reference signals
�

x′
j(t

1
j)

and estimate of the undisturbed reference signals x̂j(t1j) viz. (7.3.6) and (7.3.7), included here
for convenience

�
x′

j(t
1
j) =

�

xj(t1j)±
�

fj(t1j) (7.5.5)

x̂j(t1j ) =
�

x′
j(t

1
j )∓

�

f̂m(t1j ). (7.5.6)

The feedback terms
�

f̂m(t1j) and
�

fj(t1j), however, should now be determined from (7.5.11) and

(7.5.12) respectively (see subsection 7.5.8).

The time-reversed unfiltered auxiliary reference feedforward signal buffers
�̊

x
ĝey

j,t2
m′

and
�̊

xw
j,t1

m′
are

obtained from (7.3.13) and (7.3.10) respectively. From (7.3.14) and (7.3.15) we obtain the filtered
reference feedforward triplet

�

ul,m,j(t2l ) and filtered feedforward reference buffer
�̊

uw
l,m,j,t2l

.

The reference signal ui used for adaptive tap-weights update follows from the discussion made
in subsection 7.2.4 and subsection 7.3.4 viz. (7.2.18) on page 298 and (7.3.19) on page 308.

7.5.5 Tap-Weight Update Signals

Recalling from the discussion made in subsection 6.3.2 in connection with the mFx technique that
instead of using the measured error signal e(i) for tap-weight recursion it is arguable more correct
to use an estimate of what the error signal would have been provided that the tap-weights had
been frozen for a period corresponding to the impulse response of the plant. In addition the
error shall not include contributions from the signal sources. By applying the same arguments
concerning the use of the IMC model as in subsection 7.5.3 we can therefore conclude that the
expression (7.4.10) for

�̂
eΔw

m (t2m) for the tap-weight update holds for the FFFBICS provided that
hatgey is sufficient accurate.
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7.5.6 Combined Control and Signal Source Output

In the FFFBICS the combined output
�

yl(t1l + 1) depicted in Figure 7.4 on page 321 contain the

control output signal contribution
�

yl(t1l + 1) from the plain FFFBS as well as the signal source

�

yl(t1l + 1). Under the usual assumption of linearity
�

yl(t1l + 1) is obtained as the sum of the

feedforward-feedback control output signal
�

yl(t1l + 1) and the signal source
�

yl(t1l + 1)

�

yl(t1l + 1) =
�

yl(t1l + 1) +
�

yl(t1l + 1), (7.5.7)

where
�

yl(t1l + 1) in turn is determined in (7.4.11).

For later use we will define a set of Ny auxiliary time-reversed control output signal buffers
�

ẙ
ĝy

l,t1l +1

(1×M l
ĝy

row vectors) according to

�

ẙ
ĝy

l,t1
l
+1

=
[

�

yl(t1l + 1)
�

yl(t1l ) . . .
�

yl(t1l −Mmax
ĝl

y
+ 2)

]
. (7.5.8)

The quantity Mmax
ĝl

y
was defined in subsection 7.3.8 viz. (7.3.41).

7.5.7 Rejection Signals

The rejection signal
�
rm(t1m + 1) depicted in Figure 7.4 on page 321 sensed by the m’th sensor

is a consequence of the combined control output signals
�

yl up to time (t1l + 1) that subsequently
is filtered in some possible non-linear and time varying sense by the plant.

In analogy with subsection 7.2.7 and subsection 7.3.7 an estimate of the total rejection signal

�̂
rm(t1m + 1) present at the m’th error sensor is obtained as a superposition of the contribution
from each of the Ny secondary sources

�̂
rm(t1m + 1) =

Ny∑
l=1

�

ẙ
ĝy

l,t1l +1
(1 : M l,m,1

ĝey
)
©

ĝl,m
ey,t1G

, (7.5.9)

where
�

ẙ
ĝy

l,t1l +1
is expressed in (7.5.8). Similarly, for evaluation purposes and assuming perfect

knowledge of the plant response the ”true” total rejection signal
�
rm(t1m + 1) present at the m’th

error sensor is likewise obtained as a superposition of the contribution from each of the Ny

secondary sources

�
rm(t1m + 1) =

Ny∑
l=1

�

ẙ
ĝy

l,t1l +1
(1 : M l,m

gey
)gl,m

ey,t1 . (7.5.10)
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7.5.8 Feedback Signals

The feedback signal component
�

fjl
(t1j + 1) depicted in Figure 7.4 on page 321 sensed by the

j’th sensor is a consequence of the combined control output signals
�

yl up to time (t1l + 1) that
subsequently is filtered in some possible non-linear and time varying sense by the feedback plant.
By analogy with subsection 7.3.8 we can under the usual assumption of linearity determine
an estimate of the total feedback signal

�

f̂j(t1j + 1) present at the j’th reference sensor as a
superposition of the contribution from each of the Ny secondary sources

�

f̂j(t1j + 1) =
Ny∑
l=1

�

ẙ
ĝy

l,t1l +1
(1 : M l,j

ĝxy
)
©

ĝl,j
xy,t1G

. (7.5.11)

Similarly, for evaluation purposes and assuming perfect knowledge of the plant response the
”true” total feedback signal

�

fj(t1j + 1) present at the j’th reference sensor is likewise obtained as
a superposition of the contribution from each of the Ny secondary sources

�

fj(t1j + 1) =
Ny∑
l=1

�

ẙ
ĝy

l,t1l +1
(1 : M l,j

gxy
)gl,j

xy,t1G
, (7.5.12)

where
�

ẙ
ĝy

l,t1l +1
is defined in subsection 7.5.6 viz. (7.5.8).

7.5.9 Performance Signals

By inspection of Figure 7.4 on page 321 we recognize that the resulting performance error at the
k’th performance sensor

�
ep

k(t1k) is obtained as the superposition of the disturbance signal dp
k(t1k)

and the total rejection signal
�
rp
k(t1k + 1)

�
ep

k(t1k) = dp
k(t1k)±

�
rp
k(t1k), (7.5.13)

where
�
rp
k(t1k) in turn is obtained from an expression equivalent to (7.5.10)

�
rp
k(t1k + 1) =

Ny∑
l=1

�

ẙ
ĝy

l,t1l +1
(1 : M l,k

gpy
)gl,k

py,t1G
, (7.5.14)

where
�

ẙ
ĝy

l,t1l +1
is defined in subsection 7.5.6 viz. (7.5.8).

7.5.10 Feedforwardback Algorithm Summary

The feedforward-feedback integrated communication control adaptive filtering algorithm is con-
stituted by first sensing the error signal

�
em(t1m) (7.5.1) then estimating the disturbances d̂m(t1m)

(7.5.3) and estimating the reference signals
�̂
x′

j(t
1
j) (7.5.6); next creating the unfiltered reference

buffers
�̊
x

ĝey

m′,t2
m′

and
�̊

x
ĝey

j,t2
m′

from (7.2.11) and (7.3.13);
�̊
xw

m′,t1
m′

and
�̊

xw
j,t1j

from (7.2.8) and (7.3.10).
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Thereafter the filtered reference triplets
�
um,l,m′(t2l ) and

�

ul,m,j(t2l ) are computed from (7.2.12)
and (7.3.14) leading to the filtered buffers

�̊
uw

m,l,m′,t2
l

and
�̊

uw
l,m,j,t2

l
from (7.2.14) and (7.3.15).

Next
�̂
rΔw
m (t2m) and successively

�̂
eΔw

m (t2m) used for tap-weight adaptation are determined viz.
(7.4.9) and (7.4.10). The tap-weights are subsequently updated (at least at each block-update
time) following one of the algorithms detailed in chapter 8 and Appendix J. Then the control
output signals

�

yl(t1l + 1) provided by the system at the next iteration are computed (7.5.7)

followed by the creation of
�

ẙ
ĝy

l,t1l +1
in (7.5.8). Moreover, the rejection signals

�̂
rm(t1m + 1) are

determined from (7.5.9). Finally, also in preparation for the next iteration the feedback signals

�

f̂j(t1j + 1) are computed from (7.5.11).

For simulation purpose we also need the error signals
�
em(t1m) (7.5.2), the reference signal

�
x′

j(t
1
j)

(7.5.5), rejection signals
�
rm(t1m+1) and

�
rp
k(t1k+1) determined from (7.5.10) and (7.5.14), feedback

signals
�

fjl
(t1j +1) (7.3.38). Finally, the performance measure

�
ek(t1k) can be assessed from (7.5.13).

7.6 Feedforwardback Integrated Communication Controller On-Line System
Identification - Adaptive Filter Topology

7.6.1 Introduction

In this section we will demonstrate how on-line system identification functionality can be added
to the FFFBICS. The main challenge is to achieve convergence of the system identification pro-
cess despite the effects of the operating ANR-system. The similar problem encountered when
introducing a signal source to an ANR-system was described in section 7.5.

The feedforward-feedback integrated communication control system including system identifica-
tion- adaptive filtering - interface is depicted in Figure 7.5 on the next page.
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�
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�
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�
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+

�
eml
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∓
�̂
rml

(t1m)

d̂m(t2m)

+

vj(rj , t)
+

�
x′

j(rj , t)

�

fjl
(rj , t)

±

�
yl(t1l ) + �

yl(t1l )

�

ẙ
ĝy

l,t1l
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�
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+

�
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∓

�
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�
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�
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�
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+
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ĝl
ey

t1G�̊
x

ĝl
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xy (t1G)

+

�̂
rΔw
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+
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±
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+
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x
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xw

m′,t1
m′

�̊
x

ĝey

m′,t2
m′

dm(rm, t)

+

�̂
eΔw

ml
(t2m)

�
x′

j(t
1
j)

+

Fig. 7.5: Feedforwardback Integrated Communication Controller using IMC and mFx based Adaptive Filter with on-line system identification.
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By comparison with Figure 7.4 on page 321 we observe that the FFFBICIDS is basically obtained
by adding provision for system identification to the plain FFFBICS topology. For a description
of the various components depicted in Figure 7.5 the reader should consult subsection 7.2.1,
subsection 7.3.1, subsection 7.4.1 and subsection 7.5.1.

In Figure 7.5 we observe (indicated by a dashed line) that the identification signal
�

yl(t1G) is feed

into an adaptive filter on the right where the tap-weights are identical to ĝl,m
ey (t1G) for secondary

path estimation. The number of such secondary path estimation adaptive filters amounts to
Ny ×Ne. At the same time the identification signal

�

yl(t1G) is feed into an adaptive filter on the

left where the tap-weights are identical to ĝl,j
xy(t1G) for feedback path estimation. The number

of such feedback path estimation adaptive filters amounts to Ny ×Nx. In system identification
the plant is to be estimated and the process can be considered pure electrical (”plantless”) as
regards the adaptive filter as opposed to the active noise control (ANC) adaptive filter.

The system identification of the secondary paths and feedback paths will take place at regular,
but highly application dependent intervals. We will use the plant estimation time index multirate
level 1 t1G ∈ N and plant estimation time index multirate level 2 t2G ∈ N to represent the time
where a system identification process is taking place. In the presentation to follow we will explain
how the system identification can operate on-line (as opposed to off-line) inside an ANR-system.

7.6.2 Reference Signals

The identification signals
�
xĝl,m

ey (t1G) and
�
xĝl,j

xy (t1G) that may include communication signal, 3-D
audio information etc. coincide with the reference signals for system identification, that is,

�
xĝl

ey (t1G) =
�
xĝl

xy (t1G) �
�

yl(t1G), l ∈
¯
Ny. (7.6.1)

For each secondary source we will constitute a time-reversed unfiltered auxiliary reference signal

buffer
�̊
x

ĝl
y

t1G
(1 × (Mmax

ĝl
y

+ 1) row vector) according to

�̊
x

ĝl
y

l,t1G
=

[
�
xl(t1G)

�
xl(t1G − 1) . . .

�
xl(t1G −Mmax

ĝl
y

)
]
, l ∈

¯
Ny, (7.6.2)

where the quantity Mmax
ĝl

y
was defined in subsection 7.3.8 viz. (7.3.41). The superscript ĝl

y in-
dicates that the reference signal is used in connection with plant estimates involving the l’th
secondary source. In the general case each of the controllers might apply a different adaptive
filtering paradigm and consequently also use different model order M l,m

ĝey
and M l,j

ĝxy
. The reason

for using a 1 × (Mmax
ĝl

y
+ 1) row vector is to accommodate adaptive filter algorithms that use a

regressor length Mu = M + 1 as detailed in Appendix J on page 737.

As no external pathes are involved in the two adaptive filters no filtering of reference signals is
required.

7.6.3 Desired Signals

For single-input and single-output (SISO) and single-input and multiple-output (SIMO) systems
the system identification procedure will usually involve one of the adaptive filter processing
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schemes described in chapter 8, Appendix J and Appendix L. In system identification the dis-
turbance signals are normally obtained as the outputs from stimulating the plants to be identified
with some reference signals, e.g.,

�
xĝl

ey (t1G). As the adaptive filters during the adaptation phase
should converge to the same output the disturbance signals are also referred to as desired signals.
This choice of name will also be used in this report to avoid possible ambiguity between AC dis-
turbance terms and system identification disturbance terms. The disturbance signals dm(rm, t)
and reference signals xj(rj , t) depicted in Figure 7.5 on page 327 are considered as measurement
noise terms for the system identification. Unfortunately, however, in an ANR-system the external
disturbances can normally not be turned-off during the time of system identification.

For the system identification of SIMO MIMO systems some precautions most be taking. In the
SIMO and multiple-input and multiple-output (MIMO) case at least two possibilities for obtaining
estimates of all the plants involved exist. In a sequential system identification process only a single
output is activated at a time. During system identification all the adaptive filter corresponding
to the secondary paths and feedback paths involving only, say, the l1’th actuator, that is Gm,l1

ey

and Gj,l1
xy are then brought into an adaptive mode while the adaptive filters associated with

the remaining secondary paths and feedback paths are fixed. Upon converging actuator l2 is
excited by an identification signal

�
xĝl2

ey (t1G). The Ny actuators are then sequentially activated in
this manner. In a parallel system identification process all actuators are simultaneously excited
but with uncorrelated identification signals. Briefly speaking the parallel system identification
scheme will normally provide the fastest plant estimation of the Ny × Ne secondary paths and
Ny × Nx feedback paths while the sequential system identification scheme will be more robust
and provide more accurate results.

Desired Signals Secondary Pathes

Fortunately, however, during on-line operation of the ANR-system rejection signals tentatively
seek to minimize the resulting error signals. If the ANR-system should facilitate simultaneous
multi-channel system identification contributions from other secondary source identification sig-
nals will also be present and should accordingly be taking into account.

An estimate of the desired signal d̂ĝl,m
ey (t1G) can be derived from the error signal

�
em(t1G) by

subtracting the identification signal4 contributions from other secondary sources

d̂ĝl,m
ey (t1G) =

�
em(t1m)−

�̂
rm−l

(t1m), (7.6.3)

where the quantity
�̂
rm−l

(t1m) is an estimate of the total rejection signal caused by the identifica-
tion signals excluding the self term. In subsection 7.6.7 an expression for

�̂
rm−l

(t1G) is provided
viz. (7.6.10).

Desired Signals Feedback Pathes

During on-line operation of the ANR-system the feedback signals are a consequence of the control
output signals being appropriately dosed such as to minimize the resulting error signals. The
feedback signals will therefore pertubate the reference signals, but generally not decrease the level
of the reference signals. Hence the on-line system identification of the feedback paths normally

4By definition an identification signal does not take part of the AC.
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present a greater identification challenge to the system design as compared with on-line of the
secondary paths. On the other hand if the feedback signals are veak their influence on the ANR

performance will be marginal.

The desired signal d̂ĝl,j
xy (t1G) is then readily available from the estimated feedforward reference

signal defined in (7.5.6)

d̂ĝl,j
xy (t1G) =

�̂
x′

j(t
1
j )−

�

f̂j−l
(t1j), (7.6.4)

where the quantity
�

f̂j−l
(t1j) is an estimate of the total feedback signal caused by the identification

signals excluding the self term. In subsection 7.6.7 an expression for
�

f̂j−l
(t1G) is provided viz.

(7.6.12).

The performance of the system identification process will largely be dependent on the degree
of correlation between the identification signals and the disturbance signals and the feedback
signals pertinent to the secondary paths and feedback paths estimation respectively.

7.6.4 Output

The filtering operation by the plants are generally described by the functions Gl,m
ey (y, t1G) and

Gl,j
xy(y, t1G) pertinent for the secondary path and feedback path respectively. Similarly to the dis-

cussion made in subsection 7.2.6 and subsection 7.3.6 we will assume Gl,m
ey (y, t1G) and Gl,j

xy(y, t1G)
to be of finite-duration and linear. By applying a FIR filter implementation the secondary path
system identification output signal

�

yĝl,m
ey (t1G + 1) and the feedback path system identification

output signal
�

yĝl,j
xy (t1G + 1) are simply obtained by multiplying

�̊
x

ĝl
y

t1G
defined in (7.6.2) by ĝl,m

ey,t1G

and ĝl,j
xy,t1G

respectively

�

yĝl,m
ey (t1G) =

�̊
x

ĝl
y

t1G
(1 : M l,m,1

ĝey
)ĝl,m

ey,t1G
(7.6.5)

and

�

yĝl,j
xy (t1G) =

�̊
x

ĝl
y

t1G
(1 : M l,j,1

ĝxy
)ĝl,j

xy,t1G
. (7.6.6)

The plant model order quantities M l,m,1
ĝey

and M l,j,1
ĝxy

were introduced in subsection 7.2.7 and
subsection 7.3.7 respectively.

7.6.5 Error Signals

The secondary path and feedback path estimation error signals eĝl,m
ey (t1G) and eĝl,j

xy (t1G) are es-
timated by subtracting5 the system identification output signals

�

yĝl,m
ey (t1G),

�

yĝl,j
xy (t1G) from the

5To the authors best knowledge the - sign is always applied in system identification.
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disturbance signals d̂ĝl,m
ey (t1G) and d̂ĝl,j

xy (t1G) respectively

�
eĝl,m

ey (t1G) = d̂ĝl,m
ey (t1G)−

�

yĝl,m
ey (t1G) (7.6.7)

and

�
eĝl,j

xy (t1G) = d̂ĝl,j
xy (t1G)−

�

yĝl,j
xy (t1G). (7.6.8)

The disturbance signal d̂ĝl,m
ey (t1G) and d̂ĝl,j

xy (t1G) were introduced in subsection 7.6.3 viz. (7.6.3)
and (7.6.4). The control output signal

�

yĝl,m
ey (t1G) and

�

yĝl,j
xy (t1G) were subject for discussion in

subsection 7.6.4 viz. (7.6.5) and (7.6.6).

7.6.6 Tap-Weight Update Signals

Recalling from the discussion made in subsection 6.3.2 the argument for employing the mFx tech-
nique was to avoid performance degradation in terms of a lower convergence rate, an increased
residual power and possibly instability. This problem was attributed to the lack of synchroniza-
tion between the output y(i) of the adaptive filter and the resulting error e(i) due to the filtering
and inherent time-delays caused by the plant. However, in the ’plantless’ case the system identi-
fication output signal and error signal are in full synchronization. The estimated errors

�̂
eĝl,m

ey (t1G)

and
�̂
eĝl,j

xy (t1G) provided in (7.6.7) and (7.6.8) will therefore be used for tap-weight update for the
secondary path and feedback path estimation respectively.

In the domain of electrical control the adaptive filters use the unfiltered-reference signal
�̊
xw

i .

ui =

{
�
xĝl,m

ey (t1G) secondary paths,

�
xĝl,j

xy (t1G) feedback paths.
(7.6.9)

7.6.7 Identification Signal Cross Terms

As discussed in subsection 7.6.3 a non-vanishing correlation between the individual identification
signals can lead to degradation of the system identification. However, by the subtracting the
estimated effects from the other identification signals on the desired signals this can largely be
compensated for. Following a procedure equivalent to subsection 7.5.7 an estimate of the total
identification signal-driven rejection signal

�̂
rm−l

(t1G + 1) present at the m’th error sensor but
excluding the l’th secondary source is obtained as a superposition of the identification signal
contribution from each of the Ny − 1 other secondary sources
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�̂
rj−l

(t1G + 1) =
Ny∑

l′=1
l′ �=l

�̊
x

ĝl′
y

t1G
(1 : M l′,m

ĝey
)ĝl′,m

ey,t1G
(7.6.10)

=
Ny∑

l′=1
l′ �=l

�

yĝl′,m
ey (t1G + 1), (7.6.11)

where
�̊
x

ĝl
y

t1G
is defined in (7.6.2).

Similarly, an estimate of the total identification signal-driven feedback signal
�

f̂j−l
(t1G +1) present

at the j’th reference sensor but excluding the l’th secondary source is obtained as a superposition
of the identification signal contribution from each of the Ny − 1 other secondary sources

�

f̂j−l
(t1G + 1) =

Ny∑
l′=1
l′ �=l

�̊
x

ĝl′
y

t1G
(1 : M l′,j

ĝxy
)ĝl′,j

xy,t1G
(7.6.12)

=
Ny∑

l′=1
l′ �=l

�

yĝl′,j
xy (t1G + 1). (7.6.13)

These terms vanish if the Ny actuators are invoked in a sequential system identification scheme.

7.6.8 Plant Estimates Copying

When the system identification has converged the copy plant estimates
©

ĝl,m
ey,t1G

and
©

ĝl,j
xy,t1G

are
updated with the new values

©

ĝl,m
ey,t1G

= ĝl,m
ey,t1G

. (7.6.14)

and

©

ĝl,j
xy,t1G

= ĝl,j
xy,t1G

. (7.6.15)

Moreover, the corresponding decimated plant estimates are obtained from

©

ĝl,m
ey,t2G

D2
l (F 2

j (θ),M2
↓,l,L

2
↑,l)←−−−−−−−−−−−−− ĝl,m

ey,t1G
(7.6.16)

and

©

ĝl,j
xy,t2G

D2
j (F 2

j (θ),M2
↓,j,L2

↑,j)←−−−−−−−−−−−−− ĝl,j
xy,t1G

, (7.6.17)
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where the function D2
l (F

2
j (θ), M2

↓,l, L
2
↑,l) and D2

j (F 2
j (θ), M2

↓,j , L
2
↑,j) were defined in section 5.3.

7.6.9 System Identification Algorithm Summary

The ANC system identification adaptive filtering algorithm is constituted by first generating the
stimuli

�

yl(t1G) and using the identity (7.6.1) to form the reference signals
�
xĝl

ey (t1G) and
�
xĝl

xy (t1G),

next creating the unfiltered reference buffer
�̊
x

ĝl
y

t1G
from (7.6.2); then estimating the desired signals

d̂ĝl,m
ey (t1G) and d̂ĝl,j

xy (t1G) from (7.6.3) and (7.6.4). Thereafter the identification signal-driven control
output signals

�

yĝl,m
ey (t1G) and

�

yĝl,j
xy (t1G) provided by the system at the next iteration are computed

(7.6.5) and (7.6.6). The error signals
�̂
eĝl,m

ey (t1G) and
�̂
eĝl,j

xy (t1G) are subsequently determined from
(7.6.7) and (7.6.8).

The tap-weights are subsequently updated (at least at each block-update time) following one of
the algorithms detailed in chapter 8 and Appendix J.

Finally, in preparation of the next iteration the mutual coupling between the secondary sources-
driven identification signals i.e.,

�̂
rm−l

(t1G + 1) and
�

f̂j−l
(t1G + 1) are estimated from (7.6.10) and

(7.6.12) respectively.

Upon convergence of the system identification process the plant copies
©

ĝl,m
ey,t1G

and
©

ĝl,j
xy,t1G

are
updated according to (7.6.14) and (7.6.15) and the corresponding decimated plant estimates
©

ĝl,m
ey,t2G

and
©

ĝl,j
xy,t2G

are then obtained from (7.6.16) and (7.6.17) respectively.

7.7 System Identification of Secondary Pathes

The objective of the system identification is multilateral. The first objective is to verify that the
system identification results obtained from statistical data analysis (SDA) reported in section 11.5
on page 489 can be reproduced by the adaptive system identification approach described in
section 7.6 on page 326. A second objective is to examine the potential benefits of using the
αγΠε-affine projection algorithm (αγΠε-APA) and the fast array recursive least-squares (FARLS)
algorithms instead of the least-mean-squares (LMS) algorithm most frequently employed in the
active control community. A third objective is to determine the filter orders required for FIR filter
implementation of the various secondary paths considered. For this purpose three different filter
orders (Mĝ1,1

ey
= 55, 70, 100) are selected for the t-domain Wiener-Hopf (WH) filter. A fourth

objective is to obtain specific data for the group delays involved in the secondary paths. As
discussed in chapter 5 on page 249 it is important that group delays are sufficiently small as they
otherwise ultimatively can limit the achievable ANR performance.

The topology consists of ten reference sensors (Nx = 10) BK4949 surface microphones flush-
mounted on a Gentex HGU-55/P helmet mounted on a BK 4128 C head and torso simulator (HATS)
that in turn includes the BK 4159 C left ear simulator and the BK 4158 C right ear simulator.
Hence, the amount of performance sensors amounts to two, that is, Np = 2. The performance
signals acquired by the left and right ear simulator are designated by dp

1(t) and dp
2(t) respectively.

The ten reference signals are designated by x1(t), . . . , x10(t). Due to the inherent symmetry of
the system the Terma Earcup Audio System is used on the left ear only. Accordingly, only a
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single actuator (earphone) and a single error sensor are used (Ny = Ne = 1). The disturbance
signal is designated by d1(t).

Hence, the system identification includes a total of Ny(Nx + Ne + Np) = 1(10 + 1 + 2) = 13
different secondary paths.

All system identification processes are conducted at multi-rate level 1 with f1
s = 24 kHz. For this

purpose the source signal with fs =65.536 kHz is resampled prior to the system identification.

7.7.1 Reference Plants for System Identification

In order to assess the quality of the system identification presented next a reference system
identification is obtained from using a large (sufficient) number of weights over an extended
8.0 s period corresponding to 192000 samples and for a 5 V (peak) signal excitation level. The
resulting weights, that is, the impulse response functions for g1,1

ey , g1,1
xy , g1,5

xy and g1,1
py are depicted

in Simulation 7.7.1 - 7.7.4 on pages 335–338. The number of weights amounts to Mgl,m
ey

=
120, Mgl,j

xy
= 700 and Mgl,k

py
= 200 respectively.

Hence, in the subsequent analysis we will use gl,m
ey , gl,j

xy and gl,k
py determined from this reference

measurement as ”true” secondary paths.

7.7.2 System Identification of Secondary Pathes gl,m
ey

As Ne = Ny = 1 only the ĝl,m
ey = ĝ1,1

ey secondary path is considered. The system identification
process is examined for a 0− 0.8 s period. The earphone is excited by a 5 V (peak) random white
noise (RWN) Gaussian distributed signal. The following candidate adaptive filters are considered:

1. t-domain WH (α = 1e− 4, 1e− 5, 1e− 6, TWSS = 0, M = 55, 70, 100, 120);

2. αγΠε-NLMS (M = 70, LB = 1, μ = 0.15, α = 1e − 5, γ = 1e − 5, Π = 0, ε = 1e − 006, w̆ =
0, We = I), TEu = 20);

3. αγΠε-APA (M = 70, LB = 1, μ = 0.15, α = 1e − 5, γ = 1e − 5, Π = 0, ε = 1e − 006, w̆ =
0, We = I);

4. FARLS (M = 70, LB = 1, λ = 0.998, 0.999, 0.9995, η = 0.125, α = 1e−5, TSW = 0, Calc = 1);

System Identification of Secondary Pathes gl,m
ey t-domain WH

In order to determine the order of the FIR filter necessary the system identification first employed
the t-domain WH for α = 1e− 4, 1e− 5, 1e− 6, TWSS = 0, M = 55, 70, 100, 120. The results are
summarized in Simulation 7.7.5 on page 339. It can readily be seen that only marginal improve-
ments are available from using more than 70 weights. Hence, also recalling that a FBS employing
the IMC is relative robust to plant model imperfections, the secondary path is accordingly mod-
eled by a FIR filter with M1,1

gey
= 70. This also agrees with the result in Simulation 7.7.1 on

the next page, where only negligible contribution to the impulse response function is made by
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ĝ
1

,1
e

y
:

W
ie

n
er

H
o
p
f

(M
=

1
2
0
,
α

=
1
e
−

0
0
5
,
T

W
S

S
=

0
,t

-d
o
m

a
in

);
M

a
in

:
f
0 s

=
1
9
2

k
H

z,
f
1 s

=
2
4

k
H

z
,

R
1 �

=
1 8

=
0
.1

2
5
,

E
ll
ip

ti
c

L
P
F

(f
s

=
1
9
2

k
H

z
,
f

p
a

s
s

=
1
1

k
H

z
,
f

s
t
o

p
=

1
2

k
H

z,
A

p
a

s
s

=
2

d
B

,
A

s
t
o

p
=

4
0

d
B

),
f
2 s

=
2
4

k
H

z
,

R
2 �

=
1 1

=
1
,

D
u
m

m
y
;
T
o
p
o
lo

g
y
:

B
K

4
9
4
9

su
rf

a
c
e

m
ic

ro
p
h
o
n
e
s

fl
u
sh

-m
o
u
n
te

d
o
n

G
en

te
x

H
G

U
-5

5
/
P

h
e
lm

e
t

m
o
u
n
te

d
o
n

a
B
K

4
1
2
8

C
H

A
T

S
,

T
er

m
a

E
a
rc

u
p

A
u
d
io

S
y
st

e
m

(F
ee

d
fo

rw
ar

d
b
a
ck

,
m

F
x,

N
x

=
1
0
,
N

e
=

2
,
N

y
=

1
,
N

p
=

2
,
N

v
=

0
);

P
la

n
ts

:
S
y
sI

D
/
2
0
0
8
0
1
1
3
T

0
1
4
6
2
4

(g
1

,1
x

y
,∞

:
(F

IR
:

M
1

,1
g

x
y

=
4
8
1
),

g
1

,2
x

y
,∞

:
(F

IR
:

M
1

,2
g

x
y

=
4
8
1
),

g
1

,3
x

y
,∞

:
(F

IR
:

M
1

,3
g

x
y

=
4
8
1
),

g
1

,4
x

y
,∞

:

(F
IR

:
M

1
,4

g
x

y
=

4
8
1
),

g
1

,5
x

y
,∞

:
(F

IR
:

M
1

,5
g

x
y

=
4
8
1
),

g
1

,6
x

y
,∞

:
(F

IR
:

M
1

,6
g

x
y

=
4
8
1
),

g
1

,7
x

y
,∞

:
(F

IR
:

M
1

,7
g

x
y

=
4
8
1
),

g
1

,8
x

y
,∞

:
(F

IR
:

M
1

,8
g

x
y

=
4
8
1
),

g
1

,9
x

y
,∞

:
(F

IR
:

M
1

,9
g

x
y

=
4
8
1
),

g
1

,1
0

x
y

,∞
:

(F
IR

:
M

1
,1

0
g

x
y

=
4
8
1
),

g
1

,1
e

y
,∞

:
(F

IR
:

M
1

,1
g

e
y

=
7
1
),

g
1

,2
e

y
,∞

:
(F

IR
:

M
1

,2
g

e
y

=
7
1
),

g
1

,1
p

y
,∞

:
(F

IR
:

M
1

,1
g

p
y

=
1
5
1
),

g
1

,2
p

y
,∞

:
(F

IR
:

M
1

,2
g

p
y

=
1
5
1
))

;
S
ig

n
a
ls

:
S
y
st

e
m

Id
e
n
ti
fi
ca

ti
o
n
:

R
a
n
d
o
m

W
h
it

e
N

o
is

e
(N

(0
,
0
.2

))
,
O

u
tp

u
t:

5
V

,
f

s
=

6
5
.5

3
6

k
H

z;
T

im
e
:

0
−

8
s;

S
c
e
n
a
r
io

:
S
y
s
t
e
m
I
d
e
n
t
i
f
i
c
a
t
i
o
n
(
6
5
5
3
6
H
z
)
/
2
0
0
8
0
3
1
7
T
0
2
1
4
0
1.

SystemIdentification(65536Hz)/20080317T021401


336 7. Hybrid Multiple-Input-Multiple-Output Feedforward Feedback System

W
ei

gh
t

C
on

ve
rg

ed
T
ap

-W
ei

gh
ts

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
-0

.0
3

-0
.0

2

-0
.0

10

0.
01

0.
02

0.
03

0.
04

Si
m

7.
7.

2:
C
o
n
v
e
rg

ed
T
a
p
-w

e
ig

h
ts

.
A

d
a
p
t
iv

e
F
il
t
e
r

ĝ
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ĝ
p

y
:

ĝ
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the weights above 70 as also confirmed by the impulse response function obtained from SDA viz.
Simulation 11.5.9 on page 505 only a marginal better performance is obtained by increasing the
filter order to M1,1

gey
= 100 corresponding to 2.4 ms. Moreover, it can be observed that increasing

the leakage from a small value α = 1 − e5 to a relative large value α = 1e− 3 does not change
the quality of the system identification appreciably. The reason is that even for α = 1e − 3
the corresponding random white noise signal is an order of magnitude lower than the excitation
signal.

The results from a SDA conducted on the converged adaptive filter are presented in Simulation 7.7.6 -
7.7.8 on pages 341–343. The following modified single-sided periodogram parameters are used:
fs = 24 kHz, NDFT = 8192, LDFT = 4800, RDFT = 2400, Hanning, Δfm = 20 Hz, TDFT =
0.2 s, Nf,DFT = 4097, ΔfDFT = 2.93 Hz, KDFT = 1. In Simulation 7.7.6 the auto spectral den-
sity functions for dĝ1,1

ey (t) and eĝ1,1
ey (t) are illuminated. The error spectrum, that is, S

e
ĝ
1,1
ey e

ĝ
1,1
ey

(f)
exhibits white noise characteristics as expected. Being excited by a RWN signal the desired signal
spectrum, that is, S

dĝ
1,1
ey dĝ

1,1
ey

(f) closely matches the secondary path transfer function as obtained
from a purely SDA in Simulation 11.5.3 - 11.5.4 on pages 499–500. The pseudo transfer function
linking the desired signal dĝ1,1

ey (t) to the error signal eĝ1,1
ey (t) is depicted in Simulation 7.7.7 - 7.7.8

on pages 342–343. From these figures it can be concluded that the adaptive filter provides best
system identification in the frequency region from 600 Hz to 800 Hz. This corresponds also the
frequency region where the secondary path attains a resonance, that is, where the best signal-
to-noise ratio (SNR) is available for the system identification process.

System Identification of Secondary Pathes gl,m
ey αγΠε-NLMS

In the subsequent text the detailed results from a simulation using an adaptive LMS filter with
the following parameters: αγΠε-NLMS (M = 70, LB = 1, μ = 0.15, α = 1e− 5, γ = 1e − 5, Π =
0, ε = 1e− 006, w̆ = 0, We = I), TEu = 20) defined in chapter 8 on page 371 is presented.

In Simulation 7.7.9 on page 344 the time-domain convergence of the adaptive filter over the
800 ms is shown. Specifically, the desired-, output-, error signals and attenuation, that is,
dĝ1,1

ey (t), yĝ1,1
ey (t), eĝ1,1

ey (t) and Aĝ1,1
ey (t) introduced in Figure 7.5 on page 327 are displayed. It

is observed that the attenuation curve for the LMS adaptive filter follows an almost constant
slope while adapting and the converging time is approximately 50 ms (see Simulation 7.7.19 on
page 356). The attenuation Aĝ1,1

ey (t) ≈ −27 dB corresponding to a match of 1 − 10−2.7 ≈ 0.998
to 1.

Finally, the converged adaptive tap-weights that resemble the impulse response function of the
secondary path are shown in Simulation 7.7.10. By comparison with Simulation 11.5.9 we rec-
ognize a quite similar impulse response function as obtained from the statistical data analysis.

System Identification of Secondary Pathes gl,m
ey αγΠε-APA

The adaptive affine projection algorithm (APA) filter uses the following fixed parameters: αγΠε-
affine projection algorithm (M = 70, LB = 1, μ = 0.15, α = 1e − 5, γ = 1e − 5, Π = 0, ε =
1e− 006, w̆ = 0, We = 1) that are defined in section 8.6 on page 396. In total six combinations
are examined, namely for K = 1, 2, 4 (number of samples to estimate the ensemble-averaged
covariance matrices) and for Δ = 1, 4 (number of samples used for inter-block decorrelation).

In Simulation 7.7.11 the time-domain convergence of the adaptive filter with K = 4 and Δ = 1
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ĝ
1

,1
e

y
(t

).
;
.

SystemIdentification(65536Hz)/20080321T183021


344 7. Hybrid Multiple-Input-Multiple-Output Feedforward Feedback System

Si
gn

al
s:

A
ct

ua
to

r
1,

E
rr

or
Se

ns
or

1

d
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ĝ
e

y
:

ĝ
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is shown. The attenuation for the APA adaptive filter follows a relative constant slope curve
reaching a −28 dB attenuation level at approximately 24 ms.

The results from a SDA conducted on the converged adaptive filter provide no new insight is
provided as compared with the WH filter.

The converged adaptive tap-weights shown in Simulation 7.7.12 are therefore also as expected
quite similar to the adaptive tap-weights from the LMS system identification.

System Identification of Secondary Pathes gl,m
ey FARLS

The adaptive FARLS filter uses the following fixed parameters: FARLS (M = 70, LB = 1, η =
0.125, α = 1e − 5, TSW = 0, Calc = 1) and three different values of the forgetting factor λ =
0.998, 0.999, 0.9995 that are defined in Appendix J on page 737.

In Simulation 7.7.13 the time-domain convergence of the adaptive filter for λ = 0.998 is shown.
The attenuation for the FARLS adaptive filter follows a constant slope curve reaching a −28 dB
attenuation level already after approximately 15 ms. Also here no new insight from a SDA

conducted on the converged adaptive filter is provided as compared with the WH filter.

The converged adaptive tap-weights shown in Simulation 7.7.14 are therefore also as expected
quite similar to the adaptive tap-weights from the LMS system identification.

System Identification of Secondary Pathes gl,m
ey WH, αγΠε-NLMS, αγΠε-APA, FARLS

The performance for the four selected adaptive filters and their variants is illuminated in Simulation 7.7.15 -
7.7.17 on pages 351–353 displaying the entire 0− 0.8 s period and the details for the first 100 ms
and the last 20 ms respectively. As reference for the system identification the t-domain WH filter
defined in section 8.4 on page 385 for the filter orders M = 55, 70 and 100 is used.

As expected the t-domain WH filters with M1,1
gey

= 100, 70 provide best and second best perfor-
mance respectively in terms of. However, all the M1,1

gey
= 70 adaptive filters upon converging

provide a system identification match within 0− 2 dB. The fastest convergence is provided by
the FARLS filter. Only marginal differences are observed among the three variants hereof. The
αγΠε-APA filter is seen to provide faster system identification than the αγΠε-NLMS almost ap-
proaching the speed of the FARLS filter. In particular the choice K = 4, Δ = 1 seems to provide
a good trade-off between convergence and excess error.

Concerning the convergence time the FARLS is approximately twice as fast as the LMS for M1,1
gey

=
100 and a half time faster for M1,1

gey
= 70. Now the alert reader may ask to which extent

the achieved −28 dB match of the secondary path represent an upper limit to what can be
obtained. Well, again the coherence function discussed at length in chapter 2 on page 17 provide
an answer to this question. From Simulation 11.5.1 - 11.5.2 on pages 497–498 we appreciate
that the ordinary coherence function predicts an attenuation exceeding 35 dB for frequencies
above approximately 200 Hz. However, for decreasing frequencies the achievable attenuation
decreases reaching only −5 dB at 10 Hz. Hence, the −28 dB level represents a frequency average
of the ordinary coherence function. with decreasing frequency. As such the gain factor of the
pseudo transfer function that links the desired signal dĝ1,1

ey (t) to the error signal eĝ1,1
ey (t) is to

some extent the reverse of the gain factor of the secondary path transfer function depicted in
Simulation 11.5.3 on page 499.
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ĝ
e

y
:

ĝ
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System Identification of Secondary Pathes gl,m
ey WH, αγΠε-NLMS, αγΠε-APA, FARLS, Small Signal

Next we investigate if a less annoying random white noise signal can be used without detoriating
the system identification performance. Hence, for the earphone is now excited by a 0.5 V (peak)
RWN signal corresponding to a sound pressure level (SPL) reduction of 20 dB in comparison with
the previous experiment. The performance for the four selected adaptive filters and their variants
is illuminated in Simulation 7.7.18 - 7.7.20 on pages 355–357.

In comparison with the 5.0 V (peak) signal we appreciate that except for the FARLS filter variants
that in this case exhibit slow convergence the performance is practical intact. The reason for the
poor behavior of the FARLS in this case, however, is in the moment of writing not understood.

7.7.3 System Identification of Feedback Pathes gl,j
xy

As Nx = 10 and Ny = 1 the capability of the system identification for the ten feedback paths
ĝl,j

xy = ĝ1,1
xy − ĝ1,10

xy are considered.

The performance for the four selected adaptive filters and their variants applied to the feedback
paths g1,1

xy , g1,5
xy is illuminated in Simulation 7.7.21 - 7.7.26 on pages 358–363.

As expected the convergence time of the feedback paths is considerably slower than for the simple
secondary path. Also here the two FARLS filter variants exhibit slower convergence than the other
adaptive filters. The best choice for the system identification in terms of convergence and excess
error is provided by the αγΠε-APA with K = 4, Δ = 1.

7.8 Active Control Simulations

The developed hybrid MIMO confined-feedforward-feedback system (HMIMOCFFFBS) is used in
the examples provided in chapter 3 on page 105.
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ĝ
1

,5
x

y
:

W
H

(α
=

1
e
−

0
0
5
,
T

W
S

S
=

0
,t

-d
o
m

a
in

);
α

γ
Π

ε-
N

L
M

S
(M

=
4
8
0
,
L

B
=

1
,
μ

=

0
.1

5
,
α

=
1
e
−

0
0
5
,
ε

=
1
e
−

0
0
6
,
T

E
u

=
2
0
);

α
γ
Π

ε-
A
P
A

(M
=

4
8
0
,
L

B
=

1
,
μ

=
0
.1

5
,
α

=
1
e
−

0
0
5
,
γ

=
1
e
−

0
0
5
,
Π

=
0
,
ε

=
1
e
−

0
0
6
,
w̆

=
0
,
W

e
=

1
);

F
A
R
L
S

(M
=

4
8
0
,
L

B
=

1
,
η

=
0
.1

2
5
,
α

=
1
e
−

0
0
5
,
T

S
W

=
0
,
C

a
lc

=
1
);

M
a
in

:
f
0 s

=
1
9
2

k
H

z,
f
1 s

=
2
4

k
H

z
,

R
1 �

=
1 8

=
0
.1

2
5
,

E
ll
ip

ti
c

L
P
F

(f
s

=
1
9
2

k
H

z
,
f

p
a

s
s

=

1
1

k
H

z
,
f

s
t
o

p
=

1
2

k
H

z,
A

p
a

s
s

=
2

d
B

,
A

s
t
o

p
=

4
0

d
B

),
f
2 s

=
2
4

k
H

z,
R

2 �
=

1 1
=

1
,
D

u
m

m
y
;
T
o
p
o
lo

g
y
:

B
K

4
9
4
9

su
rf

a
c
e

m
ic

ro
p
h
o
n
e
s

fl
u
sh

-m
o
u
n
te

d
o
n

G
en

te
x

H
G

U
-5

5
/
P

h
e
lm

e
t

m
o
u
n
te

d
o
n

a
B
K

4
1
2
8

C
H

A
T

S
,

T
er

m
a

E
a
rc

u
p

A
u
d
io

S
y
st

e
m

(F
ee

d
fo

rw
ar

d
,

m
F
x,

N
x

=
1
0
,
N

e
=

1
,
N

y
=

1
,
N

p
=

2
,
N

v
=

0
);

P
la

n
ts

:
S
y
sI

D
/
2
0
0
8
0
3
2
1
T

1
3
4
1
3
0

(g
1

,1
x

y
,∞

:
(F

IR
:

M
1

,1
g

x
y

=
7
0
0
),

g
1

,2
x

y
,∞

:
(F

IR
:

M
1

,2
g

x
y

=
7
0
0
),

g
1

,3
x

y
,∞

:
(F

IR
:

M
1

,3
g

x
y

=
7
0
0
),

g
1

,4
x

y
,∞

:
(F

IR
:

M
1

,4
g

x
y

=
7
0
0
),

g
1

,5
x

y
,∞

:
(F

IR
:

M
1

,5
g

x
y

=
7
0
0
),

g
1

,6
x

y
,∞

:

(F
IR

:
M

1
,6

g
x

y
=

7
0
0
),

g
1

,7
x

y
,∞

:
(F

IR
:

M
1

,7
g

x
y

=
7
0
0
),

g
1

,8
x

y
,∞

:
(F

IR
:

M
1

,8
g

x
y

=
7
0
0
),

g
1

,9
x

y
,∞

:
(F

IR
:

M
1

,9
g

x
y

=
7
0
0
),

g
1

,1
0

x
y

,∞
:

(F
IR

:
M

1
,1

0
g

x
y

=
7
0
0
),

g
1

,1
e

y
,∞

:
(F

IR
:

M
1

,1
g

e
y

=
1
2
0
),

g
1

,1
p

y
,∞

:
(F

IR
:

M
1

,1
g

p
y

=
2
0
0
),

g
1

,2
p

y
,∞

:
(F

IR
:

M
1

,2
g

p
y

=
2
0
0
))

;
S
ig

n
a
ls

:
S
y
st

e
m

Id
e
n
ti
fi
ca

ti
o
n
:

R
a
n
d
o
m

W
h
it

e
N

o
is

e
(N

(0
,
0
.2

))
,

O
u
tp

u
t:

5
V

,
f

s
=

6
5
.5

3
6

k
H

z;
T

im
e
:

0
−

0
.8

s;
S
c
e
n
a
r
io

:
S
y
s
t
e
m
I
d
e
n
t
i
f
i
c
a
t
i
o
n
(
6
5
5
3
6
H
z
)
/
2
0
0
8
0
3
2
2
T
0
0
3
6
1
3.

SystemIdentification(65536Hz)/20080322T003613


364 BIBLIOGRAPHY

[7] Bernard Widrow and Samuel D. Stearns. Adaptive Signal Processing. Prentice-Hall, New
Jersey, 1985.

7.A Array Description of Feedforward Feedback System

The FFFBS adaptive tap-weight cell matrix at multirate level 2 denoted by
�
wt2B

∈ K(Ne+Nx)×Ny 6

is defined as the vertical catenation of the FBS adaptive tap-weight cell matrix
�
wt2B

∈ KNe×Ny

and the FFS adaptive tap-weight cell matrix
�

wt2B
∈ KNx×Ny , that is,

�
wt2B

� col {
�
wt2B

,
�

wt2B
}, (7.A.1)

where
�
wt2B

and
�

wt2B
in turn are defined by
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⎤⎥⎥⎥⎥⎥⎦ (7.A.2a)

and

�

wt2B
�

⎡⎢⎢⎢⎢⎢⎣
�

w1,1
t2B �

w1,2
t2B

. . .
�

w
1,Ny

t2B

�

w2,1
t2B �

w2,2
t2B

. . .
�

w
2,Ny

t2B
...

...
. . .

...

�

wNx,1
t2B �

wNx,2
t2B

. . .
�

w
Nx,Ny

t2B

⎤⎥⎥⎥⎥⎥⎦ (7.A.2b)

respectively. Each element of
�
wt2B

and
�

wt2B
, that is,

�
wm′,l

t2B
and

�

wj,l
t2B

is a column vector of
�
Mm′,l

u

and
�

M j,l
u elements respectively, where m′ ∈

¯
Ne, j ∈ ¯

Nx, l ∈
¯
Ny.

The FFFBS regressor block cell matrix at multirate level 2 represented by
�̊
ut2l
∈ KNe×Ny×(Ne+Nx)

is defined as the horizontal catenation of the FBS regressor block cell matrix
�̊
ut2l
∈ KNe×Ny×Ne

and the FFS regressor block cell matrix
�̊

ut2l
∈ KNe×Ny×Nx , that is,

�̊
ut2l

� row {
�̊
ut2l

,
�̊

ut2l
}, (7.A.3)

where
�̊
ut2l

and
�̊

ut2l
in turn are defined by

6We use the (MATLAB®) term cell matrix to emphasize that each element of the matrix may be constituted
from a different number of components.
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respectively. Hence,
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The FFFBS reference signal cell matrix at multirate level 1 denoted by
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xt1l

∈ KNy×(Ne+Nx) is
defined as the horizontal catenation of the FBS reference signal cell matrix
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elements respectively.

In order to use the adaptive filter algorithms the adaptive tap-weight vector shall be a column
vector and the first dimension of the regressor matrix and reference signal matrix shall equal Ne

and Ny respectively. In order to accomplish this we will next rearrange
�
wt2B

,
�̊
ut2l

and
�
xt2l

. Then
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the entries of the adaptive tap-weight vector at multirate level 2 denoted by wt2B
∈ KM×1 are

obtained from stacking the successive columns of
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on top of each other, that is,
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The total number of adaptive tap-weights M is the sum of the number of feedback adaptive
tap-weights
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Similarly, the total regressor length for adaptive tap-weights Mu is the sum of the total regres-
sor length for feedback adaptive tap-weights
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Similarly, by stacking the successive rows of the submatrices in
�̊
ut2l

beside each other we obtain
the regressor matrix at multirate level 2 ut2

l
∈ KNe×M

ut2l
� row {
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} (7.A.14)
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1,Ny,1
i−Δu

. . . �ů
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Finally, the reference signal vector denoted by xt1l
∈ KNy×Ny(Ne+Nx)
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8. ADAPTIVE FILTERING ALGORITHMS FOR LINEAR TIME-VARIANT
SYSTEMS

8.1 Introduction

In this chapter we will augment the suite of adaptive filters by new variants of the family of affine
projection algorithms (APAs) with extended leakage functionality and provision for weight regu-
larization. The full-blown adaptive filter will be designated by αγΠε-affine projection algorithm.
The APA is a generalization to the normalized LMS (NLMS) algorithm in which the data is reused
in order to improve the convergence speed albeit at the expense of computational complex-
ity. The basic form of the APA was developed by Ozeki and Omeda [47] using an orthogonal
projection to an affine subspace to address the problem of a slow convergence rate of least-
mean-squares (LMS)-type filters with colored input. The APA has been used in field of acoustic
echo cancelation applications [24]. Demands on computational efficiency has led to develop-
ment of so-called fast affine projection (FAP) [24, 25] and the frequency-domain block exact
fast affine projection (BEFAP) [55, 62]. The FAP has been used for single channel active noise
control (ANC) [17] and for multiple-channel (MC)-ANC in [5, 6]1. Moreover, in [8, 9, 60] different
affine projection (AP) algorithms for MC-ANC have been considered. In our development we will
consider both weight-driven leakage and control-effort-driven leakage. Although these two types
of leakage functionality are related they also provide the designer with complementary func-
tionality that will be optimal in different contexts. Tap-weight regularization is a well known
principle from regularized least-squares problems where it is used to incorporate some a priori
information regarding the optimal solution is available and the regressor provides insufficient
excitation of the pertinent parameters. The regularization parameter can then control to which
extend the parameters will be locked in the vicinity of some fixed point vector.

To the author’s best knowledge no attempts in the open literature has been made to accommo-
date control-effort-driven leakage to the APA family of adaptive filtering algorithms. Similarly,
although weight regularization often is applied in deterministic based adaptive schemes no such
attempts were found in the literature for adaptive filtering algorithms with origin in stochastics.
It is therefore believed that such algorithms should be of general interest within the signal pro-
cessing community and of particular interest within the active control (AC) community where
practical design constraints to a large extent can be addressed by introducing adaptive leakage
control.

In order to proceed we will review parts of adaptive filtering theory pertinent to signal processing,
adaptive control and in particular in an active control context. Readers unfamiliar with adaptive
filter theory or who need to refresh their memory should refer to the many excellent books
available in the field of signal processing [29, 68, 69] and control theory [61, 74]. Recently, a

1An active control of sound (ACS) where either the number of reference sensors, the number of error sensors
or the number of actuators exceeds one is referred to as a MC system else it is considered as a single-channel (SC)
system.
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new and very comprehensive textbook by Sayed [56] has become available. The notation and
terminology in this report will largely follow the choice in that textbook.

While the treatment of different adaptive filters tends to be bottom-up, that is, it starts with
the most simple version and gradually increase the complexity of the algorithm, the framework
adapted here will opposedly be top-down. Hence, we will present the adaptive filtering algorithms
in their most general form and describe the simpler models as specific instantiations of the general
form. Accordingly, our treatment will from the outset embrace the hybrid MIMO feedforward-
feedback system (HMIMOFFFBS) described in chapter 7 on page 291. The accommodation from a
single-input and single-output (SISO) to a multiple-input and single-output (MISO) system2 can be
carried out with relative little effort by recasting the formulation by collecting all regressors and
weight vectors into a single extended regressor and a single extended weight vector. However, the
extension to a SIMO or to a multiple-input and multiple-output (MIMO) system poses somewhat
more challenges to the designer as now not only a single error but multiple errors have to be
considered. In this chapter we will address the multiple-output cases by using a cost function
formulation that incorporates a weighted sum of the individual errors. In ACS applications
frequency-domain-based adaptive filters are often preferred to time-domain-based adaptive filters.
Therefore, the time-domain adaptive filter algorithms will be accompanied with their frequency-
domain versions. Finally, the general case of a time-varying environment will be addressed from
the outset.

As mentioned in chapter 6 the main body of the literature in the field of adaptive digital filtering
exclusively consider purely electrical problems that are characterized by the absence of a physical
plant. The methods to incorporate a plant in an adaptive filtering context were described in
chapter 6 and included in this presentation. Then the plant-less application is considered as a
specialization of this framework. Finally, but not less importantly this treatment lends itself
towards efficient implementation in a simulation environment, e.g., MATLAB®, but also a real-
time implementation.

8.1.1 Chapter Outline

This chapter has been organized as follows. Following this introduction section 8.2 presents four
different modes of adaptive filtering. Next in section 8.3 the concepts of cost functions, leakage
and regularization are discussed. Wiener filters are subsequently introduced in section 8.4. Both
the unconstrained case, that is, the non causal and the causally constrained case are consid-
ered. Subsequently we introduce the method of steepest descent in section 8.5 that represents an
intermediate stage of conception between the theoretical oriented Wiener Filter and the stochas-
tic gradient algorithms that are used for many practical purposes. The family of stochastic
gradient (SG) algorithms will be presented in section 8.6. New and more general variants of
the APA adaptive filtering algorithm that combines a set of different functionalities are derived.
This adaptive filter algorithm denoted by αγΠε-affine projection algorithm includes parameters
for leakage control and adaptive tap-weight regularization as well as numerical regularization.
A simplification of this algorithm leads to the αγΠε-NLMS algorithm. It is demonstrated how
the ordinary ε-affine projection algorithm (ε-APA) and ε-NLMS (ε-NLMS) algorithms can be ob-
tained from successive simplifications of the new αγΠε-affine projection algorithm (αγΠε-APA)
and αγΠε-NLMS (αγΠε-NLMS) algorithms respectively. The theme of section 8.7 is the accom-

2An adaptive filter basically takes two types of inputs namely the reference signals and the error signals.
However, when we discriminate between single-input and multiple-input it is the number of error signals that
counts.
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modation necessary for the use of time-domain adaptive filters in the frequency-domain. Of
particular concern is to ensure the adaptive filters are causally constrained.

Finally, in section 8.8 the main findings of this chapter will be summarized.

The theme of the appendix section 8.A is in general H2/H∞ adaptive control and in particular
adaptive filtering subjects to inequality constraints. This appendix also serves as a motivation
of considering the two dynamic leakage schemes of this chapter.

A comprehensive performance analysis of the multiple-channel-αγΠε-affine projection algorithm
(MC-αγΠε-APA) algorithm is conducted in chapter 9 on page 417.

8.2 Modes of Adaptive Filtering Operation

By the adjective adaptive (as opposed to fixed) preceding the word filter we understand a self-
designing filter that relies on a recursive algorithm, which makes it possible for the filter to
perform satisfactorily in an environment where complete knowledge of the relevant signal char-
acteristics is not available. Hence, even for stationary data the filter adapts itself in this manner.
Moreover, for non-stationary data the adaptive filter supposedly will track the environmental
changes. Adaptive filters are therefore a powerful device for signal-processing and control appli-
cations.

Adaptive filtering is pertinent to the digital controller involved in the hybrid controller in Figure 4.1
on page 241 in four different aspects:

Adaptive Filter Mode 1. Interference cancelation. One set of adaptive filters is used for to
determine the cancelation signal.

Adaptive Filter Mode 2. System identification. A second set of adaptive filters is used for
system identification in which the plants are determined.

Adaptive Filter Mode 3. Inverse modeling. A third filter is used to correct the plant response
towards some prescribed response.

Adaptive Filter Mode 4. Prediction. Finally, a linear prediction notch filter is used to suppress
influence of the high amount of low-frequency content in the adaptation process.

In the application of active noise reduction headsets the four types of filters are all required to be
adaptive. The filter responsible for the interference cancelation is required to be adaptive because
as will be discussed in this chapter the optimum controller depends on the spectral properties
of the disturbance, as well as the plant response. However, in practice the characteristic of the
disturbance is usually not known exactly, or even statistically. 3 Similarly, the plant response
will be inter-subject dependent, exhibit variation with the actual fit of the hearing protection
device (HPD) on the subject, possible wear and many other parameters [46]. Hence, the plant
response should also be considered unknown or at least partially unknown. Finally, adaptation
capabilities are also required for the system identification and inverse modeling as explained in
section 4.7 on page 245.

Owing to the significant importance the plant poses to the adaptive filtering process in active
noise control applications, we devoted the previous chapter 6 on page 273 to describe how the

3The statistical properties of the disturbances in two practical military airborne applications are discussed in
Appendix D.
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family so-called filtered-X methods accompanied by repetitive system identifications can be used
to address the problems associated with a possible unknown and in general time-varying plants.

In conclusion, the purpose of adaptive filtering is to ensure satisfactory operation and preferably
optimal performance in a time-variant but unknown or at least partial unknown environment.
Interesting, however, is that the functionality required for this four-fold operation can be provided
by basically the same adaptive filtering technique.

The filters discussed in this chapter can basically be considered linear. However, during adap-
tation the filters will inherently exhibit non-linearity, which is a consequence of the process of
adaptation where the filters do not obey the principle of superposition but are data dependent.
Normally, the weights are assumed constant compared on a time frame much smaller that the
convergence time. However, this fact should be considered if some otherwise unexplainable con-
vergence problems are experienced.

8.3 Cost Functions

In the design and analysis of adaptive filters one has to establish a framework for evaluating the
performance. This is basically the argument for the introducing cost functions 4. Cost functions
also referred to as criterion functions or objective functions themselves are seldom calculated in a
real-time implementation. But the underlying adaptation of the filter is based on the principle of
minimizing a cost function. Moreover, the optimization might be constrained or unconstrained,
depending on whether the variables are also required to satisfy side equations or not.

As described in section A.2 on page 529 the probably most established figure of merit within the
AC community is the steady-state integrated noise attenuation provided by the system over a
volume in space. This figure of merit is usually obtained by averaging the attenuation over some
discrete positions in space. We will ideally measure or estimate the performance locally at each
of the Np locations of the performance sensors depicted in Figure 1.1. Usually, however, in an
operational ANC-system no performance sensor exists and the performance is assessed directly
from the Ne error sensors. Accordingly, our cost functions should closely resemble the design
objectives formulated in section A.2.

In this presentation of the various adaptive filtering algorithms we will establish a complex cost
function formulation that honors requirements emerging from practical applications. This top-
down presentation should hopefully provide some complementary insight into the operation of
these algorithms. In this context we exclusively focus on linear optimum discrete-time filters.

8.3.1 Time-Domain Cost Functions

The by far most preferred choice of cost function within the signal processing communities is
based on a linear-least-mean-squares estimate (l.l.m.s.e.) criterion in the time-domain. By applying
the pertinent premises for a particular algorithm the equations leading to the expression for the
weight update can normally be derived without much sophistication. The main disadvantage,
however, is that from a practical point of view that some simplifications made are too unrealistic
and the implementation is deemed to fail at some time. Accordingly, modifications, some of
which are based on pure heuristics are then made to refine the algorithms.

4Another approach is to demand the output estimation error to be independent of past data [39].
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The choice of linear-least-mean-squares estimation (l.l.m.s.e.) is somewhat arbitrary and is histor-
ically related to the assumption of Gaussian distributed data that in turn has been based on the
central limit theorem (CLT) from statistics. In [49] and [73] it is also argued that for Gaussian
distributed random variables the linear least-mean-square estimator is considered practical op-
timal. Sherman [58] and Brown [7] investigated a non-mean-square-error criterion in the study
of Gaussian processes. We will also consider a more general class of linear minimum mean-even-
norm estimation. In recent years attention has been made to the class of so-called SαS processes
[45]. The family of SαS distributions which will be the theme of Appendix L on page 773 has
efficiently been used to model impulsive signals.

Preferably, the optimal cost function formulation could adaptively be derived from the statistical
properties of the signals [39, Ch. 15].

As described in detail in Appendix A on page 529 in the time-domain we will usually apply the
mean-squared-error reduction criterion and define Am(t) attenuation at the m’th error sensor by

Am(t) � 10 log10

(
E |em(t)|2
E |dm(t)|2

)
[dB], (8.3.1)

where em and dm designate the error signal and the disturbance signal at the m’th error sensor
respectively both considered as RVs. For MISO and MIMO systems the global attenuation capabil-
ity measure is obtained as, e.g., a linear-weighted sum of the local attenuation quantities above
(in dB), that is,

A(f, t) �
Ne∑

m=1

W dB
e,mAm(f, t) [dB]. (8.3.2)

The quantity W e,dB
m denotes the attenuation weight factor of m’th error sensor. Often a normal-

ization constraint
∑Ne

m=1 W dB
e,m = 1 will be used.

The choice of a cost function formulation depends on whether the particular adaptive filtering
algorithm takes origin in stochastics or if it is deterministic in approach. To the former class
belong Wiener Filters, the Method of steepest descent (SD) and the LMS algorithms. They have
in common that some statistical information is available in advance or at least is estimated
during the process. To the latter class we find among others the least-squares (LS) algorithm
and the recursive least-squares (RLS) algorithm. Both of these algorithms are model-dependent
procedures.

In order to reduce the computational load we will from the outset use a separate time frame for
the weight update. The corresponding weight block update iteration number is represented by
iB, where we by i refer to the iteration number. The two time indices i and iB are subject to
iB = �(i/B) where we by �( · ) designates the floor operator , where we by the integer B ∈ N will
denote the weight update block size.

Stochastic Approach

For the algorithms with origin in stochastics the estimation problem will make extensive use of
the expectation operator denoted by E( · ).

Most often the time-domain cost function J(wiB ) : KM×1 → R+(KM×M � 0) that takes as
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argument the adaptive tap-weight vector wiB ∈ KM×1 and returns a scalar-valued quantity
(greater than zero) or a positive definite error-covariance matrix Eeiei∗ � 0.

For ordinary SISO systems and MISO systems we will let J(wiB ) be scalar-valued as only a single
error signal is involved. For single-input and multiple-output (SIMO) systems and MIMO systems,
however, the cost function will be based on the error-covariance matrix Eeiei∗. The optimization
procedure then seeks to minimize the trace of the error covariance matrix and is therefore referred
to as a minimum variance estimator.

We will most often consider the mean-square error (m.s.e.) criterion where the cost function is
defined by Je2

(wiB )

Je2
(wiB ) �

{
E|e(i)|2, SISO, SIMO,

E‖ei‖2We
, MISO, MIMO.

(8.3.3)

The quantity We ∈ RNe×Ne denotes the error sensor weighting diagonal matrix where the in-
dividual elements W e

m denote the weight factor attributed to the m’th error sensor. Often a
normalization constraint ‖We‖ =

∑Ne

m=1 W e
m = 1 will be preferred. The expected error sensor-

weighted error E‖ei‖2We
can alternatively also be expressed by

E‖ei‖2We
= E e∗i Weei = Tr {We E eie

∗
i }. (8.3.4)

We then seek a weight vector that minimizes (8.3.3) in a least-mean-squares estimate (l.m.s.e.)
sense, that is,

min
w

{
Je2

(wiB )
}
. (8.3.5)

The minimum value of Je2
(wiB ) is referred to as the minimum mean-square error (m.m.s.e.). The

m.s.e. criterion (8.3.3) is very general without any assumptions regarding the data and the system.
Now we will confine ourselves to linear time-variant (LTV) systems and invoke a linear estimation
model (LEM) for the regression vector (matrix) ui ∈ K1×M (ui ∈ KNe×M ) and the disturbance
signal d(i) ∈ K(di ∈ KNe×1) both considered as data sequences. The details of the LEM can be
found in section 9.2 on page 422. Then the general cost function (8.3.3) is formulated as

Je2
(wiB ) �

{
E|d(i)− uiwiB |2, SISO, SIMO,

E‖di − uiwiB‖2We
, MISO, MIMO.

(8.3.6)

Then the l.l.m.s.e. of (8.3.5) (8.3.6) is the weight vector wo
iB

that leads to the m.m.s.e..

The quadratic function on elements of the weight vector is a nice property since then the multi-
dimensional error-performance surface takes form of a bowl-shaped surface with a unique global
minima. In practice, however, an ensemble of data is rarely available. Instead an assumption
of wide-sense ergodicity (WSE) of the signals is implicitly made. Recalling that WSE implies
wide-sense stationary (WSS) (but not the converse!), the data therefore satisfy a criterion on
WSS. Consequently, ensemble averages will be replaced by time-averages.
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8.3.2 Frequency-Domain Cost Functions

For ACS applications a better choice is usually to apply a frequency-domain cost function based
on loudness curves. Similar considerations apply to active control of vibration (ACV) applications
although with frequency-domain weighting functions that will be application specific. The l.l.m.s.e.

approach has computational advantages and is convenient for theoretical analysis attributed to its
tractable mathematics. Accordingly we will also define cost functions in the frequency-domain.
In section A.2 on page 529 we formulated different attenuation quantities as measure of the active
noise reduction (ANR) performance.

The local attenuation at, e.g., the m’th error sensor Am(f) will be a function of frequency and
generally exhibit time-dependence. The computation of Am(f) will primarily be based on signal
analysis which is treated in more details in Appendix C. We will define the frequency-domain
attenuation by

Am(f) � 10 log10

(
We,m(f)

Semem(f)
Sdmdm(f)

)
[dB]. (8.3.7)

Here Semem(f) and Sdmdm(f) denote the auto spectral density function of the m’th error sig-
nal and m’th disturbance signal respectively. The quantity We,m(f) represents a frequency-
dependent weighting function that will be subject to the normalization constrain

∫ ∞
−∞ We,m(f) df =

1. For example We,m(f) may be a A-, B-, C- or D-weighting filter. An unweighted attenuation
expression is obtained by assigning unity to We,m(f).

In the discrete Fourier transform (DFT) domain we chose a block size B and uses a 2B-point fast
Fourier transform (FFT) and the overlap-save method in order to prevent circular correlation
effects [56, Ch. 10] [51]. The entire frequency range [− fs

2 , fs

2 ] is then subdivided into 2B equally
sized frequency bins. Usually both M and B are chosen as powers of 2 and such that B/M is
an integer, e.g., M = 1024, B = 32. The l.l.m.s.e. is similarly the weight vector wo

k,iB
that leads

to the m.m.s.e. in (8.3.8)

J ẽ2
(w̃k,iB ) �

{
E

∣∣d̃k(i)− ũk,iw̃k,iB

∣∣2 = E|ẽk(i)|2, SISO, SIMO,

E‖d̃k,i − ũk,iw̃k,iB‖2We
= E‖ẽk,i‖2We(k), MISO, MIMO,

k = 0, 1, . . . , 2B − 1

(8.3.8)

using the m.s.e. criterion (8.3.9)

min
wk

{
Je2

(wk,iB )
}
. (8.3.9)

Hence, l.l.m.s.e. is carried out for each of the 2B frequency bins in parallel. It should, however,
be recalled that the size of the adaptive tap-weight vector is reduced by a factor of B in each of
these subfilters [56, Ch. 10].
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8.3.3 Weight-Driven Leakage

Motivation

The objective of introducing leakage is at least elevenfold:5

Leakage Objective 1. Prevention of the occurrence of overflow in a finite-precision environ-
ment. The lack of sufficient excitation in the regression data may result in weight estimates
growing unbounded and overflowing. The m.s.e. might not be effected by finite precision effects,
but the mean-square deviation (m.s.d.) will accumulate with time.

Leakage Objective 2. Alleviation of d.c. drift. In a physical system a d.c. component might
be present in the error signal due to offsets in the A/D converters. The adaptive filter will try
to suppress this d.c. component by gradually increasing all weights numerically. However, the
physical system is not capable of responding to d.c. Eventually, the system (D/A converters)
saturate and the system is rendered useless [27, Ch. 7].

Leakage Objective 3. Reduction of eigenvalue spread. It is well known that a white noise
signal by definition has an autocovariance matrix equal to its variance σ2

v(i) times the identity
matrix, that is, Rv(i) = σ2

v(i)I. Since all eigenvalues equal unity then by addition such a dither
signal the resulting eigenvalue spread X (Ru+v) will be reduced from the eigenvalue spread X (Ru)
of the reference signal [68], that is,

X (Ru+v) < X (Ru). (8.3.10)

Accordingly, by applying a dither signal then adaptive filtering algorithms sensitive to eigenvalue
spread, e.g., LMS will experience a faster convergence. This may be of particular concern in signal
processing in acoustics where the signals often exhibit highly non-stationarity and at times are
absent.

Leakage Objective 4. Counteracting parameter drift. In the stability analysis of an adap-
tive filtering algorithm it is useful to partitioning the space spanned by the information vector
(regressor) into four mutually non-overlapping subspaces referred to as unexcited subspace, per-
sistently excited subspace, decreasing subspace and otherwise excited subspace. If the information
vector belong to the decreasing subspace or otherwise excited subspace the weights can then at-
tain arbitrarily large values despite bounded input bounded output disturbances, and bounded
estimation errors [29, Ch. 17] and [57]. The parameter drift is considered a hidden form of
instability associated with inadequacy of excitation in the input sequence and is characterized
by a slow (as opposed to exponential) growth of the weights. This drift mechanism is inherent in
the algorithm and is not due to numerical implementation problems or violation of small step-
size conditions. In particular, for some types of non-stationary signals parameter drift might
be of concern. Moreover, it should be mentioned that stability analysis usually resort to the
assumption of the regressor belonging to either the unexcited subspace or the persistently ex-
cited subspace. This phenomena has a separate spectral domain interpretation: An input power
spectrum devoid energy over a nontrivial portion of the frequency band and therefore is not
complying with a persistent excitation (PE) condition might similarly cause parameter drift [63,
Ch. 7]. The signal absent case mentioned above is different as the unexcited subspace coincides
with CM .

5The list is probably not exhaustive and some of the objectives are to some extent overlapping.
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Leakage Objective 5. Preventing the poles from moving outside the unit circle during conver-
gence in an adaptive infinite-duration impulse response (IIR) filter configuration [36]. Therefore,
potential instability problems can be avoided by adding an amount of leakage.

Leakage Objective 6. Avoidance of non-linear distortion. By introducing a term in the cost
function that penalizes the squared norm (energy) of the vector w the system will then avoid
seeking to a solution with potentially large norms. In active noise control this is of specific
importance since the secondary sources might be driven into non-linear operation in the presence
of high low-frequency resonances [34, Ch. 2] and [44, Ch. 12].

Leakage Objective 7. Reduction of sensitivity to imperfect plant models. Avoiding the risk of
a potential negative real-part of the eigenvalues of the mixed autocorrelation matrix of filtered-
and estimated- reference signals used in ANC configurations employing a plant filtering scheme.
If the plants response is different from that of the plant model the real part of the eigenvalues of
the aforementioned mixed autocorrelation matrix can take negative values leading to instability
[66]. In active noise control this is of specific importance since small changes in the system might
lead to disastrous results for unbounded weights [22, Ch. 3,5].

Leakage Objective 8. Insurance of a diagonal dominant response matrix in a multi-channel
decoupled ANC-system [21]. By adding a positive term proportional to the modulus of the
squared control effort to the cost function, this effectively also increases the diagonal elements
of the effective response matrix entering in a stability criterion. This can be proved to have a
stabilizing effect on a decoupled multi-channel ANC-system [21].

Leakage Objective 9. Provision of solution to underdetermined systems. In AC systems where
the number of secondary sourcees exceeds the number of error sensors the optimal solution is
nonunique. By also penalizing the control effort in the cost function, however, the solution
becomes unique [22, Ch. 4].

Leakage Objective 10. Ignoring modes in MIMO ANC system which contribute only weakly to
the error signal, but which require a considerably amount of the available control power. Then
the error performance can be maintained with significantly lower control effort [22, Ch. 4].

Leakage Objective 11. Compliance with H∞ control design constraints. H∞ control can be
emulated by means of leakage that in turn is regularized by penalty functions or barrier functions
as will be presented in subsection 8.A.1 on page 404.

Leakage objective 1-1 are related to the use of the adaptive delay filter (ADF) in a quantized digital
environment. Leakage objective 3-4 consider the signal contents of the input data. Leakage
objective 5 is specific to the use of IIR filters. Finally, leakage objectives 6 and 11 are concerned
with the long-term stable operation of the adaptive filter for ANC applications.

The problems addressed might not necessarily be disastrous but might lead to performance
degradation in general if not taking into account.

Besides ANC applications [22, 34] leakage has also successfully been employed in applications
such as adaptive control [32] [1, Ch. 6] to avoid estimator windup, antenna systems to prevent
self deletion of strong signals [72], fractionally spaced adaptive equalizer (FSAE) for channel
equalization [26], adaptive differential pulse code modulation (ADPCM) coders for telephone
transmission [15].

In conclusion there are many good reasons for employing some leakage functionality in the
adaptive filter schemes used in ANC applications.
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Weight-Driven Leakage in the Time Domain

The linear least-mean-squares estimation problem (8.3.5) can be augmented to include a cost
function weight norm penalty term that will be represented by Jα(wiB ) and that is defined as

Jα(wiB ) � ‖wiB‖2αiα (wiα
B

) = w∗
iB

αiα(wiα
B
)wiB , (8.3.11)

where the quantity αiα(wiα
B
) ∈ RM×M (αiα(wiα

B
) ∈ R) refers to the weight-driven leakage control

matrix (parameter) and where iα denotes the weight leakage control matrix update iteration
number and iαB is the weight block update iteration number corresponding to iα. The weight
leakage control matrix may be updated at each block-update time or if computational prohibitive
then less frequently. Hence, iα ≤ iB and iαB ≤ iB. Hence, in the general case the leakage control
will be matrix-valued and time-variant. The dependence on the weight has been made explicit
in (8.3.11). In section 8.3.4 and subsection 8.A.1 examples of methods dynamically to schedule
the weight-driven leakage control matrix are provided. The associated optimization problem is
then expressed by the cost function Je2α(wiB )

min
w

{
Je2α(wiB ) � Je2

(wiB ) + Jα(wiB )
}
. (8.3.12)

The optimal choice of the leakage control parameter will indeed be application dependent. It
should be remarked that the introduction of leakage will usually take place at the expense of
biased weight estimates as will be addressed in chapter 9 on page 417. This can also be explained
in terms of the noise added to the system (8.3.10). By choosing the associated leakage factor
ν(iiν ) � 1−μ(iμ)α(iα) close to unity, that is (α 
 0), we can effectively limit this bias error. The
integer iμ refers the step-size parameter update iteration number that in turn will be defined in
(8.5.1) on page 389. The weight leakage factor update iteration number iν is incremented each
time either iμ or iα is incremented, that is, iν = iμ + iα.

Weight-Driven Leakage in the Frequency Domain

In the frequency-domain adaptive filters leakage can also be used. For example, if the input
energy falls below some prescribed input threshold in a certain frequency bin, then the update
of that frequency should be omitted since there is not information present to do so intelligently.
In the DFT domain the cost function weight norm penalty term is

Jα(wk,iB ) � ‖wk,iB‖2αiα,k(wk,iα
B

), k = 0, 1, 2, . . . , 2B − 1. (8.3.13)

Bibliographic Notes on Weight-Driven Leakage6

In [50] three different schemes for enforcing control output constraint in an ANC were considered.
It was concluded that the so-called re-scaling algorithm that is based on active set method
somewhat outperforms the FxL-LMS. In practice the re-scaling algorithm is based on monitoring
the control output signal and if necessary to re-scale both the weights and the control output

6This subsection provides supplementary bibliographic information on weight-driven leakage control that,
however, can be skipped on a first reading.
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signal in proportion to the magnitude of constrain violation. However, in this study only a fixed
as opposed to time-variant leakage control parameter was examined. Another but very straight
forward method of just clipping the output signal if a constraint is encountered was deemed to
have potential problems with convergence speed and stability.

A more advanced leakage scheme providing stable operation without bias and at the same compu-
tational expense as ordinary LMS has been proposed by Nascimento and Sayed [43]. In contrast
to ordinary leaky LMS (L-LMS) leakage is here applied to a single adaptive tap-weight at each
iteration

α(w〈i〉M
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α0, if |w〈i〉M
| ≥ C2

α0 − α0
2

(
C2−|w〈i〉M

|
D

)2

, if C1 + D ≤ |w〈i〉M
| < C2

α0
2

( |w〈i〉M
|−C1

D

)2

, if C1 < |w〈i〉M
| < C1 + D

0, otherwise

, (8.3.14)

where α0 denotes the circular leakage control upper value parameter (α0 
 0) and C1, C2, D are
the circular leakage control lower-, upper- and medium threshold parameters. By the notion
〈i〉M is understood i modulus M . The author’s theoretically development is relying on averaging
theory and Lyapunov stability theory.

Douglas [18] made a performance comparison of the hardware and software approach to obtain
a leakage effect. In the software approach the leakage is directly used in the weight update. In
the hardware approach the dither noise that is added to the input signal could for example be
generated using a maximum-length shift register in very-large-scale integration (VLSI) technology.
The author found however, that from a performance standpoint, the direct approach to leaky
LMS adaptive filter is to be preferred in terms of lower excess-mean-square error (EMSE) and
larger range of useable step-sizes. This performance difference is most pronounced for large
signal-to-noise ratios and moderate values of the leakage parameter.

In [41] a m.s.e. analysis of the leaky LMS algorithm with the assumption that the input and the
desired signals are jointly Gaussian and zero-mean processes is provided. Rigling and Schniter
[54] propose a method referred to as subspace leaky LMS (SL-LMS) where the leakage is selectively
applied to above mentioned unexcited subspace, but not to the persistently excited subspace in
order to mitigate the problem of unbounded adaptive tap-weight growth in a finite precision
environment. This approach, however, requires a NLMS alike procedure for tracking of the un-
excited subspace which roughly doubles the computational load. In a highly non-stationary a
unexcited subspace exceeding 50% a lower drift and less bias compared with L-LMS and circular
leaky LMS (CL-LMS) was observed.

In [35] the effect of delay on the performance of the L-LMS adaptive algorithm is investigated.

In his Ph.D. thesis Cartes [10] proposes tuning methods based on Lyapunov stability methods
for determining time-variant step-size and time-variant leakage control parameters adaptively
for feedforward ANC. The essence of this work and the work by the same authors with an
low-frequency acoustic test cell can be found in [11–13]. The authors claim that one of the
candidate is superior to the traditionally designed fixed leakage NLMS when exposed to highly
non-stationary situations provided that the input signal-to-noise ratio (SNR) is known. Hence,
the system is locally stable but not globally stable as also demonstrated in some of their tests.

Apparently, in all of the three candidate algorithms considered the leakage control parameter is
normalized with input power. This approach seems somewhat counter-intuitive as the ”dither”
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then is dosed in a magnitude that is inversely proportional to the SNR.

8.3.4 Control Output-Driven Leakage

Motivation

A more direct approach to the leakage objectives 6 and 11 raised in subsection 8.3.3 is to let
the amount of leakage be explicitly dependent on the power of the control output signal. From
a practical point the injected power to the secondary sources are directly related to the control
output signals and only indirectly through the weights. Despite the many objectives of employing
control-effort-driven leakage functionality in the adaptive filters used for AC, however, to the
author’s best knowledge no attempts have been made to accommodate this type of leakage
control to the APA family of adaptive filtering.

In order to preserve generality and the possibility of more directly constricting the control output
signals, we will therefore include control output signal-driven leakage in our development. The
main point is that weight and control-effort-driven leakage are considered algorithm extensions
that can be selected or not.

Control Output-Driven Leakage in the Time Domain

Hence, we will further augment the l.l.m.s.e. problem (8.3.5) to include a cost function control
output signal mean-square penalty term represented by Jγ( · ) and defined as

Jγ( · ) �
{

Jγ
(
y(iγ)

)
= γ

(
iγ ,y(iγ)

)
E|y(i)|2, SISO, MISO,

Jγ
(
yiγ

)
= E‖yi‖2γiγ (yiγ ), SIMO, MIMO,

(8.3.15)

where y(i) ∈ K(yi ∈ KNy×1) denotes the control output signal, the quantity γiγ (yiγ ) ∈ RNy×Ny(γ(iγ ,y(iγ)) ∈
R) refers to the control-effort-driven leakage or actuator weighting diagonal matrix (parameter)
where the individual elements γl

iγ
denote the weight factor attributed to the l’th actuator. The

integer iγ denotes the control-effort-driven matrix update iteration number and iγ is the iter-
ation number corresponding to iγ , where the individual elements V y

l denote the weight factor
attributed to the l’th actuator.

The control-effort-driven matrix may be updated at each block-update time or if computational
prohibitive then less frequently that is, iγ ≤ iB and iγ ≤ i. Hence, in the general case the
control-effort-driven leakage will be matrix-valued and time-variant. The dependence on the
control output signal has been made explicit in (8.3.15). In subsection 8.A.1 an example of a
method dynamically to schedule the control-effort-driven leakage matrix is provided. It should
also be observed that in order to facilitate further analysis we have deliberately chosen to use
a separate iteration number control-effort-driven matrix update such that expectation operator
should not be applied to the normalization leakage matrix, that is, γiγ (yiγ )y in (8.3.15).

The associated optimization problem is then expressed by the cost function Je2γ(wiB )

min
w

{
Je2γ(wiB ) � Je2

(wiB ) + Jγ(wiB )
}
. (8.3.16)

The optimization problem (8.3.16) is over the space of feasible weight vectors wiB and we
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have accordingly made use of the implicit dependence of Jγ on wiB (yi = xiwiB ), where
xi ∈ K1×M (xi ∈ KNy×M ) denotes the reference signal. Accordingly, we may reformulate (8.3.15)

Jγ(wiB ) �

⎧⎪⎨⎪⎩
w∗

iB
R

γ(iγ ,y(iγ))
x,i wiB = ‖wiB‖2

R
γ(iγ ,y(iγ ))
x,i

, SISO, MISO,

w∗
iB

R
γiγ (yiγ )

x,i wiB = ‖wiB‖2
R

γiγ
(yiγ )

x,i

, SIMO, MIMO.
(8.3.17)

Here R
γiγ (yiγ )

x,i � Ex∗
i γiγ (yiγ )xi ∈ CM×M is the auto correlation matrix of the actuator-weighted

reference signal xi.

Then by including both weight-driven leakage and control-effort-driven leakage the cost function
Je2αγ(wiB ) is determined by

min
w

{
Je2αγ(wiB ) � Je2

(wiB ) + Jα(wiB ) + Jγ(wiB )
}
. (8.3.18)

The term leakage used for both methods considered in this section stems from the numerical
reduction in weight update. This subject should be more clear in section 8.6 on page 396 where
expressions for the adaptive tap-weight update are derived.

Control Output-Driven Leakage in the Frequency Domain

In the frequency-domain the corresponding cost function control output signal mean-square
penalty term is

Jγ
(
w̃k,iB ) �

{
E γk(iγ , ỹk(iγ)) |ỹk(i)|2, SISO, MISO,

E ‖ỹk,i‖2γk,iγ (ỹk,iγ ), SIMO, MIMO
, k = 0, 1, 2, . . . , 2B − 1

(8.3.19)

and the cost function including both weight-driven leakage and control-effort-driven leakage is
expressed by

min
w̃k

{
Je2αγ(w̃k,iB ) � Je2

(w̃k,iB ) + Jα(w̃k,iB ) + Jγ(w̃k,iB )
}
. (8.3.20)

From a design point of view some way to schedule the control-output-driven leakage matrix γiγ

or parameter γ(iγ) must be sought for. The l.l.m.s.e. problem considered hitherto in this chapter
is within the control community considered as a H2 performance criterion7. However, in order
to realize a physical control system additional design criterions emerge. Some of these design
criterions are governed by constraints that lend themselves to a H∞ control approach.

In subsection 8.A.1 we will see that both weight-driven leakage and control-effort-driven leakage
can be used to emulate H∞ control.

7For a definition of Hardy spaces refer to, e.g., [74, Ch. 4].
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Bibliographic Notes on Control-Effort Leakage8

The two types of minimum effort estimators, that is, the weight-driven leakage and the control-
output-driven leakage schemes (scalar-valued time-invariant parameters) were investigated in a
context of feedforward control and for by Darlington [16]. He found that the benefit of super-
posing a white-noise dither signal on the regressor signal (filtered-reference signal) in terms of
an reduction in the eigenvalue spread (see leakage objective 3 in subsection 8.3.3) obtained with
weight-driven leakage is no longer present with control effort-driven leakage. In fact as men-
tioned in [22, Ch. 3] the control output signal-driven leakage corresponds to superposing a dither
signal to the filtered-reference signal that is uncorrelated with reference signal and whose value
is proportional to γ and whose power spectral factorization is equal to that of reference signal
(not the filtered-reference signal). This means that for an adaptive filter operating in interfer-
ence cancelation mode (refer to section 8.2 on page 373), such dither signal is not white-noise
as the reference signal and filtered-reference signal do not coincide. In terms of computational
complexity the usual weight-driven leakage approach is somewhat more efficient.

8.3.5 Tap-Weight Regularization

Regularization is a method often applied in control system design, system identification [39] and
linear estimation [33]. Regularization techniques dates back to the work by Levenberg [37] and
Marquardt [40]. The objective of regularization is twofold

Regularization Objective 1. Numerical regularization. Preservation of numerical stability.

Regularization Objective 2. Tap-weight regularization. Pulling the solution towards some
possible dynamic point of attraction w̄iw̄ . This property can be very useful if some prior informa-
tion regarding the optimal solution is available and the regressor provides insufficient excitation
of the pertinent parameters. The regularization parameter can then control to which extend the
parameters will be locked in the vicinity of w̄iw̄

The name regularization is normally associated with objective 1. However, we will postpone the
discussion of numerical regularization to

Tap-Weight Regularization in Time Domain

Hence, we will augment (8.3.12) to include a cost function term JΠ(wiB ) defined as

JΠ(wiB ) � (wiB − w̄iw̄ )∗ΠiΠ(wiB − w̄iw̄ ) (8.3.21)

that penalizes the squared Euclidean norm for the deviation of the weight vector from the point
of attraction w̄iw̄ ∈ KM×1. The quantity ΠiΠ ∈ KM×M is the weight regularization matrix
that is assumed to be positive semi-definite (ΠiΠ � 0), usually a multiple of the identity. The
integer iΠ denotes the weight regularization matrix update iteration number, iw̄ denotes the
point of attraction update iteration number and iΠB is the weight block update iteration number
corresponding to iΠ. The weight regularization matrix may be updated at each block-update

8This subsection provides supplementary historical information on control-effort leakage control that, however,
can be skipped on a first reading.
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time or if computational prohibitive then less frequently. Hence, iΠ ≤ iB and iΠB ≤ iB. Usually,
however, Π and w̄ are time-invariant9.

The cost function Je2αγΠ(wiB ) that takes leakage and regularization into account may now be
expressed as

min
w

{
Je2αγΠ(wiB ) � Je2αγ(wiB ) + JΠ(wiB )}. (8.3.22)

By assigning ΠiΠ = 0 we suppress the weight regularization.

In the literature regularization and leakage are often considered synonyms. By our cost function
definitions (8.3.11) and (8.3.21) we could obtain the leakage effect in (8.3.22) by absorbing α in Π
by Π← αI+Π for w̄iw̄ = 0. However, we prefer to preserve both quantities representing different
objectives as described previously. In section 8.5 we will introduce yet another parameter ε that
explicitly will be used to ensure numerical stability during actual operation of the adaptive filter.

Tap-Weight Regularization in the Frequency Domain

In the frequency-domain the weight regularization cost function term is defined by

JΠ(wk,iB ) � (wk,iB − w̄k)∗ΠiΠ(wk,iB − w̄k) (8.3.23)

Similarly, the l.l.m.s.e. cost function with weight-driven leakage control-effort-driven leakage and
weight regularization is expressed as

min
w̃k

{
Je2αγΠ(wk,iB ) � Je2αγ(wk,iB ) + JΠ(wk,iB )}. (8.3.24)

8.4 Wiener Optimal Filter

In textbooks on linear estimation theory and linear adaptive filters extensive reference is made
to Wiener-filters in honor of the innovative wartime (1942) report on continuous signals and
systems by Wiener that, however, was first declassified and published in 1949 [70]. This work
took benefit from earlier work by Wiener and Hopf on the solution of singular integral equations
referred to as the Wiener-Hopf equation [71]. It can be argued that this work is one of the
most important developments in linear estimation theory. Later the theory of optimal filtering
was adapted to discrete-time signals and systems [38] on which every modern implementation is
based. Another important contribution to the literature was the work by Bode and Shannon [4]
who augmented the theory of Wiener filtering to include causality. By causality is meant that
the filter responses are constrained to zero for negative time.

Wiener filters are confined to jointly wide-sense ergodic processes and is derived from ensemble
averages. Wiener filters are linear and optimum in a probabilistic mean-squared-error sense.
Wiener filters are theoretically very useful for prediction, estimation, interpolation, signal and
noise filtering, and so on. From a practical implementation point of view the Wiener filter
approach is of limited use as it requires a considerably amount of data to accurately calculate

9For example the regularization matrix may follow an exponential transition phase, e.g., ΠiΠ = cΠ(1−e−γΠ i)I
for some constants cΠ, γΠ ∈ R+.
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the autocorrelation matrix Ru,i. However, the optimal Wiener-Hopf solution in subsection 8.4.1
(viz. (8.4.1)) will be used as a frame of reference in MATLAB® simulations. Here no real-time
requirements exist and we can post process the data causally as well as noncausally.

The performance of an adaptive filter can therefore conveniently be assessed with reference to
the optimal Wiener filter assuming wide-sense stationarity. This pertains in particular to the
asymptotic behavior of the adaptive filter. The Wiener Filter (WF) was originally developed for
SC systems employing the Je2

(wiB ) cost function defined in (8.3.3).

In this section we will exclusively consider SC-WFs that are both constrained to be causal and
constrained to be of finite order and optimal in Je2

(wiB ) cost function sense. Two variants of the
Wiener filter will be considered, namely the time-domain Wiener filter and the somewhat more
involved z-domain Wiener filter that is also referred to as transform-domain Wiener filter. Later
in section 8.5 on page 388 we will derive expressions for the optimal weight vector for MC systems
using the more general cost function JαγΠ(wiB ) defined in (8.3.18) viz. (8.5.19) to (8.5.20) on
pages 393–394.

8.4.1 Time-Domain Causality-Finite-Order-Constrained Wiener Filter

The time-domain Wiener filter solution requires knowledge concerning auto correlation matrix
for the reference signal, Ru,i � Eu∗

i ui, and cross-correlation between the reference signal and the
desired response, Rud,i � Eu∗

i di. The optimal weight vector wo
iB
∈ KM×1 in a finite-duration

impulse response (FIR) filter (see Figure I.1 on page 731) implementation is obtained from

wo
iB

= R−1
u,iRud,i. (8.4.1)

The requirements on causality and finite order are satisfied from restricting the auto correlation
matrix Ru,i and the cross-correlation matrix Rud,i to be of finite order and by using only entities
of Rud,i with non-positive time lags up to 1 less than the FIR filter order. Usually, the weight
vector is assumed constant for the Wiener-Hopf (WH) filter. However, in order to provide some
tracking capability we will allow a block-update of the weights provided that the reference signals
and disturbance signals are locally (in time) wide-sense stationary such that it makes sense to
invoke the expectation operator on a finite time window.

Although the Wiener filter is referred to as optimal this optimality only applies under the as-
sumption of random white noise signal. For random colored noise signals, however, the weight
estimate (8.4.1) will only be suboptimal. For such colored signals the z-domain Wiener Filter
introduced in subsection 8.4.2 will ensure optimality. Moreover, the process is not perfect as the
output estimation error will attain some finite value, eo(i), even when the filter operates in its
optimum condition. The cost function, Jmin(wo

iB
), attained when the weights are optimal is

Jmin(wo
iB

) = E|eo(i)|2

= σ2
d(i)−Rud,iw

o
iB

Rud,i, (8.4.2)

where σ2
d(i) designates the variance of the desired signal d(i)

σ2
d(i) = Ed2(i). (8.4.3)
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As readily seen from (8.4.1) the optimal Wiener-Hopf solution requires estimation of both auto-
and cross-correlation functions, which in practise only can be done from time histories of the
reference signal and desired signal. Moreover, the Wiener-Hopf filter requires matrix inversion
of the M ×M autocorrelation matrix subject to possible ill-conditioning problems. Even if the
symmetric and Toeplitz properties of Ru,i is exploited, such matrix inversion requires of the order
of M2 arithmetic operations.

Two very important properties of Wiener filters should be recalled here. The first important
property is that when the filter weights attain there optimal values (8.4.1) then there will be no
correlation between the error and the input to any of the weights at the same time, that is,

Eu(i− k)eo∗(i) = 0, k = 0, 1, 2, . . . , M − 1. (8.4.4)

This applies both to time-domain Wiener filters and z-domain Wiener filters described in subsection 8.4.2
and is known as the principle of orthogonality. Similarly, when the filter operates in its optimum
condition then there will be no correlation between the filter output and the error, that is,

Eyo(i)eo∗(i) = 0. (8.4.5)

Expressed in other words the Wiener Filter makes exhaustive use of the information provided in
the covariance matrix and cross-covariance vector.

8.4.2 z-Domain Causality-Finite-Order-Constrained Wiener Filter

The z-domain Wiener filter is based on a spectral factorization (refer to chapter 3 on page 105)
and the optimal weights are accordingly found in the z-domain from [3, 4]

wo
iB

(z) = L−1
u,i,+(z)

{
L−1

u,i,+(z−∗)Sud,i(z−∗)
}

+

. (8.4.6)

As for the time-domain Wiener filter we allow block update of the weight in order to provide the
filter with some tracking capability assuming that the reference signals and disturbance signals
are locally (in time) wide-sense stationary such that z-transform operator ˜( · ) = (Z( · ))(z) makes
sense. The plus operator {}+ determines the causal part of the sequence inside the curlets and
Lu,i,+ and Lu,i,− refer to the following basic spectral factorization of the z-autospectrum matrix

Su,i(z) = Lu,i,+(z)L∗
u,i,−(z−∗), (8.4.7)

where Lu,i,+(z) is a spectral factor (minimum phase, modeling filter) and Lu,i,−(z) is the para-
Hermitian conjugate of Lu,i,+. The factorization quantity, Lu,i,+, contains exclusively poles and
zeroes inside the unit circle in the z-plane whereas all poles and zeroes of Lu,i,− are found
outside the unit circle of the z-plane.

From (8.4.6) and (8.4.7) we appreciate that for the calculation of the optimal z-domain WF,
mainly two operations are necessary: the nonlinear spectral factorization and the in general un-
bounded plus-operation. Moreover, in practice the determination of the optimal weights involves
the auto- and cross-spectral density functions Suu(eıω) and Sud(eıω) with certain smoothness
properties. Boche and Pohl [3] who made a system theoretical analysis of the z-domain WF
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showed that for SC systems that for Hölder continuous10 spectra, the z-domain WF always exists,
it is stable and it can be approximated with by a FIR filter. However, for spectra which are
continuous, but not Hölder continuous, the WF is not always stable or it cannot be approximated
by a FIR filter.

The optimal two-sided solution (8.4.1) will differ from the single sided solution (8.4.6) only
if Rud,i contains z-terms to a higher order than Ru,i. In such cases more time-advanced in-
formation is required by the cross-correlation matrix than provided by the correlation matrix.
Accordingly, the minimum cost function achievable in the z-domain filtering case J

{}+
min (wo

iB
) is

generally smaller than the corresponding cost function in the time-domain filtering case, that is,
J
{}+
min (wo

iB
) ≤ Jmin(wo

iB
).

8.5 Method of Steepest Descent

8.5.1 Introduction

The purpose of including a description of the method of steepest descent is twofold. Firstly,
although the steepest descent is a stochastic gradient estimation method it is also descriptive for
a so-called deterministic feedback system that finds the minimum point of the ensemble-averaged
error-performance surface without knowledge of the surface itself [29]. Secondly, the steepest
descent serves as an intermediate stage of conception between the theoretical oriented Wiener
filter approach discussed in the previous section and the topic of the next section namely the
family of least-mean square algorithms that are used for many practical purposes.

In the method of steepest descent knowledge about the local gradient of the ensemble-averaged
error-performance surface is assumed available. At each iteration the weights are adjusted so
that the trajectory follows a path on the ensemble-averaged error-performance surface leading
to the global minimum.

8.5.2 Method of Steepest Descent in the Time Domain

A step-size parameter (positive-definite learning matrix) μ(iμ) ∈ R(μiμ ∈ RM×M � 0) and
a weight-update direction vector w̌iB ∈ KM×1 both of which in the general case are iteration-
dependent, control the amount of weight adjustment along each coordinate. The integer iμ refers
the step-size parameter update iteration number. The step-size parameter may be updated at
each block-update time or less frequently. Hence, iμ ≤ iB. By allowing the step-size parameter
μiμ to be matrix-valued and time-variant our presentation will then cover a fairly large share of
adaptive filter algorithms with roots in stochastics11. Variable step-size algorithms are used to

10Refer to 35 on page 675. In a practical noise environment the auto- and cross-spectral density functions
will normally be Hölder continuous. Moreover, applying statistical data analysis (SDA) algorithms using a finite
amount of samples results in smearing of the spectraAppendix C on page 539. In a simulation environment,
however, abrupt changes in the auto- and cross-spectral density functions are possible resulting in non Hölder
continuous spectra.

11For example, the relative new class of proportionate adaption schemes make use of a time-variant learning
matrix. The proportionate NLMS (PNLMS) algorithm was initially developed by the Bell Laboratories for echo
canceler adaptation that exploits the sparseness of network impulse responses to achieve significantly faster adap-
tation than the conventional NLMS algorithm [20]. The general idea of the PNLMS algorithm is to assign different
step sizes to different coefficients based on their current estimated magnitudes. If the current magnitude of a
coefficient is large, large step size will be assigned, and vice versa. It redistributes the adaptation gains among
all the coefficients and emphasizes the large ones in order to speed up their convergence, which explains the
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provide a better trade-off between fast convergence and low misadjustment [59].

The adaptive filtering process can generally - without making any assumptions on the cost
function involved - be described by the following recursion for the weights update

wiB = wiB−1 + μiμw̌iB , iB ≥ 0, iiμ ≥ 0, w−1 = wig. (8.5.1)

In (8.5.1) the initial (guessed) weight vector wig ∈ KM×1 has been introduced. In subsection 8.5.8
the weight initialization procedure will be addressed. As already discussed the shape and there-
fore also the local gradient of the error-performance surface is indeed dependent on the formula-
tion of the cost function. Most contributions in the literature on the method of steepest descent
are based on l.l.m.s.e..

8.5.3 Method of Steepest Descent in the Frequency Domain

In the DFT domain the weights update recursion is

wk,iB = wk,iB−1 + μk,iμ w̌k,iB , iB ≥ 0, iiμ ≥ 0, wk,−1 = wig
k . (8.5.2)

8.5.4 Linear-Least-Mean-Squares Estimation

Linear-Least-Mean-Squares Estimation in the Time Domain

As described in [56] even in the simple l.l.m.s.e. case many different choices of the vector quantity
w̌iB in (8.5.1) will ensure convergence provided μ(iμ) is sufficiently small. The requirement on
the value of the cost function at successive iterations to be monotonically decreasing is satisfied
in the l.l.m.s.e. case for [56, Ch. 4]

�[∇wJ(wiB−1)w̌iB ] < 0. (8.5.3)

A class of vectors w̌iB for which (8.5.3) holds and that has been devoted particular attention is
governed by the expression

w̌iB = −B(iB)[∇wJ(wiB−1)]∗, (8.5.4)

where B(iB) denotes a possible time-variant positive definite matrix (B(iB) � 0, iB ≥ 0). The
complex gradient of a scalar-valued function, say, J(z) with vector arguments (∇z) with respect
to a complex-valued column vector z ∈ C1×N , say12,

z = col{
[
z1, z2, . . . , zN

]
}, zi = xi + ıyi (8.5.5)

fast initial convergence. This faster convergence is attained at only a modest increase in computational com-
plexity and without sacrifying the estimation quality. In recent years other members have been added to the
family proportionate adaption schemes among others including proportionate adaptation NLMS (PANLMS), μ-law
PNLMS (MPNLMS) and proportionate APA (PAPA) [2]. In many other adaptive filtering schemes the step-size is a
simple time-variant scalar or constant scalar.

12Subscripts used here to designate elements of a vector.
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is defined as the row vector

∇z [J(z)] = ∇zJ �
[
∂J/∂z1 ∂J/∂z2 . . . ∂J/∂zN

]
. (8.5.6)

The complex gradient of a multi-dimensional-valued function array, say, Ψ ∈ CN1
Ψ×N2

Ψ×N3
Ψ(z)

if with vector arguments (∇z) with respect to a complex-valued column vector z is obtained
from applying (8.5.6) element-wise. Hence, ∇z( · ) : Ψ ∈ CN1

Ψ×N2
Ψ×N3

Ψ(z) → CN1
Ψ×N2

Ψ×N3
ψ×N for

z ∈ C1×N . For later use we will also introduce the corresponding conjugate complex gradient of
a scalar-valued function with respect to a complex-valued vector (∇z∗) which is a column vector

∇z∗ [J(z)] = ∇z∗J �

⎡⎢⎢⎢⎣
∂J/∂z∗1
∂J/∂z∗2

...
∂J/∂z∗n

⎤⎥⎥⎥⎦ . (8.5.7)

By insertion of (8.5.4) in (8.5.1) and applying the cost function defined in (8.3.22) we can express
the recursion for the weight update as

wiB = wiB−1 − μiμB(iB)[∇wJe2αγΠ(wiB−1)]∗, iB ≥ 0, iiμ ≥ 0, w−1 = wig. (8.5.8)

For reasons that will explained later we will use a more elaborate expression for the class of
vectors w̌iB (8.5.1) on the previous page, namely

w̌iB = −Be2
(iB)[∇wJe2

(wiB−1)]∗ −BαγΠ(iB)[∇wJαγΠ(wiB−1)]∗, (8.5.9)

where both Be2
(iB) and BαγΠ(iB) denote possible time-dependent positive definite matrices (at

all time) (Be2
(iB) � 0, BαγΠ(iB) � 0). In (8.5.9) the quantity JαγΠ(wiB ) denotes the cost

function term related to the combined leakage effects and regularization that is defined as

JαγΠ(wiB ) � Jα(wiB ) + Jγ(wiB ) + JΠ(wiB ). (8.5.10)

From the definition of the cost function (8.3.3), (8.3.11), (8.3.17) and (8.3.21) and by the positive
definite properties of Be2

(iB) and BαγΠ(iB) it is then readily seen that (8.5.3) still holds.

8.5.5 Numerical Regularization

A useful choice of the matrix Be2
(iB) in (8.5.9) is the Hessian matrix ∇2

wJe2
(wiB−1). Now as

discussed in subsection 8.3.5 the meaning of regularization is twofold. We will now address the
numerical motivation.

Regularization Objective 1. Avoidance of an ill-conditioned Hessian matrix ∇2
wJe2

(wiB−1).
In practice the Hessian matrix will often be determined from time-averaging a realization of the
regressor data. However, if the system is over parameterized i.e. to many weights are involved or
the data is not informative enough the Hessian matrix may become singular or close to singular.



8.5. Method of Steepest Descent 391

Regularization is a commonly applied method to alleviate problems with rank deficiency in the
Hessian matrix by adding a weight regularization term that is positive definite. Now taking
numerical regularization into account we may instead define Be2

(iB) as

Be2
(iB) = [εiε +∇2

wJe2
(wiB−1)]−1, (8.5.11)

where εiε ∈ RM×M represents a likewise possible iteration-dependent regularization term at
regularization update iteration number iε. The regularization term may be updated at each
block-update time or less frequently. Hence, iε ≤ iB. Moreover, in (8.5.11) the denoted by
Hessian matrix of J with respect to w of the cost function J(w) ∇2

wJ was introduced. It is
determined from the general expression of a Hessian matrix

∇2
zJ � ∇z∗ [∇zJ ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2J

∂z∗1∂z1

∂2J

∂z∗1∂z1
. . .

∂2J

∂z∗1∂zN

∂2J

∂z∗2∂z1

∂2J

∂z∗2∂z1
. . .

∂2J

∂z∗2∂zN
...

...
. . .

...
∂2J

∂z∗N∂z1

∂2J

∂z∗N∂z1
. . .

∂2J

∂z∗N∂zn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.5.12)

from substituting z by w.

The term εiε in the expression (8.5.11) for Be2
(iB) is used for numerical regularization 13. By

regularization the matrix Be2
(iB) can then be guarantied to be positive definite at all time

(Be2
(iB) � 0, iB ≥ 0). Regularization then ensures existence of the inverse in (8.5.11). As

argued in [39, Ch. 16] the singular values of the Hessian matrix are often widely spread. By
addition of the regularization term an improved convergence can be obtained.

For that part of the cost function that accounts for leakage and weight regularization JαγΠ(wiB−1)
we simply use the identity matrix for BαγΠ, that is,

BαγΠ(iB) = I. (8.5.13)

Now instead of (8.5.8) by insertion of (8.5.11) and (8.5.13) in (8.5.9) and subsequently in (8.5.1)
we obtain the following expression for the SD weight update

wiB = wiB−1 − μiμ

[
[∇wJαγΠ(wiB−1)]∗ + [εiε +∇2

wJe2
(wiB−1)]−1[∇wJe2

(wiB−1)]∗
]
,

iB ≥ 0, iiμ ≥ 0, iε ≥ 0, w−1 = wig.

(8.5.14)
13The numerical regularization above is usually applied in algorithms with matrix normalization, e.g., RLS

and APA for numerically stabilizing the solution. However, the regularization parameter is sometimes used more
actively in the filter design. For example, in the field of acoustic echo control abrupt changes in the system response
and highly nonstationary speech activities put opposite demands on the time-invariant step-size or regularization
parameters. Instead the step-size and regularization parameter constitute a time-variant pseudo-optimal control
pair [28]. In this application the step-size is a function of the reference signal signal and the error signal while
the regularization term is a function of the disturbance signal, that is, μiμ → μ(e(i), ui) and εiε → ε(d(i)). The
term pseudo is used in order to emphasize that several assumptions and approximation are necessary in order to
derive simple formulas, which can easily be implemented in a real system.
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Invoking the cost functions (8.3.6) (8.3.11) (8.3.17) (8.3.21) and (8.5.12) the local gradients and
Hessian matrix are readily obtainable14

∇wJe2
(wiB−1) =

{
−R∗

ud,i + w∗
iB−1Ru,i, SISO, SIMO,

−(RWe

ud,i)
∗ + w∗

iB−1R
We

u,i , MISO, MIMO,
(8.5.15a)

∇wJα(wiB−1) = w∗
iB−1αiα(wiα

B
), (8.5.15b)

∇wJγ(wiB−1) =

{
w∗

iB−1R
γ(iγ ,y(iγ))
x,i , SISO, MISO,

w∗
iB−1R

γiγ (yiγ )

x,i , SIMO, MIMO,
(8.5.15c)

∇wJΠ(wiB−1) = (wiB−1 − w̄iw̄ )∗ΠiΠ , (8.5.15d)

∇2
wJe2

(wiB−1) =

{
Ru,i, SISO, SIMO,

RWe

u,i , MISO, MIMO.
(8.5.15e)

Here Rud � Eu∗
i di ∈ CM×1 is the cross-correlation vector between the regressor ui and distur-

bance signal di, Ru � Eu∗
i ui ∈ CM×M is the auto correlation matrix of the regressor ui and

RWe
u � Eu∗

i Weui ∈ CM×M is the error sensor-weighted auto correlation matrix of the regressor
ui, RWe

ud � Eu∗
i Wedi ∈ CM×1 is the error sensor-weighted cross-correlation vector between the

regressor ui and disturbance signal di.

Moreover, it is important to note that in derivation we did not have to apply the chain-rule of
differentiation for the complex gradient of a multi-dimensional-valued function array in order to
obtain, e.g., ∇wαiα(wiα

B
) as the weight-driven leakage matrix is frozen at the value it attained

at time iαB and is first subsequently updated. Similar considerations apply to ∇wR
γiγ (yiγ )

x,i . By
substituting (8.5.15) in (8.5.14) we obtain the following recursion algorithm for the MIMO case

wiB =
(

I− μiμ

(
αiα(wiα

B
) + R

γiγ (yiγ )+ΠiΠ
x,i

))
wiB−1

+ μiμ

(
εiε + RWe

u,i

)−1(
RWe

ud,i −RWe

u,i wiB−1

)
+ μiμΠiΠw̄iw̄ ,

MIMO, i ≥ 0, iB ≥ 0, iα ≥ 0, iγ ≥ 0, iμ ≥ 0, iε ≥ 0, w−1 = wig.

(8.5.16)

In (8.5.16) we recognize the regularization factor εiε in the denominator of the second term.
As seen, by the definition of Be2

(iB) in (8.5.11) and BαγΠiΠ (iB) in (8.5.13) possible numerical
regularization effects from the leakage control parameter and weight regularization parameter
are suppressed. This explains why we chose to split the cost function in two parts. One part
represented by Je2

(wiB−1) is used for l.l.m.s.e. while the other part represented by JαγΠ(wiB−1)
accounts for leakage and weight regularization.

14 Notice there is subtle difference between the expression for the gradient of the cost function with respect to
the weights (8.5.15a) as compared with similar expressions in [29, Ch. 8], where a factor 2 is present. The absence
of a factor 2 in (8.5.6) stems from different definitions of a complex gradient with vector arguments (∇w) (8.5.6)
made in [29, App. B.3] and [56, App. 2A]. Moreover, in [56] a complex transposition is present which as proved in
subsection 8.B.1 on page 409 can be attributed to the different definition of the observation vector u and different
usage of the tap weight vector w in the two cases (refer to the Notations on page xli). It should, however, be
emphasized as also verified in subsection 8.B.1 on page 409 that the present formulation and the textbooks by
Haykin [29] and Sayed [56] end up with compatible expressions for the basic SD algorithm (8.5.25) on page 394.
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Equation (8.5.14) (8.5.16) constitute several extensions to the Levenberg-Marquardt method [37,
40] for quadratic cost functions. The extensions in (8.5.14) comprise

➀ A time-variant step-size matrix μiμ .

➁ A time-variant weight-driven leakage matrix αiα(wiα
B
).

➂ A time-variant control-effort-driven leakage matrix γiγ (yiγ ).

➃ A time-variant numerical regularization matrix εiε .

➄ A time-variant weight regularization matrix ΠiΠ .

➅ A time-variant point of attraction weight w̄iw̄ .

➆ Applies to SISO, MISO, SIMO and MIMO systems.

➇ Weighting among error sensors.

Most often Ru,i, Rud,i are estimated from the realizations {ui, di} of {ui,di} by employing some
kind of time-average. However, due to finite correlation of the regressor ui condition number of
the estimate Ru,i of Ru,i in (8.5.16) grows and the inverse of R̂u become more and more dubious.
Increasing εiε means that the effective step-size, that is, μiμ(εiε + Ru,i)−1 is decreased and the
search direction is tuned towards the gradient.

We will proceed with the MIMO system as the result for the SISO, MISO and SIMO systems are
readily obtained by applying the following substitutions

Ru,i ← RWe

u,i , Rud,i ← RWe

ud,i, SISO, SIMO, (8.5.17a)

R
γ(iγ ,y(iγ))
x,i ← R

γiγ (yiγ )

x,i , SISO, MISO. (8.5.17b)

Moreover, we will for notational convenience suppress the explicit dependence of the leakage
control matrix on the weights and the explicit dependence of the control-effort-driven leakage
matrix on the control output signal, that is, αiα ← αiα(wiα

B
) and Rγ

x,i ← R
γiγ (yiγ )

x,i .

From (8.5.15) we may deduce the optimal weight vector sought for in section 8.4 on page 385.
Hence,

∇wJe2
(wiB−1) = −(RWe

ud,i)
∗ + w∗

iB−1

[
RWe

u,i + αiα + Rγ
x,i + ΠiΠ

]
− w̄∗

iw̄
ΠiΠ (8.5.18)

and by equating to zero we obtain

wo
iB

=
[
RWe

u,i + αiα + Rγ
x,i + ΠiΠ

]−1(
RWe

ud,i + ΠiΠ w̄iw̄

)
. (8.5.19)

Now in order to obtain the MC-WH solution for the cost function JαγΠ(wiB ) we proceed in a way
similar that led from expression (8.4.1) for the time-domain WH filter to expression (8.4.6) for
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the z-domain WH filter in [22, Ch. 3]. Hence, for the z-domain Wiener filter the optimal weights
are found from

wo
iB

(z) =
{(

LαγWe

u,i,+

)−1

(z−∗)Sud,i(z−∗)
}

+

(
LαγWe

u,i,+

)−1

(z). (8.5.20)

where the mixed filtered-reference signal z-auto-cross-spectrum SαγWe
uuxx (z) ∈ CM×M is defined by

SαγWe
uuxx (z) = SWe

uu (z) + αiα + Sγ
xx(z) + ΠiΠ . (8.5.21)

The basic spectral factorization of the mixed filtered-reference signal z-auto-cross-spectrum
SαγWe

uuxx (z) used in (8.5.20) can be obtained from

SαγWe
uuxx (z) = LαγWe

+ (z)
(
LαγWe

−
)∗(z−∗), (8.5.22)

and where LαγWe

ux,i,+(z) is a spectral factor (minimum phase, modeling filter) and LαγWe

ux,i,−(z) is the
para-Hermitian conjugate of LαγWe

u,i,+ (z).

8.5.6 Variant of the Method of Steepest Descent

For small values of εiε , and by omitting leakage and weight regularization, that is, (αiα = γiγ =
0, ΠiΠ = 0) our extended Levenberg-Marquardt method (8.5.14) (8.5.16) approaches the Newton
algorithm

wiB = wiB−1 − μ[∇2
wJe2

(wiB−1)]−1[∇wJe2
(wiB−1)]∗, iB ≥ 0, w−1 = wig, (8.5.23)

where a time-independent step-size also is assumed. The Newton algorithm is designed to give
one-step convergence for quadratic functions, but is prone to an ill-conditioned Hessian matrix.
A more simple but also less effective version of the SD method is obtained by also using an
identity matrix for Be2

(iB) as we did for BαγΠ(iB) in (8.5.13). By inspection of (8.5.14) it is
readily observed that the corresponding weight recursion update reduces to

wiB = wiB−1 − μiμ

[
∇wJe2

(wiB−1) +∇wJαγΠ(wiB−1)
]∗

, i ≥ 0, iB ≥ 0, w−1 = wig.

(8.5.24)

By substituting (8.5.15a) (8.5.15b) (8.5.15c) and (8.5.15d) in (8.5.24) we obtain for ΠiΠ = 0

wiB = (I− μiμαiα)wiB−1 + μ[Rud,i −Ru,iwiB−1], i ≥ 0, iB ≥ 0, w−1 = wig. (8.5.25)

Recall from section 8.3.3 on page 380 that the leakage factor ν(iiν ) is defined by ν(iiν ) = 1 −
μ(iμ)α(iα) � 1. The name (coefficient) leakage stems from the leakage introduced in the weight
update in (8.5.25).
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8.5.7 Linear Least-Mean-Mixed-Even-Order Estimation

Hitherto, we have exclusively been considering the l.l.m.s.e. problem. However, it should be
emphasized that the method of steepest descent is not restricted to l.l.m.s.e. problems and the
associated m.m.s.e. criterion. The method of SD (8.5.1) is general and can work with other per-
formance criterions as well. In [56] an unregularized least-mean-fourth (LMF) norm and a mixed
unregularized linear-least-mean-mixed-even-norm estimation (l.l.m.m.e.n.) SD are considered. The
LMF algorithm was originally proposed in [65] as an algorithm that under certain circumstance,
will have a substantially lower weight noise than the least-mean-squares.

By applying the procedure from the previous sections of cost function separation to our extended
Levenberg-Marquardt method SD algorithm (8.5.14) can rather easily be extended to a general
combination of least-mean-mixed-even-norms (LMMENs) while still including weight-driven leak-
age control-effort-driven leakage and weight regularization. The advantage of exclusively using
even-order norms is that this ensures that the ensemble-averaged error performance surface is
convex and hence that a unique optimum for the weight exists.

Hence, we will also propose the l.l.m.m.e.n. cost function with weight-driven leakage control-effort-
driven leakage and weight regularization represented by Je2pαγΠ(wiB ) by

min
w

{
Je2pαγΠ(wiB ) � Je2p

(wiB ) + JαγΠ(wiB )}, (8.5.26)

where JαγΠ(wiB ) was defined in (8.5.10) and where represents the cost function that is defined
by Je2p

(wiB )

min
w

{
Je2p,αγΠ(wiB ) �

∑
p=1

βp E‖di − uiwiB‖
2p
We

}
,

∑
p=1

βp = 1. (8.5.27)

In the cost function formulation (8.5.26) weight-driven leakage and control-effort-driven leakage
penalty terms of mixed-even-norm could also be considered. However, instead similar effects
may be obtained by considering the use of appropriate penalty/barrier functions as discussed in
section 8.A.1 on page 407.

Unfortunately, the use of higher order estimation criterion requires knowledge about the statical
moments of the same order. Higher-order estimation, however, can rather easily be adopted into
the framework of the instantaneous gradient estimation methods described in section 8.6.

When we considering general l.l.m.m.e.n. it should be remembered that we then have to adopt the
requirement on the weight update direction vector w̌iB in (8.5.3) to the more complex estimation
criterion.

Finally, it should be remarked that, as also discussed in Appendix B for jointly gaussian dis-
tributed data the mean and variance quantities fully describe the signal statistics. For such
signals neither the LMF nor the LMMN would provide any advantage over the LMS.

8.5.8 Initial Tap-weights

Normally, in the lack of any information it is customary to initialize the weights by 0 (wig = 0).
However, we will try to reuse as much possible information obtained during previous operations
of the system. Hence, if the weight vector wls ∈ KM×1 was successfully saved at the previous
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shut-down of the system it will be reused. Alternatively, a weight vector obtained from some
averaging procedure denoted by wav ∈ KM×1 could be used. Finally, if no valid weight vector is
considered valid we resort to initialize the weights by 0. Hence,

wig =

⎧⎪⎨⎪⎩
0 default, wls and wav obsolete,
wav averaged,

wls last saved.

(8.5.28)

The weight initialization procedure (8.5.28) will be applied in all four modes of adaptive filter-
ing 1- 4 listed on page 373.

8.6 Stochastic Gradient Algorithms

8.6.1 Introduction

In the family of stochastic gradient algorithms we find the LMS and APA algorithms. The least-
mean-squares has extensively been used as a basis algorithm for adaptive filtering in many sort of
signal processing applications. The LMS algorithm was originally proposed by Widrow and Hoff
in 1960 [67]. The active noise control community has also widely adopted the least-mean-squares
because it is elegant in its simplicity and efficiency.

The fundamental concept behind the stochastic gradient algorithms will first be outlined. We
will apply the concept of stochastic gradient method to the most elaborate formulation of the
steepest descent method described in section 8.5 pertinent to l.l.m.s.e., viz., our extended Leven-
berg Marguardt method (8.5.14)-(8.5.16) which employ dynamic weight-driven leakage, dynamic
control-output-driven leakage, weight regularization and numerical regularization, and a time-
dependent step-size parameter. From this we obtain a general expression for the weight update
likewise pertinent to the l.l.m.s.e. case. Moreover, our basis for discussion of stochastic gradient
algorithm will have origin in the recent advances in the field, viz., the so-called affine protection
algorithm (APA) [24]. Finally, we will then derive ε-NLMS, NLMS and the ordinary LMS algorithm
by successive simplification of the more elaborate weight recursion expression.

For supplementary information on the LMS algorithm the reader is referred to the vast body of
literature on this subject, e.g., [29, 56, 68, 69]. The family of least-mean-squares algorithm is still
very popular and is still subject to refinements more than forty years after it was proposed for
the first time. Accordingly, a textbook exclusively devoted the least-mean-squares has recently
been published [30].

8.6.2 Fundamentals of Stochastic Gradient Algorithms

The family of stochastic gradient algorithms are based on the heuristics argument of replacing
the true gradient provided by the method of steepest descent by an instantaneous gradient esti-
mate, albeit noisy, obtained from a single data sample, without having to resort to perturbation
of the weight vector and averaging. This is achieved by replacing the ensemble-averaged co-
variance matrices Ru,i, R

We

u,i and ensemble-averaged cross-covariance vectors Rud,i, R
We

ud,i by their
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instantaneous values

R̂u,i ≈ u∗
i ui, R̂ud,i ≈ u∗

i di, R̂We

u,i ≈ u∗
i Weui, R̂We

ud,i ≈ u∗
i Wedi. (8.6.1)

The same applies to the auto correlation matrixs of the reference signals Rx,i, R
γ
x,i

R̂x(i) ≈ x∗
i xi, R̂γ

x,i ≈ x∗
i γiγ (yiγ )xi. (8.6.2)

The noisy estimates, however, are averaged and attenuated by the adaptation process itself [29],
[68] which can be expressed by,

E
[

̂∇wJαγΠ(wiB−1)
]
≈ ∇wJαγΠ(wiB−1), E

[
̂∇2
wJαγΠ(wiB−1)

]
≈ ∇2

wJαγΠ(wiB−1). (8.6.3)

Hence, both variance quantities will be time-variant. A more accurate but also more involved
estimate of the ensemble-averaged covariance matrices Ru,i, R

We

u,i and ensemble-averaged cross-
covariance vectors Rud,i, R

We

ud,i are obtained by averaging over a number of samples used t in
APA , say, K. Usually K � M . Then the expressions for the estimates of Ru,i, R

We

u,i , Rud,i and
RWe

ud,i become

R̂u,i ≈ K−1U∗
i Ui, R̂ud,i ≈ K−1U∗

i Di, R̂We

u,i ≈ U∗
i We⊗KUi, R̂We

ud,i ≈ U∗
i We⊗KDi, (8.6.4)

where Ui ∈ KK×M (Ui ∈ KKNe×M ) denotes the regressor time-block matrix that in turn is
defined by

Ui �
[
ui ui−Δu . . . ui−(K−1)Δu

]�
, (8.6.5)

and where Di ∈ KKNe×1(Di ∈ KK×1) is the disturbance signal time-block matrix

Di �

⎧⎪⎨⎪⎩
[
d(i) d(i−Δu) . . . d(i− (K − 1)Δu)

]�
SISO, SIMO[

di di−Δu . . . di−(K−1)Δu

]�
MISO, MIMO.

(8.6.6)

The quantity Δu denotes the number of samples used for inter-block decorrelation in APA.
Moreover, in (8.6.4) the error sensor weighting block diagonal matrix denoted by We⊗K ∈
R(KNe)×(NeK) was introduced. It is defined by

We⊗K = K−1We ⊗ IK , (8.6.7)

where IK is a K ×K identity matrix and the Kronecker product We ⊗ IK therefore means that
We is repeated K times to form a block matrix that is compatible with the dimensions of Ui.
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Hence, in a MC-active noise control system (ANCS) the auto- and cross-correlation functions
RWe

u,i , RWe

ud,i are obtained from a combination of temporal averaging determined by K, Δu and spa-
tial averaging determined by Ne. We may similarly obtain improved estimates of the ensemble-
averaged covariance matrices Rγ

x,i, R
γiγ (yiγ )

x,i from

R̂x,i ≈ K−1X∗
i Xi, R̂γ

x,i ≈ X∗
i γiγ⊗K(yiγ )Xi, (8.6.8)

where Xi ∈ KK×M (Xi ∈ KKNy×M ) denotes the reference signal time-block matrix that is defined
by,

Xi �
[
xi xi−Δu . . . xi−(K−1)Δu

]�
. (8.6.9)

Similarly, the actuator weighting block diagonal matrix denoted by γiγ⊗K(yiγ ) ∈ R(KNy)×(NyK)

was introduced. It is defined by

γiγ⊗K(yiγ ) = K−1γiγ (yiγ )⊗ IK . (8.6.10)

This block principle expressed by (8.6.4)-(8.6.10) constitutes the fundamentals of affine projec-
tion algorithm.

If we expand Ui as in (8.6.11) it is readily observed that the regressor ui is reused

Ui �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui ui−Δu . . . ui−(K−1)Δu

ui−1 ui−Δu−1 . . . ui−(K−1)Δu−1

...
...

. . .
...

ui−Δu+1 ui−2Δu+1 . . . ui−KΔu+1

ui−Δu ui−2Δu . . . ui−KΔu

ui−Δu−1 ui−2Δu−1 . . . ui−KΔu−1

...
...

. . .
...

ui−2Δu+1 ui−3Δu+1 . . . ui−(K+1)Δu+1

ui−2Δu ui−3Δu . . . ui−(K+1)Δu

...
...

. . .
...

ui−M+1 ui−Δu−M+1 . . . ui−(K−1)Δu−M+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

. (8.6.11)

The affine projection algorithm is therefore also known as a data-reusing algorithm.

8.6.3 αγΠε-Affine Projection Algorithm

αγΠε-Affine Projection Algorithm in the Time Domain

By insertion of (8.6.4) and (8.6.8) in (8.5.16) we obtain
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wiB =
(
I− μiμ(αiα + X∗

i γiγ⊗K(yiγ )Xi + ΠiΠ)
)
wiB−1 + μiμ

(
εiε + U∗

i We⊗KUi

)−1(
U∗

i We⊗KDi − U∗
i We⊗KUiwiB−1

)
+ μiμΠiΠw̄iw̄ ,

MIMO, i ≥ 0, iB ≥ 0, iα ≥ 0, iγ ≥ 0, iμ ≥ 0, iε ≥ 0, iΠ ≥ 0, w−1 = wig. (8.6.12)

By defining the transformed leakage-weight regularization matrix ΥiΥ ∈ KM×M by

ΥiΥ = I− μiμ

(
αiα + ‖Xi‖2γiγ⊗K

+ ΠiΠ

)
, (8.6.13)

where iΥ denotes the transformed weight leakage factor update iteration number which is incre-
mented each time either of iμ, iα, iγ and iΠ is incremented, that is, iΥ = iμ + iα + iγ + iΠ and
where the transformed weight vector w̆iw̆

∈ KM×1 15 in turn is defined by

w̆iw̆
= ΠiΠ w̄iw̄ , (8.6.14)

where iw̆ denotes the transformed point of attraction update iteration number, we can then
rewrite (8.6.12) in a more compact form

wiB = ΥiΥwiB−1 + μiμ

(
εiε + U∗

i We⊗KUi

)−1(
U∗

i We⊗KDi − U∗
i We⊗KUiwiB−1

)
+ μiμw̆iw̆

,

MIMO, i ≥ 0, iB ≥ 0, iΥ ≥ 0, iμ ≥ 0, iε ≥ 0, w−1 = wig.

(8.6.15)

From (8.6.13) it is readily observed that the transformed leakage-weight regularization matrix
depends explicitly on the data through Xi and implicitly on the data through αiα and γiγ that
themselves in general are data dependent.

The recursion in the form (8.6.15) involves the inverse of a matrix of order M ×M . However,
by applying the matrix inversion lemma16 we can reformulate the expression (8.6.15) by

wiB = ΥiΥwiB−1 + μiμε−1
iε

U∗
i (W−1

e⊗K + Uiε
−1
iε

U∗
i )−1(Di − UiwiB−1) + μiμw̆iw̆

,

MIMO, i ≥ 0, iB ≥ 0, iΥ ≥ 0, iμ ≥ 0, iε ≥ 0, w−1 = wig.
(8.6.16)

The detailed derivation can be found in subsection 8.B.2. In (8.6.16) only a matrix inverse of
the order KNe ×KNe is required which is an advantage as normally KNe �M . We have now
derived the novel l.l.m.s.e.-based adaptive filter encompassing leakage functionality and numerical
regularization as well as weight regularization. The weight update recursion algorithm governed
by (8.6.13) and (8.6.16) will be designated as multiple-channel-αγΠε-affine projection algorithm
and abbreviated MC-αγΠε-APA.

By omitting control-effort-driven leakage, weight regularization and weighting among the error
sensors, by assuming a time-invariant and scalar-valued weight-leakage control parameter, nu-
merical regularization parameter and step-size parameter and without the block-update, that is,

15Note the subtle difference in w̌ (accent check) in (8.5.4) on page 389 and w̆iw̆ (accent breve) in (8.6.14).
16Refer for example to [29, Ch. 13] or [56, Ch. 2].
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we make the assignments We ← I and αiα ← α, γ ← 0 and ΠiΠ ← 0, εiε ← ε, μiμ ← μ, i ← iB,
then the general MC-αγΠε-APA algorithm (8.6.16) simplifies to the ordinary MC-αε-affine projection
algorithm in [5, 6, 60]

wi = (I− μα)wi−1 + μU∗
i (ε + UiU

∗
i )−1(Di − Uiwi−1),

MIMO, i ≥ 0, w−1 = wig.
(8.6.17)

This algorithm is also referred to as the exact -αε-affine projection algorithm. In order to reduce
the computational effort in MC systems different approximate αε-affine projection algorithms
(αε-APAs) that only require a matrix inversion of order K were considered in [8, 9, 60].

αγΠε-Affine Projection Algorithm in the Frequency Domain

8.6.4 Affine Projection Algorithm

By omitting weight-driven leakage, control-effort-driven leakage, weight regularization, by as-
suming time-invariant and scalar-valued numerical regularization and step-size parameters, that
is, we make the assignments α ← 0, γ ← 0 and ΠiΠ ← 0, εiε ← ε, μiμ ← μ and We ← 1 the
αγΠε-APA algorithm in (8.6.16) simplifies to the ordinary ε-affine projection algorithm for SISO

and SIMO systems

wiB = wiB−1 + μU∗
i (εI + UiU

∗
i )−1(Di − UiwiB−1), iB ≥ 0, i ≥ 0, w−1 = wig. (8.6.18)

αγΠε-Normalized Least-Mean-Squares Algorithm in the Time Domain

If we only use the current data values xi,ui and di which corresponds to using (8.6.1) and (8.6.2)
instead of (8.6.4) and (8.6.8) the MC-αγΠε-APA algorithm in (8.6.16) simplifies to

wiB = ΥiΥwiB−1 + μiμε−1
iε

u∗
i (W

−1
e + uiε

−1
iε

u∗
i )

−1We(di − uiwiB−1) + μiμw̆iw̆
,

MIMO, i ≥ 0, iB ≥ 0, iΥ ≥ 0, iμ ≥ 0, iε ≥ 0, w−1 = wig,
(8.6.19)

where the transformed leakage-weight regularization matrix ΥiΥ now is obtained from

ΥiΥ = I− μiμ(αiα + x∗
i γiγ xi + ΠiΠ

)
. (8.6.20)

The weight update recursion (8.6.19)-(8.6.20) will be called the αγΠε-NLMS (αγΠε-NLMS) al-
gorithm and abbreviated by αγΠε-NLMS. The ordinary ε-NLMS algorithm for SISO and SIMO

systems is obtained by omitting weight-driven leakage, control-effort-driven leakage, weight reg-
ularization, by assuming time-invariant and scalar-valued numerical regularization and step-size
parameters in the MC-αγΠε-NLMS algorithm (8.6.19)

wiB = wiB−1 +
μ

ε + uiu∗
i

u∗
i (d(i)− uiwiB−1) i ≥ 0, iB ≥ 0, w−1 = wig. (8.6.21)
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If the regressor ui possess shift-structure, that is,

ui =

⎡⎢⎢⎢⎣
u1

i

u2
i
...

uNe

i

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
u1(i) u1(i− 1) . . . u1(i−M + 1)
u2(i) u2(i− 1) . . . u2(i−M + 1)

...
...

. . .
...

uNe(i) uNe(i− 1) . . . uNe(i−M + 1)

⎤⎥⎥⎥⎦ (8.6.22)

then computational savings are possible. Considering the SC case and recognizing that uiu
∗
i =

‖ui‖2 is the Euclidean norm squared, that is, the ”energy” in the ”pulse” spanned by the regressor
{u(i), u(i− 1), . . . , u(i −M + 1)} it is then readily observed that this norm can be determined
sequentially as devised in [34, Ch. 2] and also in [56, Ch. 5]

wiB = wiB−1 +
μ

ε + Êuw (i)
R̂ue(iB), i ≥ 0, iB ≥ 0, w−1 = wig (8.6.23)

where Êuw (i) � ‖̂ui‖2 designates the estimate of the pulse energy (used for weight update)

Êuw (i) =
M

NEu

ÊuE (i), (8.6.24)

where NEu denotes the number of samples used for the estimate of the pulse energy and the
quantity ÊuE represents an estimate of the pulse energy in the pulse {u(i−1), u(i−1−1), . . . , u(i−
NEu + 1)} and is determined by

ÊuE (i) =

⎧⎪⎨⎪⎩
ÊuE (i− 1) + |u(i)|2 − |u(i−NEu)|2; i ≥ NEu,
iÊuE

(i−1)+NEu |u(i)|2
i+1 ; 0 ≤ i < NEu ,

0; i = −1.

(8.6.25)

In practice it is probably more convenient to specify a pulse energy estimation time that we will
denote by TEu . Then NEu is readily obtainable from the sampling frequency fs

NEu = !(fsTEu). (8.6.26)

The operator !( · ) designates taking the ceil of the term inside the parentheses.

Instead of obtaining an estimate of the cross-correlation between the regressor and the error
signal Rue from instantaneous values of the regressor ui and error e(i) the following block-wise
estimate procedure can be used

R̂ue(iB) =
1
L

(L+1)iB−1∑
j=LiB

u∗
j (d(i)− uiwiB )

=
1
L

(L+1)iB−1∑
j=LiB

u∗
je(i). (8.6.27)
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Then the corresponding block-wise based weighting update is conducted at the end of each block

wiB = wiB−1 +
μ

ε + uiu∗
i

R̂ue i ≥ 0, iB = �(i/L), w−1 = wig. (8.6.28)

It should be recalled that the term ‖̂ui‖2 in the denominator of (8.6.28) represents an estimate
of an estimate of the Hessian matrix ∇2

wJ(wiB−1). Hence, a variety of estimators of more or less
equal quality are at our disposition. Instead of a fixed window length of NEu samples we could
use a memory based recursion scheme [56, Ch. 5]

‖̂ui‖2 = β ̂‖ui−1‖2 + (1− β)|ui|2, ‖̂u−1‖2 = 0, (8.6.29)

where β controls the effective memory of the recursion expression for the pulse energy estimate.
In [56, Ch. 5] the effective algorithm constituted by (8.6.23) and (8.6.29) is referred to as ε-NLMS

with power normalization. In a finite-precision environment the ε-NLMS algorithm with power
normalization is more robust than (8.6.23) - (8.6.28).

αγΠε-Normalized Least-Mean-Squares Algorithm in the Frequency Domain

8.6.5 Least-Mean-Square Algorithm

For the sake of completeness we will provide the expression for the weight recursion for the
ordinary least-mean-squares. Following a procedure similar to the ε-NLMS in section 8.6.4 but
now with the denominator term Be2

(iB) from (8.5.11) replaced by a unity matrix (Be2
= I) we

readily obtain

wiB = wiB−1 + μu∗
i (d(i)− uiwiB−1), i ≥ 0, w−1 = wig. (8.6.30)

Although the ε-NLMS requires a few more instructions than the ordinary least-mean-squares the
former is in favor on two important points. Firstly, the steady-state performance is less sensitive
to the statistics of the regression data than for the LMS. Secondly, the stability of the ε-NLMS

can be (almost) guaranteed provided that the step-size is sufficiently small. For the least-mean-
squares information regarding the eigenvalue spread is required in order to determine the step-size
[56, Ch. 6-9].

8.6.6 The Family of Least Mean Mixed-Even-Order Adaptive Algorithms

The least-mean-squares is fundamentally optimized for random distributed processes that can
be characterized by second order statistics. Owing to the CLT many processes are Gaussian
distributed and the underlying statistics is therefore fully described from second-order statistics,
that is, mean and variance. Although many practical applications are governed by second order
statistics, however, in another large set of applications the assumption on Gaussianity cannot
be made. Therefore, for such applications algorithms that are specifically optimized for the
underlying statistics are needed.

Hence, for noise distributions with a large higher order moment contents in the LMF or the LMMEN

algorithms may prove the best choice. In subsection 8.5.7 the cost functions pertinent to the LMF



8.7. Transform Domain Adaptive Filtering 403

and the family of LMMEN adaptive algorithms was introduced. The LMF algorithm was originally
proposed in [65] as an algorithm that under certain circumstances, will have a substantially lower
weight noise than the LMS. By using, e.g., least-mean-fourth a fourth order moments identical to
zero is implicitly sought for. However, if the LMF is applied to Gaussian distributions an increase
in weight noise and consequently an increased misadjustment is expected.

The reason why even-order as opposed to odd-order adaptive algorithms are considered is that the
pertinent ui and d(i) will be assumed distributed symmetrically around zero. As a consequence
all the odd moments of ui and x(i) are equal to zero.

It was found in [65] that the least-mean-fourth and in general the least-mean-mixed-norm when
minimizing the pertinent order of the error will have time constants in the weight relaxation
process that are proportional to the least-mean-squares when minimizing the mean square error.

8.6.7 Finite Precision Environment

In the digital implementation of an adaptive filter, both the inputs and the internal variables are
quantized to a certain precision. However, upon moving from an infinite precision environment to
a finite precision environment quantization noise is added to the system leading to a degradation
in performance of the adaptive filter that depends on the amount of quantization levels used to
represent the variables. Owing to a potential continuously accumulation of quantization errors
with time the performance of the adaptive filter might eventually become unacceptable. However,
it is usually first until overflow occurs that the problem manifests itself in sudden large increase
in the mean square error. The susceptibility to the accumulation of quantization errors increases
in proportion to the degree of ill-conditioning of the underlying data covariance matrix. The bias
error in the m.s.d. is inversely proportional to the step-size. However, this step-size cannot be
made arbitrarily large as it is upper-bounded from demands on stability of the algorithm which
is of particular importance for the LMS family of adaptive filters. In the analysis it is assumed
that a scaling of the variables has been made to prevent any overflow to happened.

From a performance point of view an infinite-precision implementation of the adaptive filter is
therefore indeed preferable over a finite-precision implementation. Market demands, however,
often prove a floating-point digital signal processor (DSP) implementation to be prohibitive ex-
pensive. Moreover, whenever power consumption and associated heat dissipation is of concern
a fix-point DSP implementation is often preferred to a floating-point implementation. There-
fore, the designer should be able to address the effects of limited-precision in adaptive filtering.
What make such attempts difficult is that the problems related to accumulation of quantization
effects are often experienced as hidden processes. Hence, a system that apparently is working
properly might after some minutes (millions of iterations) of operation experience a performance
degradation which ultimately might lead to a need for a reintialization of the system.

An excellent account on limited-precision effects in adaptive filtering can be found in [14].

8.7 Transform Domain Adaptive Filtering

There many cases where the adaptive filtering can be carried out more efficiently in a transform-
domain [29, Ch. 10] [56, Ch. 10]. Both the discrete cosine transform (DCT) and discrete sine
transform (DST) are useful in spectral analysis of real sequences, in solution to boundary value
problems, and in transform-domain processing of digital signals. Many data compression tech-
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niques employ, in one way or another, the discrete cosine transform (DCT), which has been found
to be asymptotically equivalent to the optimal Karhunen Lòeve transform (KLT) for signal decor-
relation. For each of the DCT and DST four different types can be defined [53]. Computational
efficient FFT and DFT methods were developed by [64].

Narayan, Peterson, and Narasimha [42] demonstrate that for a properly chosen orthogonal trans-
form, some reduction in the eigenvalue spread can be expected. As a consequence of this, the
transform-domain adaptive algorithm can be expected to have better convergence properties
than the corresponding time domain algorithm in particular for the LMS family.

Hitherto the LMS algorithm has been considered for transform-domain processing. This can
probably be attributed to the inherent simplicity of this algorithm and also to the alleviation by
transformation of a particular weak point of the LMS algorithm namely the high dependence on
the eigenvalue spread of the regressor data

8.8 Conclusions

In this chapter we have extended the suite of adaptive filters by new extensions of the family
of affine projection algorithms and least-mean-squares that we designated by MC-αγΠε-APA and
MC-αγΠε-NLMS respectively. As an intermediate result several extensions to the famous Levenberg-
Marquardt method for quadratic cost functions were obtained viz. (8.5.14) (8.5.16) comprising a
matrix-valued step-size parameter, a weight-driven leakage matrix, a control-effort-driven leak-
age matrix, a numerical regularization matrix all of which were formulated as time-variant (as
opposed to time-invariant) parameters. In addition a weight regularization matrix, that usually
only is considered in deterministic-based adaptive filters was adapted to the stochastic domain
of adaptive filtering considered in this chapter. Finally, it should be emphasized that the results
not only apply to SISO systems but also to MISO, SIMO and MIMO systems. The objectives of
including weight-driven leakage and control-effort-driven leakage are numerous in particular for
ANC applications with H2/H∞ adaptive control. Through successive simplifications of the more
elaborate MC-αγΠε-APA weight recursion expression we then derived both MC and SC versions of
the ordinary ε-APA, ε-NLMS, NLMS and LMS algorithms. A comprehensive performance analysis of
the MC-αγΠε-APA algorithm is conducted in chapter 9 on page 417.

8.A H2/H∞ Adaptive Control

8.A.1 Constraints

Equality Constraints

In practical control design constraints are often imposed in the optimization problem for various
purposes. For example constraints might be enforced on the weights used in adaptive beamform-
ing applications where the constraints manifest themselves in the form

sjw = gj , j = 1, 2, . . . , Nec, (8.A.1)

where Nec denotes the number of equality constraints (Nec < M), the sj are prescribed (complex-
valued) row vectors and the gj are (complex) constants. The purpose of the constraints in this
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case is to ensure distortionless reception in the desired steering direction in a noiseless case. In
other words when our adaptive filter is presented with one of the prescribed vectors sj it shall
return the corresponding constant gj . Unfortunately, however, constraints typically complicate
the solution of the problem. The method of Lagrange multiplier [29, App. C] is often invoked in
order to convert the constrained problem into an unconstrained problem.

Inequality Constraints

The constraints above are in terms of Nec equalities. We will, however, not pursue such equality
constraint further in this report. In control applications constraints governed by inequalities are
often encountered.

Power Handling

In subsection 8.3.3 we already mentioned leakage as a remedy to prevent nonlinear distortion.
However, such leakage does not guarantee that the hardware in a secondary source will not be
pushed beyond its power handling capabilities. Then in order to protect the secondary source
hardware we may restrict the mean-square control output signal such that a predefined upper
bound on the control output signal power level Cy2 is not exceeded, that is,

E|y(i)|2 < Cy2 , ∀i ≥ −1. (8.A.2)

The Wiener-Khinchin Theorem [48, Ch. 9] relates the variance a WSS random variable (RV), say
the output y(t), to the its power spectral density (PSD) according to

E|y(t)|2 = Ry(0) =
1
2π

∫ ∞

−∞
Sy(ω) dω = ‖ỹ(ıω)‖22 ≥ 0. (8.A.3)

and the H2 cost function can alternatively be expressed by

E|e(t)|2 = Re(0) =
1
2π

∫ ∞

−∞
Se(ω) dω = ‖ẽ(ıω)‖22 = ‖S̃(ıω)

√
Sd(ω)‖22 ≥ 0. (8.A.4)

Strictly, the last equality in (8.A.4) applies to a perfect plant model.

For discrete-time sequences and DFT the equivalent relation is referred to as Parseval’s relation
for the DFT

2B−1∑
n=0

|x(n)|2 =
1

2B

2B−1∑
k=0

|x̃(k)|2 (8.A.5)

E|y(i)| ≈
2B−1∑
k=0

|x̃(k)
�̃
w

k,i
|2 (8.A.6)

A method to determine a common control-effort-driven leakage parameter γ(iγ) based on the
total control effort and a method to determine a leakage matrix γiγ whose values are determined
from the individual control efforts in a MC feedforward system (FFS) are presented in [23].
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Moreover, some of the hardware components in the secondary sources might exhibit frequency-
dependent power handling capabilities. This pertains in particular to electrostrictive polymer
film, PVDF elements and loudspeakers17. A power amplifier, however, is usually rather insensitive
to the frequency spectrum of the input signal. Hence, we enforce the following constraint on the
output power

sup
ω
|
√

Sx(ω)
�̃

w
iB

(ıω)Wy2(ω)| = ‖
√

Sx(ω)
�̃

w
iB

(ıω)Wy2(ω)‖∞ < Cy2 , FFS, (8.A.7a)

sup
ω
|
√

Sd(ω)
�̃
w

iB

(ıω)Wy2(ω)| = ‖
√

Sd(ω)
�̃
w

iB

(ıω)Wy2(ω)‖∞ < Cy2 , FBS, (8.A.7b)

where Wy2(ω) represents a frequency-dependent weighting function and the concept of a p-norm
‖ · ‖p of a Lebesgue measurable function is defined in subsection M.1.2 on page 788.

In the DFT domain the cost functions (8.A.7) take the form

|
√

Sx(k)
�̃

w
k,iB

Wy2(k)| < Cy2 , FFS, (8.A.8a)

|
√

Sd(k)
�̃
w

k,iB

Wy2(k)| < Cy2 , FBS, k = 0, 1, . . . , 2B − 1. (8.A.8b)

Robust Stability

In feedback system (FBS) design the problems related to robust stability and disturbance en-
hancement must also be taking into account. An excellent introduction to these subjects can
be found in [22, Ch. 6]. Robust stability is concerned about maintaining bounded errors despite
variations in the underlying plant models. Formally, the condition for robust stability as a func-
tion of the complementary sensitivity function for the nominal plant T̃0(ıω) and the magnitude
of unstructured multiplicative plant uncertainty B(ω) is governed by the following inequality18

sup
ω
|T̃0(ıω)B(ω)| = ‖T0(ıω)B(ω)‖∞ < 1 � CRS, (8.A.9)

where CRS � 1 is the upper bound on robust stability and where the frequency response of
the complementary sensitivity function T̃ (ıω) under the assumption of an internal model control
(IMC) model for the FBS in turn is a function of g̃ey(ıω), ˜̂gey(ıω) and

�̃
w(ıω) and equal to

T̃ (ıω) =
−g̃ey(ıω)

�̃
w(ıω)

1−
(
g̃ey(ıω)− ˜̂gey(ıω)

)
�̃
w(ıω)

. (8.A.10)

Hence, T̃0(ıω) = −g̃ey(ıω)
�̃
w(ıω) and by substituting into (8.A.9) we get

‖g̃ey(ıω)
�̃
w(ıω)B(ω)‖∞ < 1. (8.A.11)

17In loudspeakers a woofer, squawker and tweeter are responsible for sound production in the low, middle and
high frequency range respectively. A cross-over network is required to limit the range of signals fed to each unit.
But also within the individual units working frequency range the power handling capabilities will vary.

18We will only consider unstructured plant uncertainties.
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In the DFT domain the constraints are similarly

|g̃ey(k)
�̃
w(k)B(k)| < 1, k = 0, 1, . . . , 2B − 1. (8.A.12)

Disturbance Enhancement

From control theory it is well known that for a non-minimum plant attenuation can be maintained
only for a finite range of frequencies [19, Ch. 6]. Hence, if our FBS provide attenuation in some
frequency ranges it will inevitably imply amplification of the disturbance at other frequency
ranges. This phenomenon is commonly referred to as the waterbed effect. This waterbed effect
might be of particular concern if the frequency regions that are subject to amplification are
audible. Defining by CRD the upper bound on disturbance enhancement we may express this
constraint by

sup
ω
|S̃0(ıω)WRD(ω)| = ‖S̃0(ıω)WRD(ω)‖∞ < CRD, (8.A.13)

where S̃0(ıω) is the sensitivity function for the nominal plant, WRD(ω) represents a frequency-
dependent weighting function and where the frequency response of the sensitivity function S̃(ıω)
under the assumption of an IMC model for the FBS in turn is equal to

S̃(ıω) � ẽ(ıω)
d̃(ıω)

=
1 + ˜̂gey(ıω)

)
�̃
w(ıω)

1−
(
g̃ey(ıω)− ˜̂gey(ıω)

)
�̃
w(ıω)

. (8.A.14)

Hence, S̃0(ıω) = 1 + ˜̂gey(ıω)
�̃
w(ıω) and by substituting into (8.A.13) we get

‖
(
1 + ˜̂gey(ıω)

�̃
w(ıω)

)
WRD(ω)‖∞ < CRD. (8.A.15)

In the DFT domain the constraints are similarly

|
(
1 + ˜̂gey(k)

�̃
w(k)

)
WRD(k)| < CRD, k = 0, 1, . . . , 2B − 1. (8.A.16)

It should be recalled that the H2 performance weighting function We(ω) introduced in (8.3.7)
that control the l.l.m.s.e. behavior is not necessarily identical to WRD(ω).

In control terminology we consider the limiting constraints (8.A.8) (8.A.12) and (8.A.16) as H∞
constraints. A design that on one side seeks a H2 performance criterion while at the same time
complies with H∞ constraints is referred to as a H2/H∞ controller.

Penalty and Barrier Functions

Optimal problems with inequality constraints are often solved by the introduction of penalty
functions or barrier functions to schedule leakage as a function of closeness to violation of the
constraints. Penalty functions or barrier functions can be used as an engineering approach to
emulate H∞ control, and it turns out that the solution so obtained will converge to the solution
of the original constrained H∞ problem.
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Consider for now a value, say, ψ that is subject to an upper constraint, say, ψ ≤ Cψ , where
Cψ denotes the constraint constant pertaining to variable ψ. For a control parameter that is
bounded from below similar considerations but with opposite inequality pertain. Basically, a
penalty or a barrier function P( · ) : R×R→ R+ is a function that takes as input a variable, say
ψ, subject to constraint and the corresponding constrained value Cψ and return a nonnegative
value that depends on the difference Cψ−ψ. For a constrained value less than a certain threshold
value both the penalty and barrier functions usually return a zero indicating that no leakage is
required. When the constrained value exceeds the threshold a penalty function will return a value
that increases in relation to how much the threshold is exceeded and dependent on the specific
choice of penalty function. For the barrier functions the return value goes to infinity already in
the limit ψ → Cψ , that is, when the constrained value approaches the threshold.

Among typically penalty functions we find the family
(
max (ψ − Cψ , 0)

)p for p even. As barrier
functions (Cψ − ψ)−1 and − log(Cψ − ψ) are often considered. For more details refer to [31, 52]
and the reference herein.

Collectively, we may include the inequalities (8.A.8) (8.A.12) and (8.A.16) in a frequency depen-
dent weight-driven leakage matrix

αiα,k = σα
j (k)

Nα
iec∑

j=1

Pα
j (ψα

j (iα), Cα
ψj

), k = 0, 1, . . . , 2B − 1, (8.A.17)

where Nα
iec denotes the number of inequality constraints related to weight-driven leakage, and

σα
j (k) is the weight for j’th inequality constraints related to weight-driven leakage in frequency

bin k. The penalty/barrier functions Pα
j ( · ) are assumed time-invariant. Similarly, the effort-

driven leakage matrix may be scheduled according to

γiγ ,k = σγ
j (k)

Nγ
iec∑

j=1

Pγ
j (ψγ

j (iγ), Cγ
ψj

), k = 0, 1, . . . , 2B − 1, (8.A.18)

where Nγ
iec denotes the number of inequality constraints related to effort-driven leakage and

σγ
j (k) is the weight for j’th inequality constraints related to effort-driven leakage in frequency

bin k. The penalty/barrier functions Pγ
j ( · ) are again assumed time-invariant. The index j is

used to select each constraint in turn and has for example the following interpretation

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α, j = 1, Control Output(8.A.8a)
α, j = 2, Control Output(8.A.8b)
γ, j = 1, Robust Stability(8.A.12)
γ, j = 2, Disturbance Enhancement(8.A.16)

. (8.A.19)

Important to note is that by the use of a penalty function the leakage control matrices/parameters
αiα , γiγ become functions of the weights and control output signal respectively.

The specific choice of penalty or barrier function is usually a compromise between requirement
how strictly the constraint should be enforced and computational efficiency. Therefore, some
practical experimentation has to be conducted for the specific control problem. This stage of
the design procedure involves determination of the individual penalty/barrier functions Pj and
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weighting numbers σj (see [52, Ch. 11-14] for example). In all cases it is the transform domain
adaptive tap-weight

�̃
w and

�̃

w that are subject to optimization.

In conclusion, we have found that requirements emerging from practical design constraints might
be taking into account by means of specialized functions that initiate weight or control effort
leakage whenever a control parameter subject to constrain approaches the boundary defined by
a constraint parameter.

An advantage of reformulating the H2/H∞-constrained convex optimization problem by the
introduction of the penalty functions as an unconstrained convex optimization problem which
we can solved by the methods developed in this chapter.

Following this rather long diversion from our cost function discussion we now proceed by intro-
ducing weight regularization.

8.B Miscellaneous

8.B.1 Sayed Notation versus Classic Notation

In this section we will establish a link between the notation made by Sayed in the new text-
book [56, Notation] that is also adopted in this report and the notation made in classical text-
books on adaptive filters, e.g., [29, 68, 69]. In the subsequent text we will by indices S and L

refer to the notation by Sayed and the notation used in classical textbooks respectively. In [56,
Notation] the observation vector u is defined as a row vector while it has been customary to use
a column vector. The standard approach is to form an inner product with the complex conjugate
of the tap-weight vector w. Sayed, however, in this context makes no use of conjugation. Both
formulations apply the same definition of the desired signal d. Hence,

uS = uT
L (8.B.1a)

dS = dL (8.B.1b)

wS = wC
L . (8.B.1c)

The superscript C denotes complex conjugation without transposition. Hence,

uSwS = uT
LwC

L =
(
wC

L

)T
uL = w∗

LuL. (8.B.2)

Moreover, in [56] the autocovariance matrix Ruu is adopted to the row vector definition as

RuSuS = RuS � Eu∗
SuS . (8.B.3)

Classical textbooks apply the column vector based definition of the autocovariance matrix

RuLuL = RuL � EuLu∗
L. (8.B.4)

Then by insertion of (8.B.4) in the definition (8.B.3) and using (8.B.1a) we readily obtain we
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obtain the following link between the autovariance definitions

RuS � Eu∗
SuS = E

(
uT

L

)∗
uT

L = EuC
LuC∗

L = ECuLu∗
L (8.B.5)

� RC
uLuL

= RC
uL

. (8.B.6)

Moreover, [56] makes use the cross covariance matrix between the desired signal and the input
data Rdu

RdSuS � EdSu∗
S . (8.B.7)

Classical textbooks makes instead use of the cross covariance matrix between the input data and
the desired signal Rud

RuLdL � EuLd∗
L = E∗dLu∗

L. (8.B.8)

Complex conjugating of (8.B.8) yields

RC
uLdL

= ET dLu∗
L = EdLuC

L . (8.B.9)

Then, by insertion of (8.B.9) in (8.B.7) and using (8.B.1a) and (8.B.1b) we obtain the following
link between the cross variance definitions

RdSuS � EdSu∗
S = EdL

(
uT

L

)∗
= ECuLd∗

L � RC
uLdL

. (8.B.10)

We are now in a position where we formally can check some of the important expressions in
the textbooks. First consider the expression for the optimal tap-weights wo. By using (8.B.5)
and (8.B.10) we get

wo
S

C =
(
R−1

us
RdSuS

)C

= R−C
us

RC
dSuS

= R−1
uL

RuLdL

= wo
L. (8.B.11)

By inspection of (8.B.1c) it is verified that expressions for the optimal tap-weight vector agree.

A check of the expressions for cost function with respect to the tap-weights ∇wJ

JS = σ2
dS
−R∗

dSuS
wS − w∗

SRdSuS + w∗
SRuS wS

= σ2
dL
−RT

uLdL
wC

L − wT
LRC

uLdL
+ wT

LRC
uL

wC
L

= σ2
dL
− (R∗

uLdL
wL + w∗

LRuLdL − w∗
LRuLwL)C

= σ2
dL
−R∗

uLdL
wL − w∗

LRuLdL + w∗
LRuLwL

= JL. (8.B.12)

Similarly a check of the estimate of the gradient of the cost function with respect to the tap-
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weights ∇wJ

(∇wSJ)∗ = (−R∗
dSuS

+ w∗
SRuS )∗

= (−RdSuS + R∗
uS

wS)

= (−RC
uLdL

+ RT
uL

wC
L )

= (−RC
uLdL

+ RC
uL

wC
L )

= (−RuLdL + RuLwL)C

= ∇w
C
LJ, (8.B.13)

which corresponds with the difference in usage of the tap-weight vector (8.B.1c). In (8.B.13) the
last expression were obtained by taking the different definitions of a complex gradient with vector
arguments (∇w) made in [29, App. B.3] and, e.g., [56, App. 2A] respectively in into account.

For the minimum mean-square error we obtain

m.m.s.e.S = σ2
dS
−RuSdSR−1

uS
RdSuS

= σ2
dL
−RC

uLdL
R−C

uL
RC

dLuL

= σ2
dL
− (RuLdLR−1

uL
RdLuL)C

= σ2
dL
−RuLdLR−1

uL
RdLuL

= m.m.s.e.L. (8.B.14)

Finally, we can verify the agreement in the expression for the εNLMS algorithm

(ΔwiS )C =
μ

ε + ‖uiS‖2
(u∗

iS
[dS(i)− uiSwi−1S

])C

=
μ

ε + ‖uiL‖2
(uC

iL
[dL(i)− uT

iL
wC

i−1L
])C

=
μ

ε + ‖uiL‖2
uiL [dL(i)− wi−1L

uiL ]C

=
μ

ε + ‖uiL‖2
uiLe∗(i)

= ΔwiL . (8.B.15)

This agrees with (8.B.1a)- (8.B.1c).

Summary

In the box (8.B.16) the main results have been summarized

uS = uT
L (8.B.16a)

dS = dL (8.B.16b)
wS = wC

L (8.B.16c)
RuS = RC

uL
(8.B.16d)

RdSuS = RC
uLdL

. (8.B.16e)
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8.B.2 APA Derivation

Proof. The matrix lemma is defined by [29, Ch. 13], [56, Ch. 2]

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1. (8.B.17)

Now by substituting

A←− εiε , B ←− U∗
i , C ←−We⊗K , D ←− Ui (8.B.18)

we obtain

(εiε + U∗
i We⊗KUi)−1U∗

i =
(
ε−1
iε
− ε−1

iε
U∗

i (W−1
e⊗K + Uiε

−1
iε

U∗
i )−1Uiε

−1
iε

)
U∗

i

= ε−1
iε

U∗
i − ε−1

iε
U∗

i (W−1
e⊗K + Uiε

−1
iε

U∗
i )−1

(
W−1

e⊗K + Uiε
−1
iε

U∗
i −W−1

e⊗K

)
= ε−1

iε
U∗

i (W−1
e⊗K + Uiε

−1
iε

U∗
i )−1W−1

e⊗K . (8.B.19)

Moreover, if ε is scalar-valued, we may further simplify (8.B.19) by

(
ε(iε) + U∗

i We⊗KUi

)−1
U∗

i = U∗
i

(
ε(iε)W−1

e⊗K + UiU
∗
i

)−1
W−1

e⊗K . (8.B.20)

8.B.3 Complex Gradient Differentiation Rules

The complex gradient of a multi-dimensional-valued function array, say, Ψ ∈ CN1
Ψ×N2

Ψ×N3
Ψ(z)

with vector arguments (∇z) with respect to a complex-valued column vector z is obtained from
applying (8.5.6) element-wise. Hence, the ijk element of ∇zΨ(z), that is, {∇zΨ(z)}ijk is a row
vector of elements

{∇zΨ(z)}ijk �
[
∂Ψijk/∂z1 ∂Ψijk/∂z2 . . . ∂Ψijk/∂zN

]
. (8.B.21)
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9. αγΠε-APA PERFORMANCE ANALYSIS

9.1 Introduction

The performance of adaptive filters has been subject to numerous studies in the literature. One
objective is to obtain general proofs that require as few as possible assumptions on the data and
system models etc. Hence, the linear estimation model (LEM) presented in section 9.2 will make
use of the fewest possible assumptions today. Another objective is to expand the performance
analysis to new adaptive filters or variants hereof. The present text falls into this later class.

The performance of an adaptive filter is usually characterized in terms of the filters mean-
quare performance, tracking performance and transient performance. Many textbooks consider
the performance of stochastic gradient methods and in particular the least-mean-squares with
respect to stability, rate of convergence, misadjustment etc. [3, 12, 13]. The transient performance
is concerned with the stability and convergence rate of the filter. For stable adaptive schemes the
mean-square error (m.s.e.) can then be considered in steady-state, that is, following the transient
phase whether subjected to a stationary or subjected to a non-stationary environment.

Basically in the literature three different approaches to the analysis of adaptive filters and in par-
ticular the simple least-mean-squares (LMS) filter have more or less successfully been considered.
Ljung [6, 7] suggested the use of Lyapunov stability methods, that are well-established within
the control community for stability analysis, by reducing the adaptive filter difference equation
to an equivalent ordinary-differential-equation (ODE). The second class of approaches rely on
averaging analysis where the performance of an averaged filter is studied without requiring the
independence condition [11, Ch. 4]. Both the ODE method and the averaging analysis method,
however, are limited to small step-sizes, that is, μ ≈ 0. In the third class of analysis approaches
the so-called independence assumptions on the regressor and desired signal are invoked. Al-
though the independence assumption on the regressor data do not hold for tapped-delay-line
implementations, practical evidence proves that provided that the step-size is sufficiently small
this method will give good results. We will pursue this later class of analysis approaches in
this report. Moreover, for the analysis of more complex adaptive filters such as the proposed
multiple-channel-αγΠε-affine projection algorithm (MC-αγΠε-APA) additional assumptions are re-
quired. Hence, during our development we will invoke some additional independence assumptions,
but only at a stage where there are absolutely needed for further progress. Moreover, we will
comment on the applicability and make some justification of each of the assumptions made.

Usually the transient analysis is much more challenging than the study of mean-square perfor-
mance. The literature is rich with approaches to the transient analysis. In the analysis of the
performance and stability of the adaptive filters many assumptions are historically made in order
to facilitate the analysis [3, Ch. 9]. Moreover, most of this work is characterized by the lack of
general applicability and is often restricted to a specific class of input data such as Gaussian
distribution or relying on the independence assumption on the regressor data or specific assump-
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tions on the error data, or limited to an individual adaptive scheme. First with the work by
Al-Naffouri and Sayed [1, 2] a unified framework based on energy-conservation arguments was
established. In those two papers transient analysis of adaptive filters with data-non-linearities
and error non-linearities respectively were considered. Among the data-normalized adaptive fil-
ters we find the ε-NLMS family including a matrix-valued step-size. The adaptive filters with
error non-linearities include among others the LMS, least-mean-fourth (LMF) and least-mean-
mixed-norm (LMMN) algorithms. Transient analysis has previously been published for the family
of non-leaking affine projection algorithm (APA) algorithms [1, 10, 14, 15]. For a more exhaus-
tive bibliographic information on performance analysis of adaptive filters refer to [1, 2] and [9,
Ch. 6-9] and the references therein.

The approach devised by Al-Naffouri and Sayed [2] is to introduce weighted estimation errors as
well as weighted energy norms and relate these quantities to obtain a weighted variance relation.
From this weighted variance relation the conditions for stability and closed-form expressions
for the m.s.e. and mean-square deviation (m.s.d.) can be derived. Another approach is directly
to relate unweighted estimation error and then include tracking performance by introducing a
random walk model. In this chapter we will proceed more directly and first establish weighted-
energy conservation relations that also pertain to the non-stationary case. Then the mean-error
performance and m.s.e. performance can readily be obtained by replacing the weighting matrix
by an identity matrix. Moreover, the stationary case is obtained as a specialization of the non-
stationary case.

The novelty of the present work is the performance analysis of the linear-least-mean-squares
estimate (l.l.m.s.e.)-based MC-αγΠε-APA adaptive filter encompassing both dynamic weight-driven
leakage and dynamic control-effort-driven leakage and numerical regularization as well as weight
regularization. Moreover, in our presentation we also allow the step-size μ, the leakage control
parameters α, γ and the numerical regularization parameter ε to attain matrix-values and to be
time-variant. Furthermore the analysis conducted in this report uses an advanced random-walk
model and also allows a non-vanishing initial weight vector.

9.1.1 Chapter Outline

Following these introductory remarks this section concludes by including various definitions,
propositions and rules from matrix theory, algebra of weighted norms and algebra of Kronecker
products that will be used in this chapter. The generic stochastic adaptive filtering linear esti-
mation model is introduced in section 9.2 along with a definition of various error quantities and
convergence quantities used in stochastic gradient methods.

The topic of section 9.3 is a transient analysis of the proposed MC-αγΠε-APA adaptive filter. Next
the theme of section 9.4 is the corresponding stability analysis of the MC-αγΠε-APA algorithm. The
main result of this chapter namely Theorem 1 terminates this section. Finally, in section 9.5
we conclude on the performance analysis of the MC-αγΠε-APA adaptive filter. The appendix
section 9.A contains miscellaneous derivations used in the course of development.

9.1.2 Matrix Theory

In our development we will use some basic results from matrix theory to be presented for conve-
nience in the subsequent text.
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Definition 9.1. For a matrix A = (aij) ∈ Km×n we associate the vector vec (A) ∈ Kmn defined
by

vec (A) � [a11, a21, . . . , an1, a12, a22, . . . , an2, . . . , a1m, a2m, . . . , anm]�. (9.1.1)

Hence, by the vec { · } operation the columns of a matrix are stacked vertically to form a column
vector.

Proposition 9.1 (Matrix Theory). We will use the following properties from elementary matrix
theory.

The trace of the product of A ∈ Km×n and B ∈ Kn×m commute, that is,

Tr {AB} = Tr {BA}. (9.1.2)

Therefore, AB and BA have the same nonzero eigenvalues, counting multiplicity.

The trace of the product of matrices P ∈ Kn×m, Σ ∈ Km×n and P ∗ can be found as the inner-
product of the associated vectors

Tr {P ∗ΣP} = vec {PP ∗}� vec {Σ}. (9.1.3)

For a pair of (square) Hermitian matrices A ∈ Hn(K) and B ∈ Hn(K) we will use the following
property.

➀ The eigenvalues of the sum (difference) of A and B are related through a double inequality
to those of the individual matrices by [16, Ch. 7]

j ∈
¯
n : λj(A) + λmin(B) ≤ λj(A + B) ≤ λj(A) + λmax(B), A, B ∈ Hn(K) (9.1.4a)

j ∈
¯
n : λj(A)− λmax(B) ≤ λj(A−B) ≤ λj(A) − λmin(B), A, B ∈ Hn(K). (9.1.4b)

Enforcing the more restrictive requirement that A ∈ Kn×n � 0 and B ∈ Kn×n � 0, that
is, the matrices A and B are positive-semidefinite (p.s.d.) provides us with some additional
rules.

➁ The eigenvalues of the product of A and B is related through a double inequality to those
of the individual matrices by [16, Ch. 7]

j ∈
¯
n : λi(A)λmin(B) ≤ λj(AB) ≤ λj(A)λmax(B), A, B ∈ Kn×n � 0. (9.1.5)

➂ The sum of A and B is also p.s.d. [16, Ch. 6], that is,

A + B � B � 0, A, B ∈ Kn×n � 0. (9.1.6)

➃ For some matrix C ∈ Kn×n

A = C∗C, A ∈ Kn×n � 0. (9.1.7)
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Proposition 9.2 (Partitioned Matrix Theory). In the development we will use the following
proposition regarding the determinant of a partitioned matrix [16, Ch. 2].

➀ Let M be a square matrix partitioned as

M =
[
A B
C D

]
, (9.1.8)

where A ∈ Kn×n, B ∈ Kn×q, C ∈ Kq×n and D ∈ Kq×q. Then

det(M) = det(A) det(D − CA−1B), (9.1.9a)

if A is invertible and

det(M) = det(D) det(A−BD−1C), (9.1.9b)

if D is invertible and

det(M) = det(AD − CB) (9.1.9c)

if AC = CA.

9.1.3 Algebra of Weighted Norms

In the derivations we will use some algebraic properties from [2] presented here for convenience.
In addition we will also introduce weighted inner-products.

Definition 9.2 (Weighted Norm). For a row vector x ∈ K1×M , a column vector y ∈ KM×1 and
a Hermitian matrix Σ ∈ CM×M we define the weighted norm by

‖x‖2Σ � xΣx∗ = Tr {x∗xΣ} = vec {x∗x}� vec {Σ} (9.1.10a)

‖y‖2Σ � y∗Σy = Tr {yy∗Σ}. (9.1.10b)

Definition 9.3 (Weighted Inner Product). For row vectors x1, x2 ∈ K1×M , column vectors
y1, y2 ∈ KM×1 and a Hermitian matrix Σ ∈ CM×M we define the weighted inner-product by

〈x1, x2〉Σ � x1Σx∗
2 (9.1.11a)

〈y1, y2〉Σ � y∗
1Σy2. (9.1.11b)

Proposition 9.3 (Algebra Weighted Norms). Consider the scalar constants a1, a2 ∈ C, the
Hermitian matrices Σ, Σ1, Σ2 ∈ CM×M and the matrix A ∈ CN×M then the following algebraic
properties holds:

➀ Superposition.
a1‖w̃iB‖2Σ1

+ a2‖w̃iB‖2Σ2
= ‖w̃iB‖2a1Σ1+a2Σ2

. (9.1.12a)
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➁ Polarization.

(uiΣ1w̃iB )(uiΣ2w̃iB ) = ‖w̃iB‖2Σ1u∗
i uiΣ2

(9.1.12b)

= ‖w̃iB‖2Σ2u∗
i uiΣ1

. (9.1.12c)

➂ Independence. Under the assumption that w̃iB and ui are independent then it holds that

E(uiΣ1w̃iB )(uiΣ2w̃iB ) = E‖w̃iB‖2Σ1u∗
i uiΣ2

(9.1.12d)

= E‖w̃iB‖2Σ12
(9.1.12e)

= E‖w̃iB‖2Σ21
, (9.1.12f)

where Σ12 = Σ1 Eu∗
i uiΣ2 and Σ21 = Σ2 Eu∗

i uiΣ1.

➃ Linear transformation.
‖Aw̃iB‖2Σ = ‖w̃iB‖2A∗ΣA. (9.1.12g)

➄ Orthonormal Transformation. If Q is orthonormal then

‖Q∗w̃iB‖2 = ‖w̃iB‖2. (9.1.12h)

➅ Notational convention. For notational convenience the vec ( · ) operator is often suppressed
in the weighting norm, e.g.,

‖w̃iB‖2vec (Σ1) � ‖w̃iB‖2Σ1
(9.1.12i)

and
〈w̃iB , wo〉vec (Σ1) � 〈w̃iB , wo〉Σ1 . (9.1.12j)

9.1.4 Algebra of Kronecker Products

In the derivations we will use some algebraic properties of Kronecker Products, also known as
tensor products or direct products [4, App. A.1] presented here for convenience.

Proposition 9.4. Consider the arbitrary matrices A, B, the scalar constant a ∈ K, then the
following algebraic properties for the Kronecker products hold:

➀ Superposition.

(aA) ⊗B = a(A⊗B) = A⊗ (aB), A ∈ Km×n, B ∈ Kp×q. (9.1.13a)

➁ Transposition.

(A⊗B)� = A� ⊗B�, A ∈ Km×n, B ∈ Kp×q. (9.1.13b)

➂ Hermitian Transposition.

(A⊗B)∗ = A∗ ⊗B∗, A ∈ Cm×n, B ∈ Cp×q. (9.1.13c)

➃ Product.

(A⊗B)(C ⊗D) = AC ⊗BD, A ∈ Km×n, B ∈ Kp×q, C ∈ Kn×s, D ∈ Kq×r. (9.1.13d)
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➄ Inversion.

If A ∈ Kn×n, B ∈ Kq×q are nonsingular, then (A⊗B)−1 = A−1 ⊗B−1. (9.1.13e)

The following proposition is useful for converting a linear matrix equation for X into a vector
equation for vec {X}.

Proposition 9.5. Suppose A ∈ Km×n, X ∈ Kn×q and C ∈ Kq×r, it then holds that

vec (AXC) = (C� ⊗A) vec (X). (9.1.14)

The eigenvalues of the Kronecker product of two square matrices are determined as follows.

Proposition 9.6. Suppose A ∈ Kn×n and B ∈ Kq×q. If λ ∈ σ(A) and x ∈ Cn is a corresponding
eigenvector, and if μ ∈ σ(B) and y ∈ Cq is a corresponding eigenvector, then λμ ∈ σ(A⊗B) with
corresponding eigenvector x⊗y. Every eigenvalue of A⊗B arises as such product for eigenvalues
of A and B. If σ(A) = {λ1, . . . , λn}, σ(B) = {μ1, . . . , μq} then σ(A ⊗ B) = {λiμj ; i =
1, . . . , n, j = 1, . . . q} (taking into account multiplicities). In particular, σ(A ⊗ B) = σ(B ⊗ A)
and Tr(A ⊗ B) = Tr(B ⊗ A) = Tr(A)Tr(B). Moreover, the eigenvalues of A ⊗ In + Iq ⊗ B are
{λi + μj ; i = 1, . . . , n, j = 1, . . . q}.

9.2 Linear Estimation Model

The generic stochastic adaptive filtering model is depicted in Equation 9.2. The model governing
the data sequences {di,xi,ui} will be presented next. This model covers the four different modes
of adaptive filtering presented in section 8.2 on page 373, that is, interference cancelation, system
identification, inverse modeling and prediction. The underlying assumptions will first be listed
using compact notation and subsequently expressed in plain terms.

Assumption 1 (Linear Estimation Model). The following generic multiple-input and multiple-
output (MIMO) linear estimation model (LEM) for the data sequences {di,xi,ui} that describe a
possible nonstationary environment that may be subject to finite-precision arithmetic will used:

∀iB ≥ −1 : ∃wo
iB
∈ KM×1 : di = uiwo

iB
+ vi. (9.2.1a)

∀iB, jB ≥ −1 : wo
iB

= wo + θiB , θiB = χθiB−1 + qiB , wo � Ewo
iB

,

fqiB
(qiB |qjB ) = fqiB

(qiB ) = fqjB
(qjB ) = fqjB

(qjB |qiB ),

lim
iB→∞

E(wo
iB
− wo)(wo

iB
− wo)∗ = Q

1−|χ|2 , 0 ≤ |χ| < 1.

(9.2.1b)

∀i, iB ≥ −1 : fq(qiB |ui, vi) = fq(qiB ). (9.2.1c)

∀i, iB ≥ −1 : Edi = Eui = Exi = Evi = EqiB = 0. (9.2.1d)

∀i, j ≥ −1 : fvi(vi|vj) = fvi(vi) = fvj (vj) = fvj (vj |vi), Eviv∗
i = σ2

v . (9.2.1e)

∀i, iB ≥ −1 : fw−1(w−1|di, ui, vi, qiB ) = fw−1(w−1)
∧ fθ−1(θ−1|di, ui, vi, qiB ) = fθ−1(θ−1).

(9.2.1f)
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∀i, j ≥ −1 : fv(vi|uj) = fv(vi). (9.2.1g)

∀i ≥ −1 : Ru,i = Eu∗
i ui � 0. (9.2.1h)

DN� 1. (9.2.1i)

Hence, assumption (9.2.1a) proclaims the existence of an optimal adaptive tap-weight vector that
we denote by wo

iB
∈ KM×1. This linear relationship links the regression vector ui ∈ KNe×M to

the disturbance signal di ∈ KNe×1. It is customary to absorb any such deviation from a perfect
linear model into the quantity vi ∈ KNe×1 that represents the noise signal (estimation error).
As such the noise term vi should account for input noise corrupting the regressor signal, system
non-linearities, component saturation, quantization effects, overflow, insufficient order of filter
model, noise corrupting the disturbance signal. This is done for mathematically traceability.
In subsection 9.2.3 some remarks will be made regarding the validity of such data model when
applying it in an active noise control (ANC) context. It suffices to say here by the adjective optimal
we are explicitly referring to the cost function Je2

defined in (8.3.5) on page 376 and therefore not
to the cost function Je2αγΠ introduced in (8.3.22) on page 385, that the MC-αγΠε-APA adaptive
filter actually is designed to minimize. There are two main reasons for this choice. Firstly, as
argued at length in subsection 8.3.3 on page 378, weight-driven leakage and control-effort-driven
leakage types are introduced as a remedy to various system imperfections. However, as is well-
known such leakage functionalities are only included at a cost namely an increased m.s.e.. Hence,
we would therefore prefer a ”perfect” system and apply the minimum mean-square error (m.m.s.e.)
criteria and accordingly the Je2

cost function. Secondly, in order to let the assumptions on zero-
mean and independent and identical distributed (i.i.d.) noise in (9.2.1d) and (9.2.1e) make sense
we have to subtract the influence of the attraction points constituted by 0 (control-effort-driven
leakage) and w̄iw̄ (weight regularization) from the system ”optimality”.

The non-stationarity of the LEM is expressed by a random-walk model in assumption (9.2.1b)
where the optimal adaptive tap-weight vector wo

iB
undergoes random variations around its mean

wo ∈ KM×1, with perturbations random-walk vector θiB ∈ KM×1, being generated by a first-
order auto-regressive model with pole position at χ ∈ C that regularizes the randomness in the
model and with a random initial condition θ−1 ∈ KM×1. Finally, qiB ∈ KM×1 denotes the i.i.d.

random-walk vector, and Q � Eqiq∗
i ∈ KM×M is a constant matrix related to the covariance

of w̃o
iB

. It is customary to set χ ≡ 1 in order to simplify the analysis. However, as a result the
covariance matrix of w̃o

iB
then becomes unbounded as time progresses.

Assumption (9.2.1c) states that the sequence {qiB} is independent of both vi and ui. The
random sequences (RSs) {di,ui,vi,qiB} are in assumption (9.2.1d) all assumed to have zero
means. Assumption (9.2.1e) expresses that the noise sequence is i.i.d. with constant variance
σ2

v ∈ KNe×Ne .

The initial weight vector w−1 ∈ KM×1 and initial optimal weight vector wo
−1 ∈ KM×1 are both

independent of {di,ui,xi,vi,qiB} by assumption (9.2.1f).

Then a more controversial assumption is made in (9.2.1g) where it is assumed that the noise
sequence {vi} is independent of uj . It should be recalled that independence implies uncorrelat-
edness but not the converse. Hence, assumption (9.2.1g) implies that Eviu∗

j = 0, ∀i, j ≥ −1,
that is, the regressor and the estimation error are uncorrelated. From the definition in (9.2.1a)
such correlatedness is only guaranteed to hold for i = j. Similarly, assumption (9.2.1c) imply
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that EqiBv∗
i = 0 respectively EqiBu∗

i = 0, ∀i, iB ≥ −1, that is, the random-walk vector qiB

is uncorrelated with both the regressor ui and the system noise vi. From assumptions (9.2.1g)
(9.2.1e) (9.2.1f) and (9.2.1c) we appreciate that all of {uj,vj ,wo

−1 and qjB} are independent
of vi, ∀i > j ≥ jB. The reason why the stronger assumptions on independence is enforced is
that then at any particular time instant i, the estimation noise vi is independent of all previous
weight estimators wj , j < i as discussed above. This fact is quite essential for the mathematical
tractability of the performance analysis of the adaptive schemes. Moreover, as a consequence it
also holds that

∀j < i : fv(vi|wj , w̃j , ea,i) = fv(vi), (9.2.2)

that is, the noise term is independent of the a priori error and previous weight vectors and
weight-error vectors [9, Lemma 7.2.1]. The assumptions on identical distributions in (9.2.1b)
and (9.2.1e) are not fundamental to the analysis, but led to a constant ”maneuver” covariance
matrix Q and a constant noise covariance matrix σ2

v respectively.

Moreover, recalling the definition of the regressor time-block matrix Ui (8.6.9) and defining
similarly the system noise signal time-block matrix Vi ∈ KKNe×1(Vi ∈ KK×1) by

Vi �

⎧⎪⎨⎪⎩
[
v(i) v(i−Δu) . . . v(i − (K − 1)Δu)

]�
SISO, SIMO[

vi vi−Δu . . . vi−(K−1)Δu

]�
MISO, MIMO,

(9.2.3)

we appreciate that assumption (9.2.1g) also implies that ∀i, j ≥ −1 : fV (Vi|Uj) = fV (Vi), that
is, the noise sequence {Vi} is independent of Uj . Moreover, by virtue of (9.2.1e) the variance
of the block-time noise in the LEM denoted by σ2

V ∈ KKNe×KNe is constant and obtained from

EViV∗
i = σ2

V = σ2
v⊗K . (9.2.4)

The auto correlation matrix of the regressor ui Ru,i � Eu∗
i ui ∈ CM×M is positive definite

(assumption 9.2.1h). Finally, assumption (9.2.1i) regards the degree of nonstationarity (DN)
that is defined by

DN �
√

TrRuQ

σ2
v

. (9.2.5)

Hence, by enforcing DN� 1 then the adaptive filter will have time to track the variations in the
weight vector wo

i .

Although apparently very primitive the single-input version of the data model Equation 9.2 finds
wide spread applicability in the signal processing community.

Fig. 9.1: Data Model in Adaptive Filtering.

Historically, the derivations involved are based on the following independence assumption [3,
Ch. 9].
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Assumption 2 (Independence of ui,Ui). The regressor ui is i.i.d., that is,

∀i, j ≥ −1 : fui(ui|uj) = fuj (uj |ui) = fui(ui) = fuj (uj) (9.2.6a)

respectively the time-block matrix Ui is i.i.d., that is,

∀i, j ≥ −1 : fUi(Ui|Uj) = fUj (Uj |Ui) = fUi(Ui) = fUj (Uj). (9.2.6b)

Here (9.2.6a) is the ”usual” independence assumption used, e.g., in [3, Ch. 9] while (9.2.6b) is the
corresponding independence assumption used in APA analysis, e.g., in [10]. It should be noticed
that (9.2.6b) is a stronger assumption and therefore often more dubious assumption than (9.2.6a)
as the affine projection (AP) algorithm fundamentally is based on reusing the regressor data (see
subsection 8.6.2). When the independence assumption (9.2.6a) respectively (9.2.6b) hold it is
guaranteed that the weight-error vector w̃iB−1 is independent of the regressor data ui, that is,

∀iB > 0, j ≥ −1 : fw̃(w̃iB−1|uj) = fw̃(w̃iB−1) (9.2.7a)

respectively w̃iB−1 is independent of the time-block matrix Ui, that is,

∀iB > 0, j ≥ −1 : fw̃(w̃iB−1|Uj) = fw̃(w̃iB−1). (9.2.7b)

By invoking the independence theory, however, the adaptive process is no longer precisely quan-
tified but reliable design guidelines for the stability and mean-squared ensemble-averaged error
performance surface of the least-mean-squares are obtained.

9.2.1 Error Quantities in Stochastic Gradient Methods

Next various error quantities that will be used in our analysis will be introduced. The a priori
error vector ea,i ∈ KKNe×1 and the posteriori error vector ep,i ∈ KKNe×1 are defined by

ea,i = ui(wo
iB
−wiB−1) (9.2.8a)

ep,i = ui(wo
iB
−wiB ) = uiw̃iB . (9.2.8b)

The a priori block-time error vector Ea,i ∈ KKNe×1 and the posteriori block-time error vector
Ep,i ∈ KKNe×1 are similarly defined by

Ea,i = Ui(wo
iB
−wiB−1) (9.2.9a)

Ep,i = Ui(wo
iB
−wiB ) = Uiw̃iB . (9.2.9b)

The block-time error vector Ei and the a priori block-time error vector Ea,i are related as

Ei = Ea,i + Vi, (9.2.10)

where the system noise signal time-block matrix Vi was defined in (9.2.3).
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9.2.2 Convergence of Stochastic Gradient Methods

A convergence criteria in the mean square is invoked due to mathematical simplicity. The
adaptive filter is considered to converge if the cost function, Je2

(i), approaches some constant
value, Je2

∞ , as the iteration number goes to infinity

Je2

∞ � lim
i→∞

Je2
(i) = lim

i→∞
E‖ei‖2We

. (9.2.11)

As demonstrated in [3, Ch. 6] the satisfaction of (9.2.11) is equivalent to ensuring convergence
in the mean-squared Euclidian norm of the weight-error vector, that is, the m.s.d. of the adaptive
filter denoted by MSD ∈ R+ that is defined as the limiting value of ‖w̃iB‖2

MSD � lim
i→∞

E‖w̃iB‖2. (9.2.12)

The limiting error value of ‖ei‖2 is called the m.s.e. of the adaptive filter denoted by MSE ∈ R+

MSE � lim
i→∞

E‖e(i)‖2. (9.2.13)

Similarly, the steady-state value of ‖ei‖2We
is called the w.m.s.e. of the adaptive filter WMSE ∈ R+

WMSE � lim
i→∞

E‖ei‖2We
. (9.2.14)

The limiting a priori error ‖ea,i‖2 EMSE ∈ R+ is designated by EMSE of the adaptive filter

EMSE � lim
i→∞

E‖ea,i‖2 � MSE−Je2

min. (9.2.15)

Similarly, the steady-state weighted a priori error ‖ea,i‖2We
WEMSE ∈ R+ is designated by

WEMSE of the adaptive filter

WEMSE � lim
i→∞

E‖ea,i‖2We
� WMSE−Je2

min. (9.2.16)

9.2.3 Remarks on Linear Estimation Model

Although the linear estimation model in principle should cover the four different modes of adap-
tive filtering above we will only consider the Interference cancelation and System identification
modes here. It seems reasonable to consider the quality of the LEM above and in particu-
lar Assumption 1 by considering the same sources that may lead to imperfect coherence in
subsection 2.2.1 on page 18 as potential sources to inadequacies in the LEM1.

LEM Prob. 1. Partially Coherent Fields. Such of lack of perfect coherence is very application
dependent and may or may not be modeled according to the LEM.

1The list is most likely not exhaustive and many other causes to problems with the LEM may exist.
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LEM Prob. 2. Insufficient model order. It seems reasonable to use our model also to let vi

include spatial aliasing noise related to spatial undersampling of the signals.

LEM Prob. 3. Doppler effects. Doppler effects are of concern in, e.g., wireless communication
systems and can be taking into account by replacing (9.2.1a) for the optimal weight by the more
elaborate expression

∀iB ≥ −1 : ∃wo
iB
∈ KM×1 : di = uiwo

iB
eı(Ωi + φi) + vi (9.2.17)

for some frequency offset Ω and phase offset φ. The nonstationarity model used in the present
analysis viz. (9.2.1b)-(9.2.1d) suffice, but upon replacing (9.2.1a) by (9.2.17) more involved ex-
pressions would be obtained.

LEM Prob. 4. Nonlinear system. A nonlinear system will usually generate a model estima-
tion error vi that will be directly dependent on the regressor signal ui. Hence, nonlinearities
completely violate assumption (9.2.1g).

LEM Prob. 5. The system is not a constant-parameter system. Such time-variant behavior
may or may not comply with our assumptions.

LEM Prob. 6. Finite signal-to-noise ratio (SNR). The presence of extraneous noise at the
output is compliant within our framework as long as assumption (9.2.1d)-(9.2.1e) are satisfied. In
contrary, extraneous noise that contaminates the inputs will according to the LEM in Equation 9.2
also contaminates vi and thereby violating assumption (9.2.1g).

LEM Prob. 7. Aliased signal components in discrete-time systems. Again the LEM holds
for aliased components in the outputs, but not for aliasing effects in the inputs. More details
pertaining to aliasing effects can be found in Appendix N on page 791.

LEM Prob. 8. Adaptive filter finite-precision errors (refer to subsection 8.6.7 on page 403).
Although finite-precision effects are omitted from the present analysis, such effects can rather
straightforwardly be included in the model as they manifest themselves in a manner similar to
system nonstationarity [9, Ch. 8].

LEM Prob. 9. The underlying random processs (RPs) are not mean and variance stationary or
ergodic. Lack of stationarity may or may not comply with our model (9.2.1b)-(9.2.1d).

LEM Prob. 10. Periodicities in the acquired data set. The random-walk model introduced in
3 is more appropriate, whenever such periodicities are encountered.

LEM Prob. 11. A nonzero mean in the acquired data set. If the assumption on zero mean
values in (9.2.1d) is violated, then many of our expressions would be somewhat more involved,
but the main results would not be fundamentally changed.

Finally, it should be recalled that if the LEM model does not hold entirely, this does not necessarily
imply that the adaptive filter is not working. However, most likely the performance of the
adaptive filter will be somewhat poorer than predicted from the model. Of particular concern
are low SNRs at the input and highly nonstationary signals (DN > 1).

9.3 Transient Analysis of MC-αγΠε-APA

In subsection 8.6.3 on page 398 a novel l.l.m.s.e.-based adaptive filter encompassing both dynamic
weight-driven leakage and dynamic control-effort-driven leakage and numerical regularization as
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well as weight regularization was derived. This algorithm which for convenience is repeated in
(9.3.1) is referred to as multiple-channel-αγΠε-affine projection algorithm. The detailed deriva-
tion can be found in subsection 8.6.1.

wiB = ΥiΥwiB−1 + μiμε−1
iε

U∗
i (W−1

e⊗K + Uiε
−1
iε

U∗
i )−1(Di − UiwiB−1) + μiμ w̆,

MIMO, i ≥ 0, iB ≥ 0, iΥ ≥ 0, iμ ≥ 0, iε ≥ 0, w−1 = w0.
(9.3.1)

In the weight update recursion (9.3.1) the quantity ΥiΥ denotes the transformed leakage-weight
regularization matrix defined in (8.6.13) on page 399 and repeated here for convenience

ΥiΥ = I− μiμ

(
αiα + X∗

i γiγ⊗K(yiγ )Xi + ΠiΠ

)
, (9.3.2)

where iΥ denotes the transformed weight leakage factor update iteration number iΥ = max {iμ, iα, iγ , iΠ}
introduced in (8.6.15) on page 399 and where w̆ = ΠiΠ w̄ is the transformed weight vector for
weight regularization defined in (8.6.14) on page 399

In the study of the performance of an adaptive filter it is customary to replace a deterministic
difference equation such as (9.3.1) with an equivalent stochastic difference equation (viz. (9.3.8) on
the facing page). This replacement is carried out as the weights are data-dependent and therefore
consequently are considered as RSs in the analysis. Similarly, in a non-stationary environment
the optimal weights will exhibit variation with time typically governed by some random-walk
model. As a consequence the optimal weight vector wo

iB
is also considered as vector-valued RS.

Moreover, in our presentation we also allow the step-size μ, the leakage control parameters α, γ
and the numerical regularization parameter ε to attain matrix-values and to be time-variant. We
will therefore equip these quantities with the subscripts μiμ , αiα , γiγ , εiε and ΠiΠ respectively to
indicate this time-dependence. It should also be emphasized that the parameters only need to
be updated on a block-update time frame or less frequently. Furthermore, as these parameters
in general will attain values that are data-dependent they will also be considered as RSs. We will
therefore use bold script for these quantities in order to emphasize their randomness (refer to
the Notations on page xli).

Hence, using bold script for random quantities the recursion (9.3.1) becomes

wiB = ΥiΥwiB−1 + μiμ
ε−1

iε
U∗

i (W
−1
e⊗K + Uiε

−1
iε

U∗
i )

−1Ei + μiμ
w̆ (9.3.3)

where the error signal time-block matrix by Ei ∈ KKNe(Ei ∈ KK×1)

Ei = Di −UiwiB−1 (9.3.4)

is constituted by the error signals ei according to

Ei �

⎧⎪⎨⎪⎩
[
e(i) e(i−Δu) . . . e(i− (K − 1)Δu)

]�
SISO, SIMO[

ei ei−Δu . . . ei−(K−1)Δu

]�
MISO, MIMO.

(9.3.5)
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Notice, in the general time-variant case the transformed leakage-weight regularization matrix
ΥiΥ that is obtained from

ΥiΥ = I− μiμ

(
αiα + X∗

i γiγ⊗KXi + ΠiΠ

)
, (9.3.6)

is also RS as the step-size μiμ
and the leakage control parameters αiα and γiγ

are all considered
as RSs.

We are mostly interested in the propagation of the weight-error vector w̃iB ∈ KM×1 that is
defined by

w̃iB = wo
iB
−wiB . (9.3.7)

Hence, by insertion of (9.3.7) in (9.3.3) the following stochastic difference equation is obtained

w̃iB = wo
iB
−ΥiΥwiB−1 − μiμ

ε−1
iε

U∗
i (W

−1
e⊗K + Uiε

−1
iε

U∗
i )

−1Ei − μiμ
w̆. (9.3.8)

For the ease of the development we will make use of some auxiliary quantities to be introduced
in the subsequent text.

The leakage-transformed modified weight-error vector w̃
′Υ
iB−1 ∈ KM×1 defined by

w̃
′Υ
iB−1 = wo

iB
−ΥiΥwiB−1 (9.3.9)

is used to represent the first two terms of the right-hand side (RHS) of (9.3.8). By the term
modified is understood that the optimal weight vector is evaluated at block-time iB, while the
weight vector itself is taking at block-time iB − 1. Moreover, by the notion leakage-transformed
we explicitly refer to the presence of the transformed leakage-weight regularization matrix ΥiΥ .

Next we will define the auxiliary matrices P′
i,Pi ∈ KM×KNe by

P′
iB

� μiμ
ε−1

iε
U∗

i (W
−1
e⊗K + Uiε

−1
iε

U∗
i )

−1 (9.3.10a)

= μiμ
(εiε + U∗

i We⊗KUi)−1U∗
i We⊗KUi, (9.3.10b)

PiB � P′
iB

Ui. (9.3.10c)

where the translation from (9.3.10a) to (9.3.10b) stems from subsection 8.B.2 where the deriva-
tion actually was in the opposite direction and aimed at reducing the order of the matrix inverse.
Moreover, by using the relation between the block-time error vector Ei and the a priori error
Ea,i and system noise signal time-block matrix Vi (9.2.10) and using (9.3.9) we may reexpress
the recursion (9.3.8) on this page as

w̃iB = w̃
′Υ
iB−1 −P′

iB
Ea,i −P′

iB
Vi − μiμ

w̆. (9.3.11)

On the RHS of (9.3.11) we find both the a priori error Ea,i and the leakage-transformed modified
weight-error vector w̃

′Υ
iB−1. However, both of these quantities can directly be related to weight-
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error vector w̃iB−1. By applying the random walk model from the LEM on page 422 to the
expression for the a priori block-time error vector (9.2.9a) on page 425 we obtain

Ea,i = Ui(wo
iB
−wiB−1)

= Ui(wo
iB−1 + θiB − θiB−1 −wiB−1)

= Ui(χwo
iB−1 + qiB −wiB−1 + (1 − χ)wo)

= Ui

(
w̃iB−1 + qiB − (1− χ)(wo

iB−1 − wo)
)

= Ui

(
w̃iB−1 + q̄iB − (1− χ)wo

iB−1

)
,

(9.3.12)

where the quantity q̄iB ∈ KM×1 denotes the modified random-walk vector that is defined by

q̄iB = qiB + (1− χ)wo. (9.3.13)

Similarly, from straightforward manipulation of (9.3.9) and using the random walk model (9.2.1b)
on page 422 we can relate the leakage-transformed modified weight-error vector to the optimal
weight vector and the weight-error vector both evaluated at block-update time iB − 1

w̃
′Υ
iB−1 = wo

iB
−ΥiΥwiB−1

= χwo
iB−1 + qiB −ΥiΥ(wo

iB−1 − w̃iB−1) + (1− χ)wo

= (χI−ΥiΥ)wo
iB−1 + qiB + ΥiΥw̃iB−1 + (1− χ)wo

= Υχ
iΥ

wo
iB−1 + q̄iB + ΥiΥw̃iB−1,

(9.3.14)

where

random-walk-modified leakage-weight regularization matrix Υχ
iΥ
∈ KM×M is defined by

Υχ
iΥ

� χI−ΥiΥ = −(1− χ)I + μiμ

(
αiα + X∗

i γiγ⊗KXi + ΠiΠ

)
. (9.3.15)

Finally, by insertion of (9.3.12) and (9.3.14) in (9.3.11) and using (9.3.10) the recursion expression
becomes

w̃iB = Υχ
iΥ

wo
iB−1 + q̄iB + ΥiΥw̃iB−1

−PiB

(
w̃iB−1 + q̄iB − (1− χ)wo

iB−1

)
−P′

iB
Vi − μiμ

w̆.
(9.3.16)

The recursions (9.3.16) and (9.3.11) will serve as starting points in transient analysis of the mean
weight-error vector in subsection 9.A.1 on page 453 and the variance of the weight-error vector
in subsection 9.A.2 - 9.A.3 on pages 458–460 respectively. It should be emphasized that (9.3.16)
and (9.3.11) are general and have been obtained exclusively under the linear estimation model
in Assumption 1.

9.3.1 Transient Analysis of MC-αγΠε-APA, Mean Relation

In order to obtain an expression for the time-evolution of the mean weight-error vector, that
is, E w̃iB we take the expectation on both sides of the recursion expression (9.3.16) on the
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preceding page. The details can be found in subsection 9.A.1 on page 453 and the main result
is the following expression

E w̃iB = EMiB E w̃iB−1 + EΥ′
iΥwo − Eμiμ

w̆, (9.3.17)

where the state-space mean transition matrix MiB ∈ KM×M is defined by

MiB = ΥiΥ −PiB

= I− μiμ

(
αiα + X∗

i γiγ⊗KXi + ΠiΠ + ε−1
iε

U∗
i (W

−1
e⊗K + Uiε

−1
iε

U∗
i )

−1Ui

) (9.3.18)

and where the leakage-weight regularization matrix Υ′
iΥ
∈ KM×M is determined from

Υ′
iΥ � I−ΥiΥ = μiμ

(
αiα + X∗

i γiγ⊗KXi + ΠiΠ

)
. (9.3.19)

For the derivation of (9.3.17) we have only made use of the linear estimation model in Assumption 1,
independence Assumptions 5 on page 454 and independence Assumption 6 on page 455. The
last two terms on the RHS of (9.3.17) that are identical to Eμiμ

(
αiα + X∗

i γiγ⊗KXi

)
wo +

E μiμ
ΠiΠ(wo − w̄) represent the joint bias error from leakage and weight vector regularization.

9.3.2 Transient Analysis of MC-αγΠε-APA, Weighted Energy Relation

By equating the weighted norm of both sides of the weight-error recursion (9.3.16), for some
arbitrary weighting matrix Σ ∈ KM×M positive-definite (p.d.) (and therefore also Hermitian) we
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obtain the following result

‖w̃iB‖2Σ = ‖w̃iB−1‖2ΣΥ
iB

+ ‖q̄iB‖2Σq
iB

+ ‖wo
iB−1‖2Σo

iB

+ ‖μiμ
w̆‖2Σ

+ 2�
{
wo∗

iB−1Υ
χ∗
iΥ

ΣΥiΥw̃iB−1

}
+ 2�

{
wo∗

iB−1Υ
χ∗
iΥ

Σq̄iB

}
+ 2�

{
q̄∗

iB
ΣΥiΥw̃iB−1

}
− 2�

{
wo∗

iB−1Υ
χ∗
iΥ

ΣPiB

(
w̃iB−1 + q̄iB

)}
− 2�

{
q̄∗

iB
ΣPiB

(
w̃iB−1 − (1 − χ)wo

iB−1

)}
− 2�

{
w̃∗

iB−1Υ
∗
iΥΣPiB

(
q̄iB − (1− χ)wo

iB−1

)}
− 2�

{(
wo∗

iB−1Υ
χ∗
iΥ

+ q̄∗
iB

+ w̃∗
iB−1Υ

∗
iΥ

)
Σμiμ

w̆
}

+ 2�
{
(w̃∗

iB−1 + q̄∗
iB
− (1− χ∗)wo∗

iB−1)P
∗
iB

Σμiμ
w̆
}

+ w̃∗
iB−1P

∗
iB

ΣPiB

(
q̄iB − (1 − χ)wo

iB−1

)
+ q̄∗

iB
P∗

iB
ΣPiB

(
w̃iB−1 − (1 − χ)wo

iB−1

)
− (1− χ∗)wo∗

iB−1P
∗
iB

ΣPiB

(
w̃iB−1 + q̄iB

)
+ V∗

i A
Σ
iB

Vi

− 2�
{
V∗

i P
′∗
iB

Σ
(
Υχ

iΥ
wo

iB−1 + q̄iB + ΥiΥw̃iB−1

−PiB

(
w̃iB−1 + q̄iB − (1− χ)wo

iB−1

)
− μiμ

w̆
)}

,

(9.3.20)

where the stochastic weighting matrices ΣΥ
iB

,Σo
iB

and Σq̄
iB

are defined by

ΣΥ
iB

� Υ∗
iΥΣΥiΥ −Υ∗

iΥΣPiB −P∗
iB

ΣΥiΥ + P∗
iB

ΣPiB (9.3.21a)

Σo
iB

� (χI−Υ∗
iΥ)ΣΥχ

iΥ
+ (1− χ)(χI−Υ∗

iΥ)ΣPiB + (1 − χ∗)P∗
iB

ΣΥχ
iΥ

+ |1− χ|2P∗
iB

ΣPiB (9.3.21b)

Σq̄
iB

� Σ− ΣPiB −P∗
iB

Σ + P∗
iB

ΣPiB . (9.3.21c)

The detailed derivation can be found in subsection 9.A.2 on page 458. Comparing the recursion
expression for the weighted norm of the weight-error vector ‖w̃iB‖2Σ with similar results in [10] for
the ε-APA we appreciate that many additional terms enter in Equation (9.3.20). Several factors
contribute to this increase in complexity. Usually, the random-walk model is omitted from the
transient analysis. In the presence analysis, however, we allowed a general random-walk model
to model the non-stationarity of the system viz. (9.2.1b). If we instead had used the more simple
random-walk where χ ≡ 1 this would reduce the number of terms in the recursion expression
(9.3.20) considerably.

Three of the terms that include a w̆ factor are explicitly related to inclusion of the weight
regularization in (9.3.1). Hence, by making the following assignments χ ← 1 in (9.3.20) and
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(9.3.13) and w̆ ← 0 in (9.3.20) we readily obtain

‖w̃iB‖2Σ = ‖w̃iB−1‖2ΣΥ
iB

+ ‖qiB‖2Σq
iB

+ ‖wo
iB−1‖2Σo

iB

+ 2�
{
wo∗

iB−1(I−Υ∗
iΥ)ΣMiB

(
w̃iB−1 + qiB

)}
+ 2�

{
q∗

iB
(I−P∗

iB
)ΣMiBw̃iB−1

}
+ V∗

i A
Σ
iB

Vi

− 2�
{
V∗

i P
′∗
iB

Σ
(
(I−ΥiΥ)wo

iB−1 + (I−PiB )qiB + MiB w̃iB−1

)}
,

(9.3.22)

where Σo
iB

now reduces to (I−Υ∗
iΥ)Σ(I−ΥiΥ).

By completely omitting the non-stationarity from the model, that is, qiB
← 0 and wo

iB−1 ← wo

will lead to further reduction of the complexity

‖w̃iB‖2Σ = ‖w̃iB−1‖2ΣΥ
iB

+ ‖wo‖2Σo
iB

+ V∗
i A

Σ
iB

Vi

+ 2�
{
wo∗

iB−1(I−Υ∗
iΥ)ΣMiB w̃iB−1

}
− 2�

{
V∗

i P
′∗
iB

Σ
(
(I−ΥiΥ)wo

iB−1 + MiB w̃iB−1

)}
.

(9.3.23)

Finally, by also omitting all leakage, that is, ΥiΥ ← I then (9.3.23) simplifies to

‖w̃iB‖2Σ = ‖w̃iB−1‖2Σ′
iB

+ V∗
i A

Σ
iB

Vi − 2�
{
V∗

i P
′∗
iB

Σ(I−PiB )w̃iB−1

}
, (9.3.24)

where Σ′
iB

= Σ − ΣPiB − P∗
iB

Σ + P∗
iB

ΣPiB . This expression coincides with a similar result in
[10].

9.3.3 Transient Analysis of MC-αγΠε-APA, Weighted Variance Relation

In order to obtain an expression for the time-evolution of the expected weighted energy norm of
the weight-error vector, that is, E‖w̃iB‖2Σ for some choice of Σ we proceed by taking the expecta-
tion on both sides of (9.3.20). Following somewhat lengthy derivations found in subsection 9.A.3
on page 460 we obtain

E‖w̃iB‖2Σ = E‖w̃iB−1‖2ΣΥ
iB

+ Tr {QΣq
iB
}+ ‖wo‖2

Σw′o
iB

+ ‖w̆‖2Σw̆

+ 2�〈wo∗, w̆〉Σwow̆
iB

− 2�〈wo∗, w0〉
Σwow0

iB

− 2�〈w̆∗, w0〉
Σw̆w0

iB

+ Kσ2
v Tr {EP

′∗
iB

ΣP′
iB
}.

(9.3.25)

where the deterministic weighting matrices ΣΥ
iB

, Σw′o

iB
, Σq

iB
and Σw̆

iB
are defined by
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ΣΥ
iB

� EΥ∗
iΥΣΥiΥ − E(Υ∗

iΥ)Σ E(PiB )− E(P∗
iB

)Σ E(ΥiΥ) + EP∗
iB

ΣPiB (9.3.26a)

Σw′o

iB
= EΥχ∗

iΥ
ΣΥχ

iΥ
+ (1− χ) E(Υχ∗

iΥ
)Σ + (1− χ∗)Σ E(Υχ

iΥ
) + |1− χ|2(Σ + 2 EP∗

iB
ΣPiB )

+ JiBCwo

iB−1 + Cwo∗
iB−1J

∗
iB

(9.3.26b)

and

Σq
iB

= Σ− Σ EPiB − EP∗
iB

Σ + EP∗
iB

ΣPiB

+ ΘiB−1

(
EΥχ∗

iΥ
ΣΥχ

iΥ
+ (1− χ) E(Υχ∗

iΥ
)Σ E(PiB )

+ (1− χ∗) E(P∗
iB

)Σ E(Υχ
iΥ

) + |1− χ|2 EP∗
iB

ΣPiB

)
(9.3.26c)

and

Σw̆
iB

= E(μ∗
iμ

Σμiμ
)−KiBCw̆

iB−1 − Cw̆∗
iB−1K

∗
iB

. (9.3.26d)

The cross-weighting matrix associated with the coupling between the mean optimal weight vector
and the regularized weight vector Σwow̆

iB
∈ KM×M , the mean optimal weight vector to initial

weight vector coupling cross-weighting matrix Σwow0

iB
∈ KM×M and the cross-weighting matrix

related to the coupling between the regularized weight vector and the initial weight vector Σw̆w0

iB
∈

KM×M are defined by

Σwow̆
iB

� −JiB Cw̆
iB−1 + Cwo∗

iB−1K
∗
iB

+ E(Υ∗
iΥΣμiμ

)− Σ E(μiμ
) (9.3.27a)

Σwow0

iB
� JiB Cwo,1

iB
(9.3.27b)

Σw̆w0

iB
� KiBCwo,1

iB−1 (9.3.27c)

respectively and the auxiliary matrices JiB and KiB that enter (9.3.26b) (9.3.26d) and (9.3.27)
are in turn defined by

JiB � E
(
Υχ∗

iΥ
ΣΥiΥ

)
− E(Υχ∗

iΥ
)Σ E(PiB ) + (1− χ∗)Σ E(MiB ) (9.3.28a)

K∗
iB

� E(P∗
iB

)Σ E(μiμ
)− E(Υ∗

iΥΣμiμ
). (9.3.28b)

Finally, we let Cwo

iB
and Cw̆

iB
represent the time evolution matrix for the mean optimal weight

vector wo and time evolution matrix for the regularized weight vector w̆ respectively. These
quantities are determined by
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Cwo

iB
�

iB∏
j=0

EMj +
iB∑

j=1

([ iB∏
j′=j

EMj′

]
EΥ′

ij−1
Υ

)
+ EΥ′

i
iB
Υ

(9.3.29a)

= Cwo,1
iB

+ Cwo,2
iB

+ Cwo,3
iB

(9.3.29b)

Cw̆
iB

�
iB∑

j=1

([ iB∏
j′=j

EMj′

]
E μij−1

μ

)
+ Eμ

i
iB
μ

(9.3.29c)

= Cw̆,2
iB

+ Cw̆,3
iB

. (9.3.29d)

For the derivation of (9.3.25) we have only made use of the linear estimation model in Assumption 1
and the four independence Assumption 5 - 8 on pages 454–461. Comparing the expression
for the time-evolution of the expected weighted energy norm for the MC-αγΠε-APA with time-
variant parameters in (9.3.25) with similar results in [10] for the ordinary ε-affine projection
algorithm (ε-APA) we observe a considerable increase in complexity for the present analysis. Two
reasons for this increase in complexity are due to the inclusion of leakage and weight regulariza-
tion in the adaptive filter. Another reason is that the analysis conducted in this report uses a
more advanced random-walk model and also allows a non-vanishing initial weight vector. Finally,
the presence of time-variant parameters as opposed to constant parameters further increases the
complexity.

The weighting matrix ΣΥ
iB

is important for the stability analysis. Owing to the presence of ΥiΥ

we appreciate that leakage and weight regularization do influence the stability of the filter.

It is well known that the covariance of wo
iB
− wo grows unbounded for the random-walk model

in (9.2.1b) whenever the forgetting factor equals unity, that is, χ = 1. But (9.3.25) and (9.3.26c)
actually claim that the weight-error vector increases without bound from one iteration to the
next. By examination of (9.3.26c) we appreciate that the term responsible for this divergence is
Θ EΥχ∗

iΥ
ΣΥχ

iΥ
as limiB→∞ Θ = 1

1−|χ|2 and therefore limiB→∞ lim|χ|→1
1

1−|χ|2 EΥχ∗
iΥ

ΣΥχ
iΥ

= ∞,
that is, in ”steady-state” the mean-square weight-error vector grows unbounded for such simple
random walk model. This also explains why we explicitly enforced the requirement 0 ≤ |χ| < 1
in (9.2.1b). From (9.3.15), however, we see that when leakage and weight regularization are
omitted then Υχ∗

iΥ
= 0 and Σq

iB
remains bounded. This phenomena might therefore be explained

as follows. Although the adaptive filter (in principle) is capable of tracking such unlimited system
variations then even small fractions of infinite large weights caused by leakage are themselves
infinite large and will therefore lead to unboundedness if χ = 1.

The propagation of the Σq
iB

deviates substantially from other works where Σq
iB
≡ Σ. Extensive

analysis of the derivation carried out in subsection 9.A.3 reveals that two factors are responsible
for this difference. In other works the presence of the random walk vector q is not included in Ea,i

as it arguably should viz. (9.3.12). As a consequence the terms −Σ EPiB −EP∗
iB

Σ+EP∗
iB

ΣPiB

that enter Σq
iB

are omitted. From (9.3.10c), however, we see that the first two terms vary linearly
with the step-size and the third term varies quadratically with the step-size. Hence, except for
large values of μ the effect of erroneously omitting qiB in this place will usually be small.
Secondly, by using the more advanced random-walk model with χ < 1 lead to the presence of the
term starting with ΘiB−1( · ) and this term is related to the propagation of E‖wo

iB−1‖2Σo
iB

itself.

The inclusion of weight regularization in (9.3.1) leads to the presence of the terms ‖w̆‖2Σw̆ , 2�〈wo∗, w̆〉Σwow̆
iB

and 2�〈w̆∗, w0〉KiB
Cwo,1

iB−1
in (9.3.25).



436 9. αγΠε-APA Performance Analysis

The terms 2�〈wo∗, w0〉
JiB

Cwo,1
iB

and 2�〈w̆∗, w0〉
KiB

Cwo,1
iB−1

in (9.3.25) are related to the use of

a non-vanishing initial weight vector, that is, w−1 = w0 �= 0. In many performance analysis
w−1 = w0 which means that w̃−1 = wo and those two aforementioned terms will be absent.

Now, by assuming a stationary model, a vanishing initial weight vector and by omitting weight
regularization, that is, by making the following assignments Q ← 0, χ ← 1, w−1 = w0 = 0 and
w̆ ← 0 in (9.3.25) we readily obtain

E‖w̃iB‖2Σ = E‖w̃iB−1‖2ΣΥ
iB

+ ‖wo‖2
Σw′o

iB

+ Kσ2
v Tr {EP

′∗
iB

ΣP′
iB
}, (9.3.30)

where Σw′o

iB
= EΥ

′∗
iΥΣΥ′

iΥ + JiB Cwo

iB−1 + Cwo∗
iB−1J

∗
iB

and JiB = E
(
Υ

′∗
iΥΣΥiΥ

)
− E(Υ

′∗
iΥ)Σ E(PiB ).

Finally, by also omitting all leakage, that is, ΥiΥ ← I then the second term on the RHS of (9.3.30)
disappears, that is,

E‖w̃iB‖2Σ = E‖w̃iB−1‖2ΣΥ
iB

+ Kσ2
v Tr {EP

′∗
iB

ΣP′
iB
}, (9.3.31)

where ΣΥ
iB

= Σ− Σ E(PiB )− E(P∗
iB

)Σ + EP∗
iB

ΣPiB .

This expression coincides with a similar result in [10].

9.4 Stability Analysis of MC-αγΠε-APA

We are now in a position to use the results from the transient analysis of the MC-αγΠε-APA

adaptive filter conducted in the previous section and establish stability criterions for the filter.

9.4.1 Stability Analysis of MC-αγΠε-APA Time-Variant State Transition Matrix

The presence of a time-variant mean weight-error vector state transition matrix MiB complicates
the analysis considerably. In general owing to the dynamics of the state transition matrix a system
may be unstable even though every time-invariant system E w̃iB = EMτ w̃iB−1+EΥ′

τwo−Eμτ w̆
frozen at time τ is asymptotically stable. It is also possible that every frozen system is unstable
yet (9.3.17) is stable. It suffice here to say that exponential stability for time-variant state-space
systems can be assessed by considering the mean weight-error vector state-space evolution matrix
ΦM (t, t0) : KM×M → KM×M , that in the stochastic case is defined by

ΦM (t, t0) � EMtMt−1 . . .Mt0 , t > t0 (9.4.1)

and the associated upper Lyapunov exponent ᾱ(ΦM ) ∈ R+, defined by

ᾱ(ΦM ) = inf
{
ω ∈ R; ∃Mω > 0∀t ≥ t0 : ‖Φ(t, t0)‖ ≤Mωeω(t−t0)

}
. (9.4.2)

Then stability is guaranteed if and only if the upper Lyapunov exponent is strictly negative, that
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is,

ᾱ(Φ) < 0. (9.4.3)

In practice, the stability criteria (9.4.3), however, is of limited use as the step-size matrix enters
the evolution matrix ΦM (t, t0) in factorized form. It therefore exceedingly difficult to establish
criterions for the time-evolution of μiμ

that guarantee stability. The stability analysis will there-
fore in the subsequent stability analysis be very dependent on the specific mechanisms that is
used to regularize the step-size parameter. We will therefore in the subsequent stability analysis
exclusively consider the MC-αγΠε-APA with constant parameters or at least with slowly varying
parameters in accordance with Assumption 5 - 8.

9.4.2 Stability Analysis of MC-αγΠε-APA, Slowly Varying State Transition Matrix

We will next make the dependence on the step-size matrix μiμ
explicit by reexpressing (9.3.18)

as

MiB � I− μiμ
LiB , (9.4.4)

where the auxiliary matrix LiB ∈ KM×M , in turn is defined by

LiB � αiα + X∗
i γiγ⊗KXi + ΠiΠ + ε−1

iε
U∗

i (W
−1
e⊗K + Uiε

−1
iε

U∗
i )

−1Ui. (9.4.5)

We may then express the requirement on stability in the mean of the MC-αγΠε-APA filter as [4,
Ch. 3]

∀iB, iμ ≥ −1 : σ(E μiμ
LiB ) ⊂ D(1,0), (9.4.6)

where σ(A) ∈ Cn×n denotes the spectrum of A, that is, the set of eigenvalues of A that in turn
are the roots of the characteristic polynomial χA(s) defined by

χA(s) = det(sIn −A) and σ(A) = {λ ∈ C; χA(λ) = 0}. (9.4.7)

By the notion D(1,0) we refer to the unit disc with origo in (1, 0) in the complex z-plane.

As discussed above, the requirement for mean-square stability may or may not be sufficient in
the general time-variant case in the sense that we may actually ”sometime” violate (9.4.6) by,
e.g., allowing larger step-sizes than predicted by (9.4.6) without the MC-αγΠε-APA filter becoming
unstable. However, such analysis is outside the scope of this presentation. It suffice to remark
that in practical use of a time-variant step-size matrix the matrix entities attain their largest
values when the error is numerically large and their values decrease numerically during an initial
transient phase where also the magnitude of the error decreases. This approach is used to ensure
a trade-off between tracking capability and the excess-mean-square error (EMSE). Moreover,
the step-size entities are usually bounded from below by zero. Therefore, for practical purposes
(9.4.6) is considered a sufficient condition for time-variant parameters, but also a necessary
condition, that is, the MC-αγΠε-APA filter is stable in the mean-square if and only if at all time
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σ(E μiμ
LiB ) ⊂ D(1,0) for time-invariant parameters. A formal proof of this claim, however,

remains to be made.

Unfortunately, (9.4.6) provides no direct way to obtain a usable step-size matrix as μiμ
only enters

implicitly in the inequality. It should be remarked that in the derivation of the mean-square sta-
bility criteria (9.4.6) no assumption on the parameters matrices αiα , γiγ

, εiε and ΠiΠ as regards
if they are real-valued or complex-valued, Hermitian matrices and positive-semidefinite matrices
etc. have been made. However, in order to proceed we will make the following assumption on
both μiμ

and LiB .

Assumption 3 (Positive-definite matrices μiμ
,LiB ). Both the step-size matrix μiμ

and the
auxiliary matrix LiB are at all time positive-definite matrices, that is,

∀iB, iμ ≥ −1 : μiμ
� 0 and LiB � 0. (9.4.8)

Now from Proposition 9.1 (9.1.6) and (9.4.5) we find that a sufficient conditions for LiB to be
p.s.d. is that one term in (9.4.5) is p.d. while the other three terms are p.s.d. The second term
on the RHS of (9.4.5), that is, X∗

i γiγ⊗KXi can provided that γiγ⊗K � 0 according to (9.1.7)
for some matrix D ∈ KM×M be expressed as X∗

i D
∗DX i = (DX i)∗(DXi), which is always

p.s.d.. Considering the last term in (9.4.5), that is, ε−1
iε

U∗
i (W

−1
e⊗K +Uiε

−1
iε

U∗
i )

−1Ui it should that
recalled that this term is identical to (εiε+U∗

i We⊗KUi)−1U∗
i We⊗KUi (refer to subsection 8.B.2).

The product of two p.s.d. matrices, e.g., A and B is itself p.s.d. if and only if A and B commute.
Obviously, (εiε + U∗

i We⊗KUi)−1 and U∗
i We⊗KUi do not commute. However, as the entries in

εiε usually are small the following approximation will hold (εiε + U∗
i We⊗KUi)−1U∗

i We⊗KUi =
I− (εiε + U∗

i We⊗KUi)−1εiε ≈ I � 0.

Assumption 3 then holds if the following conditions are satisfied.

➀ At all time the MC-αγΠε-APA matrix parameters are p.s.d. and the numerical regularization
matrix is ”small”, that is,

∀iα, iγ , iΠ ≥ −1 : αiα � 0, γiγ
� 0, and ΠiΠ � 0 (9.4.9a)

and
∀iε ≥ −1 : 0 � εiε ≺ U∗

i We⊗KUi. (9.4.9b)

We may then use Proposition 9.1 (9.1.5) and establish the following sufficient constraints on the
step-size matrix

∀iB, iμ ≥ −1, j ∈
¯
M : 0 < λj(E μiμ

) <
2

λmax(ELiB )
. (9.4.10)

The requirement on positive-definiteness (as opposed to positive-semidefiniteness) for matrices
Eμiμ

and ELiB ensures that 0 < λj(E μiμ
) and that 0 < λj(ELiB ), j ∈

¯
M . In subsection 9.4.3

we will also make explicit use of the existence of the matrix inverse for E μiμ
and ELiB .

Furthermore, we may enforce the following mild assumption.

Assumption 4 (Diagonal matrix μiμ
). The step-size matrix μiμ

is at all time a diagonal matrix,
that is,

μiμ
= diag {μ11,iμ

, μ22,iμ
, . . . , μMM,iμ

} = diag {μ1,iμ
, μ2,iμ

, . . . , μM,iμ
}. (9.4.11)
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Then the eigenvalues and the diagonal elements coincide and the requirement on mean-square
stability reduces to the following explicit double inequality for μj,iμ

∀iB, iμ ≥ −1, j ∈
¯
M : 0 < E μj,iμ

<
2

λmax(ELiB )
. (9.4.12)

Finally, a scalar-valued step-size parameter μ(iμ) is bounded according to

∀iB, iμ ≥ −1 : 0 < Eμ(iμ) <
2

λmax(ELiB )
. (9.4.13)

It should be emphasized that while (9.4.13) establishes necessary and sufficient conditions for
stability both (9.4.10) and (9.4.73b) establish only sufficient constraints. That is, for a matrix-
valued step-size parameter we may actually increase some of the entries without causing insta-
bility.

9.4.3 Stability Analysis of MC-αγΠε-APA, State Space Description

Unlike the recursion (9.3.17) for the mean weight-error vector the similar recursion for the propa-
gation of the mean-square weight-error vector is not on state-space form. The next step is there-
fore to derive a state-space model that characterizes the transient behavior of the MC-αγΠε-APA

adaptive filter. We do this by following the approach in [1] and appeal to the vec{ · } no-
tation defined in Definition 9.1 (9.1.1) and where, e.g., σ = vec {Σ} ⇔ vec−1 {σ} = Σ and
σΥ

iB
= vec {ΣΥ

iB
} ⇔ vec−1 {σΥ

iB
} = ΣΥ

iB
. The aim is to cast the recursive expression (9.3.20)

into an equivalent linear state-space formulation for which stability criterias are well established.
Then by applying the vec { · } operation the weighting matrix ΣΥ

iB
will be linked to the mean-

square weight-error vector state transition matrix FiB ∈ KM2×M2
[5] as σΥ

iB
= vec {ΣΥ

iB
} = FiB σ.

In the study of mean-square stability of adaptive filters with a scalar-valued step-size parameter
the state transition matrix F is often expressed in the form F = IM −μA+μ2B with A � 0, B �
0, μ > 0. The purpose of this section is to extent the results of [1] and establish conditions for
matrix-valued step-size matrices in terms of {A, B} that ensure mean-square stability. In such
case we express F instead by F = IM − A + B where the matrices A and B implicitly contain
the step-size matrix in first order and second order respectively with A � 0, B � 0. Stability
is guaranteed if and only if σ(F ) ⊂ D. Now as A and B are p.d. and p.s.d. respectively the
eigenvalues of F will necessarily be real and the stability requirement is then −1 < λ(F ) < 1.
We will address the second equality first, that is, λ(F ) < 1. Following a procedure similar to [9,
Ch. 9] we readily establish the following requirement

λmax(A−1
iB

BiB ) < 1. (9.4.14)

Hence, in the study of mean-square stability of the adaptive filter we want to establish conditions
for the step-size matrix μiμ

that guarantee that the spectrum at all time is strictly inside the unit
circle, that is, σ(FiB ) ⊂ D, iB ≥ −1. The approach in [1] where FiB is time-invariant and where μ
attains a fixed scalar value is to establish an expression for F in the form F = I−μA+μ2B. The
presence of time-variant and matrix-valued parameters in the MC-αγΠε-APA scheme complicates
the analysis somewhat.
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In order to bring ΣΥ
iB

on appropriate form, we first express the weight-error vector weighting
matrix ΣΥ

iB
in terms of Υ′

iΥ
instead of ΥiΥ using (9.3.19).

ΣΥ
iB

= EΥ∗
iΥΣΥiΥ − E(Υ∗

iΥ)Σ E(PiB )− E(P∗
iB

)Σ E(ΥiΥ) + EP∗
iB

ΣPiB

= E
(
(IM −Υ

′∗
iΥ)Σ(IM −Υ′

iΥ)
)
− E(IM −Υ

′∗
iΥ)Σ E(PiB )− E(P∗

iB
)Σ E(IM −Υ′

iΥ) + EP∗
iB

ΣPiB

= Σ− EΥ
′∗
iΥΣ− Σ EΥ′

iΥ + EΥ
′∗
iΥΣΥ′

iΥ

− Σ E(PiB ) + E(Υ
′∗
iΥ)Σ E(PiB )− E(P∗

iB
)Σ + E(P∗

iB
)Σ E(Υ′

iΥ) + EP∗
iB

ΣPiB .

(9.4.15)

Therefore, by applying Proposition 9.5 (9.1.14) to (9.4.15) we obtain

σΥ
iB

=
[
IM2 − IM ⊗ EΥ

′∗
iΥ − EΥ

′�
iΥ ⊗ IM + EΥ

′�
iΥ ⊗Υ

′∗
iΥ − EP�

iB
⊗ IM

+ E(P�
iB

)⊗ E(Υ
′∗
iΥ)− IM ⊗ EP∗

iB
+ E(Υ

′�
iΥ )⊗ E(P∗

iB
) + EP�

iB
⊗P∗

iB

]
σ

= FiB σ.

(9.4.16)

Accordingly, we may bring FiB on the desired form

FiB = IM −AiB + BiB , (9.4.17)

where AiB , BiB ∈ KM2×M2
represent two auxiliary matrices that by collecting terms of first-order

and second-order in the step-size matrix μiμ
can identified as

AiB = IM ⊗ EΥ
′∗
iΥ + EΥ

′�
iΥ ⊗ IM + EP�

iB
⊗ IM + IM ⊗ EP∗

iB

= IM ⊗ (E μiμ
LiB )∗ + (E μiμ

LiB )� ⊗ IM (9.4.18a)

BiB = EΥ
′�
iΥ ⊗Υ

′∗
iΥ + E(P�

iB
)⊗ E(Υ

′∗
iΥ) + E(Υ

′�
iΥ )⊗ E(P∗

iB
) + EP�

iB
⊗P∗

iB

= E
[
(Υ′

iΥ + PiB )� ⊗ (Υ′
iΥ + PiB )∗

]
= E

[
(μiμ

LiB )� ⊗ (μiμ
LiB )∗

]
= E

[
(L�

iB
μ�

iμ
)⊗ (L∗

iB
μ∗

iμ
)
]

(9.4.18b)

respectively, where we have used Proposition 9.4 (9.1.12a) and where LiB was introduced in
(9.4.5).

Then assuming independence of L and μ in accordance with Assumption 5 - 8 in the subsequent
stability analysis and by using (9.1.13d) we obtain

AiB = IM ⊗
(
E(L∗

iB
) E(μ∗

iμ
)
)

+
(
E(L�

iB
) E(μ�

iμ
)
)
⊗ IM (9.4.19a)

BiB = E(L�
iB
⊗ L∗

iB
) E(μ�

iμ
⊗ μ∗

iμ
). (9.4.19b)
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Applying Assumption 3 to (9.4.19) gives

AiB = IM ⊗
(
E(LiB ) E(μiμ

)
)

+
(
E(L̄iB ) E(μ̄iμ

)
)
⊗ IM (9.4.20a)

BiB = E(L̄iB ⊗ LiB ) E(μ̄iμ
⊗ μiμ

). (9.4.20b)

Assumption 3 ensures existence of the matrix inverse for Eμiμ
and ELiB and by Proposition 9.4

(9.1.13e) the existence of the inverse of AiB

A−1
iB

=
[
IM ⊗

(
E(LiB ) E(μiμ

)
)

+
(
E(L̄iB ) E(μ̄iμ

)
)
⊗ IM

]−1
. (9.4.21)

Then by combining (9.4.20b) and (9.4.21) gives

A−1
iB

BiB =
[
IM⊗

(
E(LiB ) E(μiμ

)
)
+
(
E(L̄iB ) E(μ̄iμ

)
)
⊗IM

]−1 E(L̄iB⊗LiB ) E(μ̄iμ
⊗μiμ

). (9.4.22)

Accordingly, by multiple use of Proposition 9.1 (9.1.5) gives

λmax(A−1
iB

BiB ) = λmax

([
IM ⊗

(
E(LiB ) E(μiμ

)
)

+
(
E(L̄iB ) E(μ̄iμ

)
)
⊗ IM

]−1 E(L̄iB ⊗ LiB ) E(μ̄iμ
⊗ μiμ

)
)

< = λmax

([
IM ⊗

(
E(LiB ) E(μiμ

)
)

+
(
E(L̄iB ) E(μ̄iμ

)
)
⊗ IM

]−1
)

× λmax(E L̄iB ⊗ LiB )λmax(E μ̄iμ
⊗ μiμ

)

= λ−1
min

[
IM ⊗

(
E(LiB ) E(μiμ

)
)

+
(
E(L̄iB ) E(μ̄iμ

)
)
⊗ IM

]
× λmax(E L̄iB ⊗ LiB )λmax(E μ̄iμ

⊗ μiμ
)

using Proposition 9.6 to obtain2

λmax(A−1
iB

BiB ) < = 1/2λ−1
min

(
E(L̄iB ) E(μ̄iμ

)
)

× λmax(E L̄iB ⊗ LiB )λmax(E μ̄iμ
⊗ μiμ

).
(9.4.23)

Therefore, the stability requirement λmax(FiB ) < 1 leads to the following sufficient constraints

∀iB, iμ ≥ −1 :
λmax(E L̄iB ⊗ LiB )λmax(E μ̄iμ

⊗ μiμ
)

λmin

(
E(L̄iB ) E(μ̄iμ

)
) < 2. (9.4.24)

Hence, by allowing individual weight step-sizes both the minimum and maximum step-sizes are
of concern.

Unfortunately, in the general case of a matrix-valued step-size parameter it is difficult to obtain
permissable values for the matrix entities from expression (9.4.24) that lead to λmax(A−1

iB
BiB ) < 1

even if the step-size matrix is assumed diagonal and real.
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For a deterministic step-size matrix we may use Proposition 9.6 to obtain

∀iB, iμ ≥ −1 :
λ2

max(μiμ)
λmin(μiμ)

<
2λmin(ELiB )

λmax(E L̄iB ⊗ LiB )
. (9.4.25)

If μiμ
is a diagonal matrix as in Assumption 4 then a sufficient requirement is obtained from

(9.4.23)

∀iB, iμ ≥ −1 :
max2

j∈
¯
M (Eμj,iμ

)

minj∈
¯
M (Eμj,iμ

)
<

2λmin(ELiB )
λmax(E L̄iB ⊗ LiB )

(9.4.26)

and for a deterministic diagonal step-size matrix

∀iB, iμ ≥ −1 :
max2

j∈
¯
M (μiμ )

minj∈
¯
M (μiμ )

<
2λmin(ELiB )

λmax(E L̄iB ⊗ LiB )
. (9.4.27)

Moreover, if μ(iμ) is real and scalar-valued then by insertion in (9.4.22) and (9.4.23) we can
obtain the following explicit expression for the upper bound on the step-size3.

∀iB, iμ ≥ −1 : 0 <
Eμ2

iμ

Eμiμ

< λ−1
max

([
(ELiB ⊗ IM ) + (IM ⊗ ELiB )

]−1(E L̄iB ⊗ LiB )
)

<
2λmin(ELiB )

λmax(E L̄iB ⊗ LiB )

(9.4.28)

and for the deterministic case

∀iB, iμ ≥ −1 : μiμ < λ−1
max

([
(ELiB ⊗ IM ) + (IM ⊗ ELiB )

]−1(E L̄iB ⊗ LiB )
)

<
λmin(ELiB ))

λmax(E L̄iB ⊗ LiB )

(9.4.29)

respectively. Actually, the requirements in the first line of (9.4.28) and (9.4.29) are both nec-
essary and sufficient for the λ(F ) < 1 case. The more simple double inequality in the second
line of (9.4.28) and (9.4.29) are sufficient conditions that was determined under the use of
Proposition 9.1 (9.1.5).

We will next address the first equality on F , that is, −1 < λ(F ). Following a procedure similar
to [9, Ch. 9] we readily establish the following requirement

det(I−HiB ) = 0, (9.4.30)

3It should be recalled that in general
Eμ2(iμ)

Eμ(iμ)
�= Eμiμ . For example, consider μ(iμ) to be uniformly dis-

tributed in the interval [0;μmax], then
Eμ2(iμ)

Eμ(iμ)
= 2

3
μmax �= Eμ(iμ) = 1

2
μmax. That is, if the step-size parameter

is stochastic in nature then we have to reduce the maximum allowable step-size by one sixth from this ”intuitive
guess” in order to ensure stability. Also by the presence of the expectation operator we cannot use Proposition 9.6
and conclude that λmax(E L̄iB ⊗ LiB ) = λ2

max(ELiB ).
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where HiB is defined by

HiB =
[
AiB /2 −BiB/2

IM 0

]
. (9.4.31)

By insertion of (9.4.20) that relies on Assumption 3 in (9.4.31) under we may express (9.4.61) as

I2M−HiB =

[
IM −

(
IM ⊗

(
E(LiB ) E(μiμ

)
)

+
(
E(L̄iB ) E(μ̄iμ

)
)
⊗ IM

)
/2 E(L̄iB ⊗ LiB ) E(μ̄iμ

⊗ μiμ
)/2

−IM IM

]
(9.4.32)

and by using Proposition 9.2 (9.1.9b) then (9.4.30) becomes4

det(I2M −HiB ) = det(IM − 1
2EiB ), (9.4.33)

where

EiB = IM ⊗
(
E(LiB ) E(μiμ

)
)

+
(
E(L̄iB ) E(μ̄iμ

)
)
⊗ IM − E(L̄iB ⊗ LiB ) E(μ̄iμ

⊗ μiμ
). (9.4.34)

Hence, we wish to establish conditions on the step-size matrix μiμ
that ensure λmax(EiB ) < 2.

Using Proposition 9.1 (9.1.4b) and (9.1.5) we obtain

λmax(EiB ) = λmax

[
IM ⊗

(
E(LiB ) E(μiμ

)
)

+
(
E(L̄iB ) E(μ̄iμ

)
)
⊗ IM − E(L̄iB ⊗ LiB ) E(μ̄iμ

⊗ μiμ
)
]

≤ λmax

[
IM ⊗

(
E(LiB ) E(μiμ

)
)

+
(
E(L̄iB ) E(μ̄iμ

)
)
⊗ IM

]
− λmin

[
E(L̄iB ⊗ LiB ) E(μ̄iμ

⊗ μiμ
)
]

= 2λmax

(
E(L̄iB ) E(μ̄iμ

)
)
− λmin

[
E(L̄iB ⊗ LiB ) E(μ̄iμ

⊗ μiμ
)
]

≤ 2λmax(E L̄iB )λmax(E μ̄iμ
)− λmin(E L̄iB ⊗ LiB )λmin(E μ̄iμ

⊗ μiμ
).

(9.4.35)

Therefore, the stability requirement λmax(FiB ) > −1 leads to the following sufficient constraint

∀iB, iμ ≥ −1 :
λmax(E L̄iB )λmax(E μ̄iμ

)

1 + 1
2λmin(E L̄iB ⊗ LiB )λmin(E μ̄iμ

⊗ μiμ
)

< 1. (9.4.36)

Likewise, for the λ(F ) < 1 problem viz. (9.4.23) by allowing individual weight step-sizes both
the minimum and maximum step-sizes are of concern. Unfortunately, (9.4.36) provides no direct
way to obtain a usable step-size matrix as μiμ

only enters implicitly in the inequality.

For a deterministic step-size matrix we may use Proposition 9.6 to obtain

∀iB, iμ ≥ −1 :
λmax(E L̄iB )λmax(μiμ)

1 + 1
2λmin(E L̄iB ⊗ LiB )λ2

min(μiμ)
< 1. (9.4.37)

4The same result can obtained by appreciating that the two matrices that enter in the left column of I −H
do commute, that is, (I −AiB )(−I) = (−I)(I − AiB ) and by applying Proposition 9.2 (9.1.9c).
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If μiμ
is a diagonal matrix as in Assumption 4 then a sufficient requirement is obtained from

(9.4.38)

∀iB, iμ ≥ −1 :
λmax(E L̄iB )maxj∈

¯
M (E μj,iμ

)

1 + 1
2λmin(E L̄iB ⊗ LiB )min2

j∈
¯
M (E μj,iμ

)
< 1. (9.4.38)

and for a deterministic diagonal step-size matrix

∀iB, iμ ≥ −1 :
λmax(E L̄iB )maxj∈

¯
M (μj,iμ)

1 + 1
2λmin(E L̄iB ⊗ LiB )min2

j∈
¯
M (μj,iμ)

< 1. (9.4.39)

Moreover, if μ(iμ) is real and scalar-valued then following a procedure similar to [9, Ch. 9] we
can obtain the following explicit expression for the upper bound on the step-size.

0 < μ(iμ) <
1

maxλ(H ′
iB

) ∈ R+
(9.4.40)

and for the deterministic case

0 < μ(iμ) <
1

maxλ(H ′
iB

) ∈ R+
, (9.4.41)

respectively, where

H ′
iB

=
[(

IM ⊗ ELiB + E L̄iB

)
/2 E(L̄iB ⊗ LiB )/2

IM 0

]
. (9.4.42)

The partitioned matrix H ′
iB

is not necessarily Hermitian and the eigenvalues therefore not nec-
essarily real. If no real eigenvalues exist then the constraints (9.4.40) and (9.4.41) disappear.
Actually, the requirements in the first line of (9.4.40) and (9.4.41) are both necessary and suffi-
cient for the λ(F ) < 1 case.

9.4.4 Transient Analysis of MC-αγΠε-APA, State Space Description

We next consider the control input terms involved in the weighted variance recursion (9.3.25).
Proceeding as above with the weighting matrices Σw′o

iB
, Σq

iB
and Σw̆

iB
gives

σw′o

iB
= Gw′o

iB
σ (9.4.43a)

σq
iB

= Gq
iB

σ (9.4.43b)

σw̆
iB

= Gw̆
iB

σ, (9.4.43c)

where Gw′o

iB
∈ KM2×M2

denotes the control input matrix associated with the mean optimal weight
vector, Gq

iB
∈ KM2×M2

is the random-walk control input matrix and Gw̆
iB
∈ KM2×M2

represents
the control input matrix related to the regularized weight vector that in turn are defined by
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Gw′o

iB
= EΥχ�

iΥ
⊗Υχ∗

iΥ
+ (1− χ)IM ⊗ EΥχ∗

iΥ
+ (1− χ∗) E(Υχ�

iΥ
)⊗ IM + |1− χ|2(IM2 + 2 EP�

iB
⊗P∗

iB
)

+ Cwo�
iB−1

(
EΥ�

iΥ ⊗Υχ∗
iΥ
− E(P�

iB
)⊗ E(Υχ∗

iΥ
) + (1− χ∗) E(M�

iB
)⊗ IM

)
+

(
EΥχ�

iΥ
⊗Υ∗

iΥ − E(Υχ�
iΥ

)⊗ E(P∗
iB

) + (1− χ)IM ⊗ E(M∗
iB

)
)
Cwo∗

iB−1 (9.4.44a)

Gq
iB

= IM2 − EP�
iB
⊗ IM − IM ⊗ EP∗

iB
+ EP�

iB
⊗P∗

iB

+ ΘiB−1

(
EΥχ�

iΥ
⊗Υχ∗

iΥ
+ (1 − χ) E(P�

iB
)⊗ E(Υχ∗

iΥ
)

+ (1− χ∗) E(Υχ�
iΥ

)⊗ E(P∗
iB

) + |1− χ|2 EP�
iB
⊗P∗

iB

)
(9.4.44b)

Gw̆
iB

= E(μ�
iμ
⊗ μ∗

iμ
)− Cw̆�

iB−1

(
E(P�

iB
)⊗ E(μ∗

iμ
)− E(Υ�

iΥ ⊗ μ∗
iμ

)
)

−
(
E(μ�

iμ
)⊗ E(P∗

iB
)− E(μ�

iμ
)⊗Υ∗

iΥ

)
Cw̆∗

iB−1 (9.4.44c)

respectively. Similarly, vectorization of the cross-weighting matrices Σwow̆
iB

, Σwow0

iB
and Σw̆w0

iB
gives

σwow̆
iB

= Gwow̆
iB

σ (9.4.45a)

σwow0

iB
= Gwow0

iB
σ (9.4.45b)

σw̆w0

iB
= Gw̆w0

iB
σ, (9.4.45c)

where Gwow̆
iB

∈ KM2×M2
denotes the control input matrix associated with the coupling between

the mean optimal weight vector and the regularized weight vector, Gwow0

iB
∈ KM2×M2

is the mean
optimal weight vector to initial weight vector coupling control input matrix and where Gw̆w0

iB
∈

KM2×M2
represents the control input matrix related to the coupling between the regularized

weight vector and the initial weight vector. They are in turn defined by

Gwow̆
iB

= Cw̆�
iB−1

(
EΥ�

iΥ ⊗Υχ∗
iΥ
− E(P�

iB
)⊗ E(Υχ∗

iΥ
) + (1− χ∗) E(M�

iB
)⊗ IM

)
+

(
E(μ�

iμ
)⊗ E(P∗

iB
)− E(μ�

iμ
⊗Υ∗

iΥ)
)
Cwo∗

iB−1 + E(μ�
iμ
⊗Υ∗

iΥ)− E(μ�
iμ

)⊗ IM
(9.4.46a)

Gwow0

iB
= Cwo,1�

iB

(
EΥ�

iΥ ⊗Υχ∗
iΥ
− E(P�

iB
)⊗ E(Υχ∗

iΥ
) + (1− χ∗) E(M�

iB
)⊗ IM

)
(9.4.46b)

Gw̆w0

iB
= Cwo,1�

iB

(
E(P�

iB
)⊗ E(μ∗

iμ
)− E(Υ�

iΥ ⊗ μ∗
iμ

)
)

(9.4.46c)

respectively. Moreover, using Proposition 9.1 (9.1.3) the system noise term in (9.3.25) may be
expressed

vec
{
Kσ2

v Tr {EP
′∗
iB

ΣP′
iB
}
}

= Kσ2
vr�P ′,iB

σ, (9.4.47)

where rP ′,iB ∈ KM2×M2
denotes the vectorized data auto correlation matrix,

rP ′,iB = vec {EP′
iB

P
′∗
iB
}. (9.4.48)



446 9. αγΠε-APA Performance Analysis

Similarly, we may express the maneuver term in (9.3.25) by

Tr {QΣq
iB
} = q�σq

iB
, (9.4.49)

where q ≡ vec {Q} ∈ KM2×1 denotes the vectorized random-walk covariance matrix,

By insertion of (9.4.16), (9.4.43)-(9.4.46) and (9.4.47)-(9.4.49) in (9.3.25) and using the notational
convention in Proposition 9.4 (9.1.12i) we obtain

E‖w̃iB‖2σ = E‖w̃iB−1‖2FiB
σ + q�Gq

iB
σ + ‖wo‖2

Gw′o
iB

σ
+ ‖w̆‖2Gw̆

iB
σ + Kσ2

vr�P ′,iB
σ

+ 2�〈wo∗, w̆〉Gwow̆
iB

σ − 2�〈wo∗, w0〉
Gwow0

iB
σ
− 2�〈w̆∗, w0〉

Gw̆w0
iB

σ
.

(9.4.50)

We see from (9.4.50) that in order to evaluate ‖w̃iB‖2 ≡ ‖w̃iB‖2IM
≡ ‖w̃iB‖2vec−1 {iM2} we need to

evaluate ‖w̃iB−1‖2FiB
σ, with a weighting matrix ΣΥ

iB
= vec−1 {FiBσ} and to evaluate ‖wo‖2

Gw′o
iB

σ

with a weighting matrix vec−1 {Gw′o

iB
σ} and so on. We are now in a position to take advantage

of the arbitrariness in the choice of weighting matrix Σ introduced in (9.3.20)5. Then from
successive use of the arbitrary weighting matrix σ as σ ← σ, σ ← FiB σ, . . . , σ ← FM2−1σ and
following a procedure similar to [1] leads us to the following state-space model that characterizes
the transient behavior of the MC-αγΠε-APA adaptive filter:

WiB = FiBWiB−1 + GiB , (9.4.51)

where WiB ∈ KM2×1 denotes the state vector of weighted mean-square weight-error vector [5]

WiB �

⎡⎢⎢⎢⎢⎢⎣
E‖w̃iB‖2σ
E‖w̃iB‖2Fσ

E‖w̃iB‖2F 2σ
...
E‖w̃iB‖2F (M2−1)σ

⎤⎥⎥⎥⎥⎥⎦ (9.4.52)

and where the companion state transition matrix of mean-square weight-error vector FiB ∈
KM2×M2

[9, Ch. 9] is defined by

FiB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . . . . 0
0 0 1 0 . . . . . . 0
0 0 0 1 0 . . . 0
...

...
...

...
. . . . . . 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 0
0 0 0 0 0 0 1
−χ0 −χ1 −χ2 −χ3 . . . −χM2−2 −χM2−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.4.53)

5Σ, however, is assumed p.s.d. and therefore also Hermitian (Σ∗ = Σ) which has been used throughout the
development leading to (9.3.20).
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and where the elements in the last row are the coefficients of the characteristic polynomial χF (s),
that is,

χF (s) = det(sIn − F ) = sM2
+

M2−1∑
k=0

χksk, and σ(F ) = {λ ∈ C; χF (λ) = 0} (9.4.54)

for which the roots are the set of eigenvalues of FiB .

According to the Cayley-Hamilton theorem [16, Ch. 3] every square matrix satisfies its char-
acteristic equation, that is, χF (F ) ≡ 0. This explains why we only need the weights F kσ for
k = 0, 1, . . . , M2 − 1. The state-space vector is therefore also of order M2 corresponding to the
number of different weighted norms used.

In the state-space regime the total control input matrix GiB ∈ KM2×1 [5] is obtained by

GiB � Gq
iB

+ Gw′o

iB
+ Gw̆

iB
+ Gv

iB
+ Gwow̆

iB
+ Gwow0

iB
+ Gw̆w0

iB
, (9.4.55)

where Gq
iB
∈ KM2×1 is the random-walk control input and Gv

iB
∈ KM2×1 is the system noise

control input that are defined by

Gq
iB

� q�Gq
iB

⎡⎢⎢⎢⎢⎢⎣
σ
FiB σ
F 2

iB
σ

...
F

(M2−1)
iB

σ

⎤⎥⎥⎥⎥⎥⎦ (9.4.56a)

Gv
iB

� Kσ2
vr�P ′,iB

⎡⎢⎢⎢⎢⎢⎣
σ
FiB σ
F 2

iB
σ

...
F

(M2−1)
iB

σ

⎤⎥⎥⎥⎥⎥⎦ (9.4.56b)

and where Gw′o

iB
∈ KM2×1 denotes the control input associated with the mean optimal weight

vector and Gw̆
iB
∈ KM2×1 represents the control input related to the regularized weight vector

that in turn are defined by
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Gw′o

iB
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖wo‖2
Gw′o

iB
σ

‖wo‖2
Gw′o

iB
FiB

σ

‖wo‖2
Gw′o

iB
F 2

iB
σ

...
‖wo‖2

Gw′o
iB

F
(M2−1)
iB

σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.4.57a)

Gw̆
iB

�

⎡⎢⎢⎢⎢⎢⎢⎣

‖w̆‖2
Gw̆

iB
σ

‖w̆‖2
Gw̆

iB
FiB

σ

‖w̆‖2
Gw̆

iB
F 2

iB
σ

...

‖w̆‖2
Gw̆

iB
F

(M2−1)
iB

σ

⎤⎥⎥⎥⎥⎥⎥⎦ (9.4.57b)

and finally where Gwow̆
iB

∈ KM2×1 denotes the control input associated with the coupling between
the mean optimal weight vector and the regularized weight vectors, Gwow0

iB
∈ KM2×1 is the mean

optimal weight vector to initial weight vector coupling control input and where Gw̆w0

iB
∈ KM2×1

represents the control input related to the coupling between the regularized weight vector and
the initial weight vectors that in turn are defined by

Gwow̆
iB

� 2�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

〈wo∗, w̆〉Gwow̆
iB

σ

〈wo∗, w̆〉Gwow̆
iB

FiB
σ

〈wo∗, w̆〉Gwow̆
iB

F 2
iB

σ

...
〈wo∗, w̆〉

Gwow̆
iB

F
(M2−1)
iB

σ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9.4.58a)

Gwow0

iB
� 2�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈wo∗, w0〉
Gwow0

iB
σ

〈wo∗, w0〉
Gwow0

iB
FiB

σ

〈wo∗, w0〉
Gwow0

iB
F 2

iB
σ

...
〈wo∗, w0〉

Gwow0
iB

F
(M2−1)
iB

σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.4.58b)

Gw̆w0

iB
� 2�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈w̆∗, w0〉
Gw̆w0

iB
σ

〈w̆∗, w0〉
Gw̆w0

iB
FiB

σ

〈w̆∗, w0〉
Gw̆w0

iB
F 2

iB
σ

...
〈w̆∗, w0〉

Gw̆w0
iB

F
(M2−1)
iB

σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.4.58c)

respectively. Hence, we have replaced the original M -dimensional matrix recursion expression
for the propagation of the weighted mean-square weight-error vector in (9.3.25) with a linear
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vector relation of order M2 6.

For the stability analysis we use the well known results from matrix theory that FiB and the
companion matrix FiB have identical spectra, that is, σ(FiB ) ≡ σ(FiB ).

0 < μ < min
{ 1

λmax(A−1
iB

BiB )
,

1
maxλ(HiB ) ∈ R+

}
, (9.4.60)

where AiB and BiB are defined in (9.4.18) and the auxiliary matrix HiB ∈ K2M×2M , in turn is
defined by

HiB =
[
AiB /2 −BiB/2
IM2 0

]
. (9.4.61)

The first term in (9.4.60) guarantees that λ(FiB ) < 1 while the second term guarantees λ(FiB ) >
−1.

Comparing the state-space recursion expression for the mean-square weight-error vector ‖w̃iB‖2Σ
in (9.4.51) with similar results in [10] for the ε-APA we appreciate that the expressions and
associated stability criterias are similar, but that at the same time owing to the inclusion of
weight-driven and control-effort driven leakage, a non-vanishing initial weight vector w−1 and
the inclusion of weight regularization that many additional control input terms enter in Equation
(9.4.51)-(9.4.58). Moreover, the underlying weighting matrices are considerable more complicated
as discussed in subsection 9.3.3.

By omitting weight regularization that enter (9.3.1) and the random-walk model and by using
a vanishing initial weight vector in the transient analysis, that is, by making the following
assignments χ← 1, w̆ ← 0 and w−1 = w0 = 0 in (9.4.44) (9.4.46) and (9.4.49) we readily obtain
the following reductions of (9.4.50) and (9.4.55)

E‖w̃iB‖2σ = E‖w̃iB−1‖2FiB
σ + ‖wo‖2

Gw′o
iB

σ
+ Kσ2

vr�P ′,iB
σ (9.4.62)

6By inspection of (9.3.18) and we see that we may express the weight-error vector-weighting matrix ΣΥ
iB

in (9.3.26a) in terms of the state-space mean transition matrix MiB that enters the recursion (9.3.17) for the

mean weight-error vector as ΣΥ
iB

= EM∗
iB

ΣMiB . Accordingly, upon vectorization σΥ
iB

= EM�
iB
⊗M∗

iB
σ or

FiB = EM�
iB
⊗M∗

iB
. Then, by exploiting the algebraic properties from Proposition 9.4 we may pursue a much

more straightforward approach and instead of considering the eigenvalues of FiB instead consider the eigenvalues

of F�
iB

as σ(FiB ) = σ(F�
iB

). Then from (9.4.17) and Proposition 9.4 we get

F�
iB

= EMiB ⊗ M̄iB , (9.4.59)

where M̄iB denotes the complex conjugate of MiB . Moreover, from matrix theory it is well known that the
spectra of the complex conjugate of a matrix, say, A is the complex conjugate of the spectra of the original matrix,
that is, σ(A) = σ̄(Ā) [16]. Hence, we may erroneously conclude that the condition σ(F ) ⊂ D holds if and only
if σ(E M) ⊂ D. The evaluation of the condition σ(E M) ⊂ D would represent a considerably advantage over
the condition σ(F ) ⊂ D as MiB is a M ×M matrix whereas the matrices A,B,H used in steady-state analysis
in subsection 9.4.3 are of order M2 ×M2,M2 ×M2, 2M2 × 2M2 respectively. The error in the argumentations
above is that although according to Proposition 9.6 the eigenvalues of EMiB ⊗ EM̄iB are determined from the

set of product of all eigenvalues of EMiB and E M̄iB this does not pertain to F�
iB

owing to the presence of the

expectation operator to the outside of the Kronecker product as in general Eψ2
a �= (Eψa)

2 .
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and

GiB � Gw′o

iB
+ Gv

iB
, (9.4.63)

where

Gw′o

iB
= EΥ

′�
iΥ ⊗Υ

′∗
iΥ + Cwo�

iB−1

(
EΥ�

iΥ ⊗Υ
′∗
iΥ − E(P�

iB
)⊗ E(Υ

′∗
iΥ)

)
+

(
EΥ

′�
iΥ ⊗Υ∗

iΥ − E(Υ
′�
iΥ )⊗ E(P∗

iB
)
)
Cwo∗

iB−1.

Considering the leaky LMS (L-LMS) case where K ≡ 1 and for a time-invariant leakage parameter
(ΥiΥ ← I − μiμ

α) then (9.4.62) and (9.4.63) are similar to the expressions in [8]. Finally, by
also omitting all leakage, that is, ΥiΥ ← I in (9.4.64) we see that Gw′o

iB
vanishes and (9.4.62) and

(9.4.63) then correspond to the results in [10] for the ε-APA.

9.4.5 Mean and Mean-Square Performance of MC-αγΠε-APA

In steady-state by definition limiB→∞ E w̃iB = limiB→∞ E w̃iB−1 and limiB→∞‖E w̃iB‖2Σ =
limiB→∞‖E w̃iB−1‖2Σ. However, in the presence case of the MC-αγΠε-APA with time-variant step-
size matrix and parameters we have to questioning ourselves about the existence of such steady-
state quantities. Now by Assumptions 5-6 the weight-error vector is independent of both PiB

and ΥiΥ and therefore also independent of MiB .

By insertion in (9.3.17) and (9.4.50) we readily obtain the following expressions for the error
quantities defined in subsection 9.2.2 on page 426

lim
iB→∞

E w̃iB = (I− EM∞)−1(EΥ′
∞wo − Eμ∞w̆)

= (EΥ′
∞ − EP∞)−1(EΥ′

∞wo − E μ∞w̆),
(9.4.64)

and

lim
iB→∞

E‖w̃iB‖2I−FiB
= q�Gq

∞σ + ‖wo‖2
Gw′o

∞ σ
+ ‖w̆‖2Gw̆

∞σ + Kσ2
vr�P ′,∞σ

+ 2�〈wo∗, w̆〉Gwow̆
∞ σ − 2�〈wo∗, w0〉Gwow0

∞ σ − 2�〈w̆∗, w0〉Gw̆w0
∞ σ.

(9.4.65)

Now we may use the arbitrariness in the choice of weighting matrix Σ and therefore also in σ.
Hence by the choice σ = (I− F∞)−1iM2 where iM2 ≡ vec {IM} ∈ RM2×1 denotes the vectorized
identity matrix the m.s.d. can then be obtained from (9.4.65)

MSD � lim
iB→∞

E‖w̃iB‖2

= q�Gq
∞(I− F∞)−1iM2 + ‖wo‖2

Gw′o
∞ (I−F∞)−1iM2

+ ‖w̆‖2Gw̆
∞(I−F∞)−1iM2

+ Kσ2
vr�P ′,∞(I− F∞)−1iM2 + 2�〈wo∗, w̆〉Gwow̆

∞ (I−F∞)−1iM2

− 2�〈wo∗, w0〉Gwow0
∞ (I−F∞)−1iM2

− 2�〈w̆∗, w0〉Gw̆w0
∞ (I−F∞)−1iM2

.

(9.4.66)
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By selecting σ = ru,∞ where ru,i � vec {Ru,i} ∈ KM2×1 denotes the vectorized data auto
correlation matrix and using that by (9.2.8a) E‖ea,i‖2 = E‖w̃iB‖2Ru,i

we can obtain the following
expression for the EMSE

EMSE � lim
i→∞

E‖ea,i‖2

= q�Gq
∞(I− F∞)−1ru,∞ + ‖wo‖2

Gw′o
∞ (I−F∞)−1ru,∞

+ ‖w̆‖2Gw̆
∞(I−F∞)−1ru,∞

+ Kσ2
vr�P ′,∞(I− F∞)−1ru,∞ + 2�〈wo∗, w̆〉Gwow̆

∞ (I−F∞)−1ru,∞

− 2�〈wo∗, w0〉Gwow0
∞ (I−F∞)−1ru,∞

− 2�〈w̆∗, w0〉Gw̆w0
∞ (I−F∞)−1ru,∞

.

(9.4.67)

The weighted excess-mean-square error (WEMSE) is similarly by (9.2.8a) and (9.2.16), obtained
by insertion of σ = rWe

u,∞ in (9.4.65), where rWe

u,i � vec {RWe

u,i } ∈ KM2×1 denotes the vectorized
data weighted auto correlation matrix

WEMSE � lim
i→∞

E‖ea,i‖2We

= q�Gq
∞(I− F∞)−1rWe

u,∞ + ‖wo‖2
Gw′o

∞ (I−F∞)−1rWe
u,∞

+ ‖w̆‖2
Gw̆

∞(I−F∞)−1rWe
u,∞

+ Kσ2
vr�P ′,∞(I− F∞)−1rWe

u,∞ + 2�〈wo∗, w̆〉Gwow̆
∞ (I−F∞)−1rWe

u,∞

− 2�〈wo∗, w0〉Gwow0
∞ (I−F∞)−1rWe

u,∞
− 2�〈w̆∗, w0〉Gw̆w0

∞ (I−F∞)−1rWe
u,∞

.

(9.4.68)

MSE � lim
i→∞

E‖e(i)‖2 = EMSE+Je2

min. (9.4.69)

where Je2

min is defined in (8.3.5) on page 376

WMSE � lim
i→∞

E‖ei‖2We
= WEMSE+Je2

min. (9.4.70)

Comparing with a similar result in [10] we see that the leakage, weight-regularization and the
time-variant of the step-size μ, the leakage control parameter α and numerical regularization
parameter ε leads to a rather involved expression here.

Finally, we will summarize our main results in the following theorem.

Theorem 1 (Stability of multiple-channel-αγΠε-affine projection algorithm). Consider the MC-αγΠε-APA

update recursion (9.3.3)-(9.3.4) and (9.3.6) and assume that the data {di,xi,ui} satisfy the linear
estimation model in Assumption 1 and the Independence Assumption 5, (9.A.6) and Assumption 6,
(9.A.7). Then the filter is convergent in the mean and is mean-square stable for step-sizes satis-
fying ∀iB, iμ ≥ −1, j ∈

¯
M

0 < λmax(E μiμ
) <

2
λmax(ELiB )

(9.4.71a)

λmax(E L̄iB ⊗ LiB )λmax(E μ̄iμ
⊗ μiμ

)

λmin

(
E(L̄iB ) E(μ̄iμ

)
) < 2 <

2 + λmin(E L̄iB ⊗ LiB )λmin(E μ̄iμ
⊗ μiμ

)

λmax

(
E(L̄iB ) E(μ̄iμ

)
) .

(9.4.71b)
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For a deterministic step-size matrix Proposition 9.6 gives

0 < λmax(μiμ) <
2

λmax(ELiB )
(9.4.72a)

λmax(E L̄iB ⊗ LiB )λ2
max(μiμ)

λmin(ELiB )λmin(μiμ)
< 2 <

2 + λmin(E L̄iB ⊗ LiB )λ2
min(μiμ)

λmax(E L̄iB )λmax(μiμ)
. (9.4.72b)

If μiμ
is a diagonal matrix as in Assumption 4 then a sufficient requirement is

0 < E μj,iμ
<

2
λmax(ELiB )

(9.4.73a)

λmax(E L̄iB ⊗ LiB )max2
j∈

¯
M (E μj,iμ

)

λmin(ELiB )minj∈
¯
M (E μj,iμ

)
< 2 <

2 + λmin(E L̄iB ⊗ LiB )min2
j∈

¯
M (Eμj,iμ

)

λmax(E L̄iB )maxj∈
¯
M (Eμj,iμ

)
(9.4.73b)

and for a deterministic diagonal step-size matrix

0 < μj,iμ <
2

λmax(ELiB )
(9.4.74a)

λmax(E L̄iB ⊗ LiB )max2
j∈

¯
M (μiμ )

λmin(ELiB )minj∈
¯
M (μiμ )

< 2 <
2 + λmin(E L̄iB ⊗ LiB )min2

j∈
¯
M (μj,iμ)

λmax(E L̄iB )maxj∈
¯
M (μj,iμ)

. (9.4.74b)

Finally, a scalar-valued step-size parameter μ(iμ) is bounded according to

0 < Eμ(iμ) < 2λ−1
max(ELiB ) (9.4.75a)

0 <
Eμ2(iμ)
E μ(iμ)

< λ−1
max

([
(ELiB ⊗ IM ) + (IM ⊗ ELiB )

]−1(E L̄iB ⊗ LiB )
)

(9.4.75b)

and for the deterministic case

0 < μ < min
{
2λ−1

max(ELiB ), λ−1
max

([
(ELiB ⊗ IM ) + (IM ⊗ ELiB )

]−1(E L̄iB ⊗ LiB )
)
,(

max(λ(H ′
iB

) ∈ R+)
)−1

}
,

(9.4.76)

respectively, where AiB and BiB are defined in (9.4.18) and where the auxiliary matrix H ′
iB
∈

K2M×2M , in turn is defined by

H ′
iB

=
[(

IM ⊗ ELiB + E L̄iB ⊗ IM
)
/2 E(L̄iB ⊗ LiB )/2

IM 0

]
. (9.4.77)

The first term in (9.4.76) ensures convergence in the mean. The second and third terms in
(9.4.76) are necessary in order to ensure convergence in the mean-square. The second term
guarantees that λ(FiB ) < 1 while the third term guarantees λ(FiB ) > −1.
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If we chose a step-size parameter such that stability is guaranteed we may proceed and derive
expressions for the m.s.d. (9.4.66), the EMSE (9.4.67), the WEMSE (9.4.68), the m.s.e. (9.4.69) and
the weighted mean-square error (w.m.s.e.) (9.4.70).

9.5 Conclusions

The novelty of the present work is the performance analysis of the l.l.m.s.e.-based MC-αγΠε-APA

adaptive filter developed in subsection 8.6.3 on page 398 encompassing both dynamic weight-
driven leakage and dynamic control-effort-driven leakage and numerical regularization as well as
weight regularization. Moreover, in our presentation we also allow the step-size μ, the leakage
control parameters α, γ and the numerical regularization parameter ε to attain matrix-values
and to be time-variant.

Closed-form expressions for the mean- and mean-square steady-state performance as well as
transient response performance of the adaptive filter were obtained.

The main contribution to the performance analysis theory is the inclusion of time-variant pa-
rameters that in turn may be either deterministic or stochastic in nature. Furthermore the
analysis conducted in this report uses an advanced random-walk model and also allows a non-
vanishing initial weight vector. Usually, the random-walk model is omitted from the transient
analysis. However, in the presence analysis we allowed a general random-walk model to model
the non-stationarity of the system. During the course of analysis many higher-order moments
were encountered. By enforcing Assumption 5 - 8 we were able to proceed the theoretical devel-
opment. Justification of each of the assumptions was made.

The main results are summarized in Theorem 1. The performance expressions for the MC-αγΠε-APA

adaptive filter in general are considerably more complicated than similar results pertaining to
the ordinary ε-APA or ε-NLMS (ε-NLMS) algorithms. Successive simplifications of the MC-αγΠε-APA

and the LEM in Assumption 1 lead to similar expressions in previously published work for the
ordinary ε-APA or ε-NLMS algorithms.

The MC-αγΠε-APA adaptive filter will be subject to extensive future test and evaluation activities.

9.A Miscellaneous Derivations

9.A.1 Transient Analysis of MC-αγΠε-APA, Mean Relation

In order to obtain an expression for the time-evolution of the mean weight-error vector, that is,
E w̃iB we proceed by taking the expectation on both sides of the recursion expression (9.3.16)
on page 430 to obtain

E w̃iB = EΥχ
iΥ

wo
iB−1 + E q̄iB + EΥiΥw̃iB−1 − EPiB

(
w̃iB−1 + q̄iB − (1− χ)wo

iB−1

)
− EP′

iB
Vi − Eμiμ

w̆. (9.A.1)

From linear estimation model assumptions on non-stationarity (9.2.1b)-(9.2.1d) and the definition
(9.3.10) it can be concluded that PiB is independent of q̄iB . Hence, using (9.3.13) we get
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E w̃iB = χwo−EΥiΥwo
iB−1 +(1−χ)wo +EΥiΥw̃iB−1−EPiB

(
w̃iB−1 +(1−χ)(wo−wo

iB−1)
)

− EP′
iB

Vi − E μiμ
w̆. (9.A.2)

Now by using the linear estimation model assumptions on the system noise (9.2.1d) and (9.2.1g)
leads to the conclusion that Vi is independent of P′

iB
and PiB and the recursion (9.A.2) therefore

becomes

E w̃iB = wo−EΥiΥwo
iB−1 + EΥiΥw̃iB−1−EPiB w̃iB−1 + EPiB (1−χ)(wo −wo

iB−1)−E μiμ
w̆.

(9.A.3)

Hitherto, in the derivation carried out to obtain (9.A.3) we have only made use of Assumption 1
on the LEM. But, from inspection of (9.A.3) we see that in order to describe the transient
behavior of the mean weight-error vector for the MC-αγΠε-APA adaptive filter with time-variant
parameters we need to evaluate the following moments

EPiB , EΥiΥwo
iB−1, EΥiΥw̃iB−1, EPiB w̃iB−1, EPiBwo

iB−1. (9.A.4)

Moreover, from (9.3.6) we see that ΥiΥ in turn involves the following moments

Eμiμ
αiα , Eμiμ

X∗
i γiγ⊗KXi, Eμiμ

. (9.A.5)

From (9.A.5) and (9.3.10c) we appreciate that the random sequences ΥiΥ and PiB themselves
involve moments of order four and seven respectively. Hence, a term like EPiB w̃iB−1 is an eight
order moment. In conclusion the recursion (9.A.3) is in the general case difficult to propagate.
Accordingly we will introduce two other independence assumptions in order to proceed. The first
assumption concerns the dependence of the weight-error vector w̃iB−1 on the regressor data UiB

through PiB . The second assumption concerns the dependence of the weight-error vector on the
parameters αiα , γiγ

, εiε ,ΠiΠ through the transformed leakage-weight regularization matrix ΥiΥ .

Assumption 5 (Independence of w̃iB−1, PiB ).

The weight-error vector w̃iB−1 is independent of PiB . Hence,

∀iB ≥ 0 : fw̃(w̃iB−1|PiB ) = fw̃(w̃iB−1). (9.A.6)

From (9.3.10) we observe that PiB is proportional to the step-size matrix μiμ
. It can be concluded

that in order for Assumption 5 to hold we must impose the following necessary constraint on the
step-size matrix.

➀ The step-size matrix μiμ
is constant or varies slowly with time. However, the variation of

the numerical regularization parameter εiε is less critical as the two εiε factors in (9.3.10a)
tend to cancel each other as εiε � 0 as more clearly observed from (9.3.10b).
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An example where Assumption 5 generally does not hold is for the family of variable step-size
algorithms where usually a scalar-valued step-size μ is used to provide a better trade-off between
fast convergence and low misadjustment. When the error is numerically large a high step-size
value is required for fast adaptation. For low misadjustment, however, a small step-size is
required. Hence, the error ei and therefore also the weight-error vector w̃iB are not independent
of the step-size.

Assumption 5, (9.A.6) implies that EPiB w̃iB−1 = EPiB E w̃iB−1.

It should be noticed that for time-invariant step-sizes Assumption 5, (9.A.6) is generally weaker
than Assumption 2, (9.2.6b).

We also need the following somewhat more controversial assumption.

Assumption 6 (Independence of w̃iB−1,ΥiΥ).

The weight-error vector w̃iB−1 is independent of the transformed leakage matrix ΥiΥ , that is,

∀iB ≥ 0, iB ≥ iΥB : fw̃(w̃iB−1|ΥiΥ) = fw(w̃iB−1), (9.A.7)

where iΥB is the weight block update iteration number corresponding to iΥ.

Assumption 6 holds for example under the conditions listed below.

➀ A sufficient condition is when the weight-error vector is independent of each of the step-
size matrix μiμ

, the leakage control parameters αiα , γiγ
and the weight regularization

parameter ΠiΠ that enter expression (9.3.6) for ΥiΥ .

➁ The transformed leakage matrix ΥiΥ is constant or varies slowly with time. This will for
example be the case if each of μiμ

, αiα , γiγ
,ΠiΠ vary slowly with time.

➂ Many block-updates have passed since ΥiΥ was updated last time, that is, iB � iΥB =
max {iμB, iαB, iγB, iΠB}. Then the effect from the change in ΥiΥ will be smoothed out.

➃ The combined dynamic effects of μiμ
, αiα , γiγ

and ΠiΠ tends to counter balance each other.
This of course implies satisfaction of ➁. This will be the case for example if μiμ

decreases
inverse-proportionally with αiα .

➄ The combined leakage effect is small, that is, αiα � 0, X∗
i γiγ⊗KXi � 0, that in the absence

of weight regularization in turn implies that ΥiΥ � I. This assumption holds for the more
advanced leakage schemes presented in subsection 8.3.3 on page 378, subsection 8.3.4 on
page 382 and section 8.A on page 404 except for situations where the weight vector norm
or the control output signals are approaching the threshold limit. On the other hand
considering the stability of the adaptive schemes it can be argued that one of the arguments
for introducing leakage is to ensure robust stability. Although the claimed independence
doesn’t hold the overall error of invoking this assumption in the performance analysis will
be negligible.

Assumption 6, (9.A.7) implies that EΥiΥw̃iB−1 = EΥiΥ E w̃iB−1. It should be recalled that
Assumption 6 is only required when leakage functionality or weight regularization is applied.
The discussion above also reveal the analytic difficulties one faces by allowing data-dependent
and therefore also a time-variant step-size μ, time-variant leakage control parameters α, γ, a
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time-variant numerical regularization parameter ε and a weight vector regularization parameter
Π. Assumption 5-6 are based on heuristic arguments.

From (9.2.1b) it can readily be deduced by induction that the optimal weight vector wo
iB

can
determined from the initial random vector θ−1 and the random vectors q0,q1, . . . ,qiB by

wo
iB
− wo = θiB = χiB+1θ−1 +

iB∑
j=0

χiB−jqj . (9.A.8)

Then according to LEM assumption (9.2.1f) and (9.2.1c) θiB is also independent of ui (and there-
fore also independent of Ui and in turn by (9.3.10c) independent of PiB )7. The independence
of θiB with PiB implies that EPiBwo

iB−1 = EPiB (wo + θiB−1) = EPiB Ewo
iB−1. Moreover, by

(9.A.8) and LEM assumption on non-stationarity (9.2.1c) wo
iB−1 is independent of ΥiΥ . Hence,

EΥiΥwo
iB−1 = EΥiΥ Ewo

iB−1.

Then by applying Assumption 5 - 6 to (9.A.3) we obtain

E w̃iB = wo−EΥiΥ Ewo
iB−1+EΥiΥ E w̃iB−1−EPiB E w̃iB−1+EPiB E(1−χ)(wo−wo

iB−1)−Eμiμ
w̆.

(9.A.9)

Finally, applying LEM assumption (9.2.1b) again gives

E w̃iB = E
(
ΥiΥ −PiB

)
E w̃iB−1 +

(
I− E(ΥiΥ)

)
wo − Eμiμ

w̆. (9.A.10)

Furthermore, by introducing the state-space mean weight-error vector transition matrix MiB ∈
KM×M that we define by

MiB � ΥiΥ −PiB

= I− μiμ

(
αiα + X∗

i γiγ⊗KXi + ΠiΠ + ε−1
iε

U∗
i (W

−1
e⊗K + Uiε

−1
iε

U∗
i )

−1
)
Ui

(9.A.11)

and by insertion of the leakage-weight regularization matrix (9.3.19) in (9.A.10) gives

E w̃iB = EMiB E w̃iB−1 + EΥ′
iΥwo − Eμiμ

w̆. (9.A.12)

For later use we will express the time-evolution of the mean weight-error vector E w̃iB in terms of
the mean-value of the optimal weight vector wo, the transformed weight vector w̆ the time-variant
state-space mean weight-error vector transition matrix MiB and the time-variant step-size matrix
μiμ

and the transformed leakage-weight regularization matrix Υ′
iΥ

.

We will assume that w−1 = w0, where w0 denotes the initial (guessed) weight vector defined
in subsection 8.5.8 on page 395. Therefore by LEM assumption (9.2.1b) and (9.2.1d), E w̃−1 =

7An apparent paradox is that for the cost function Je
2
(wiB ) the Wiener-Hopf (WH) solution is wo

iB
=

R−1
u,iRdu,i. This, however, suggests that wo

iB
is explicitly dependent on ui. This might be explained by the

current regressor ui involved in PiB being independent of the previous perturbation vector θiB−1.



9.A. Miscellaneous Derivations 457

wo − w0. Then by induction of (9.A.12) we obtain

E w̃−1 = wo − w0

E w̃0 = EM0(wo − w0) + EΥ′
i0Υ

wo − Eμi0μ
w̆

E w̃1 = EM1

(
EM0(wo − w0) + EΥ′

i0Υ
wo − Eμi0μ

w̆
)

+ EΥ′
i1Υ

wo − Eμi1μ
w̆

E w̃2 = EM2

(
EM1

(
EM0(wo − w0) + EΥ′

i0Υ
wo − Eμi0μ

w̆
)

+ EΥ′
i1Υ

wo − E μi1μ
w̆
)

+ EΥ′
i2Υ

wo − E μi2μ
w̆

... =
...

E w̃iB =
[ iB∏

j=0

EMj

]
(wo − w0) +

[
iB∑

j=1

([ iB∏
j′=j

EMj′

]
EΥ′

ij−1
Υ

)
+ EΥ′

i
iB
Υ

]
wo

−
[

iB∑
j=1

([ iB∏
j′=j

EMj′

]
Eμij−1

μ

)
+ E μ

i
iB
μ

]
w̆

= Cwo

iB
wo − Cwo,1

iB
w0 − Cw̆

iB
w̆,

(9.A.13)

where we let Cwo

iB
∈ KM×M denote the time evolution matrix for the mean optimal weight vector

and similarly let Cw̆
iB
∈ KM×M denote the time evolution matrix for the regularized weight

vector. The time evolution matrices Cwo

iB
and Cw̆

iB
are in turn are defined by

Cwo

iB
�

iB∏
j=0

EMj +
iB∑

j=1

([ iB∏
j′=j

EMj′

]
EΥ′

ij−1
Υ

)
+ EΥ′

i
iB
Υ

(9.A.14a)

= Cwo,1
iB

+ Cwo,2
iB

+ Cwo,3
iB

(9.A.14b)

Cw̆
iB

�
iB∑

j=1

([ iB∏
j′=j

EMj′

]
E μij−1

μ

)
+ Eμ

i
iB
μ

(9.A.14c)

= C
w̆,(2)
iB

+ C
w̆,(3)
iB

(9.A.14d)

and where ijμ is the step-size parameter update iteration number at block time j and ijΥ similarly
is the transformed weight leakage factor update iteration number at block time j. The time
evolution matrices Cwo

iB
and Cw̆

iB
can easily be determined recursively iB ≥ 0 from
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Cwo,1
iB

�
iB∏

j=0

EMj = EMiBCwo,1
iB−1, Cwo,1

−1 = I, (9.A.15a)

Cwo,2
iB

�
iB∑

j=1

([ iB∏
j′=j

EMj′

]
EΥ′

ij−1
Υ

)
= EMiBCwo,2

iB−1, Cwo,2
−1 = I, (9.A.15b)

Cwo,3
iB

� EΥ′
i
iB
Υ

(9.A.15c)

Cw̆,2
iB

�
iB∑

j=1

([ iB∏
j′=j

EMj′

]
Eμij−1

μ

)
= EMiB Cw̆,2

iB−1, Cw̆,2
−1 = I, (9.A.15d)

Cw̆,3
iB

� Eμ
i
iB
μ

. (9.A.15e)

9.A.2 Transient Analysis of MC-αγΠε-APA, Weighted Energy Relation, Derivations

By equating the weighted norm of both sides of the weight-error recursion (9.3.11), for some
arbitrary Hermitian positive-definite weighting matrix Σ ∈ KM×M gives

‖w̃iB‖2Σ = ‖w̃′Υ
iB−1 −P′

iB
Ea,i −P′

iB
Vi − μiμ

w̆‖2Σ. (9.A.16)

Now introducing the auxiliary matrix AΣ
iB
∈ KKNe×KNe defined by

AΣ
iB

= P
′∗
iB

ΣP′
iB

(9.A.17)

and inserting in (9.A.16) gives

‖w̃iB‖2Σ = ‖w̃′Υ
iB−1‖2Σ + ‖μiμ

w̆‖2Σ
− 2�

{
w̃

′Υ∗
iB−1ΣPiBEa,i

}
− 2�

{
w̃

′Υ∗
iB−1Σμiμ

w̆
}

+ 2�
{
E∗

a,iP
∗
iB

Σμiμ
w̆
}

+ E∗
a,iA

Σ
iB

Ea,i + V∗
i A

Σ
iB

Vi − 2�
{
V∗

i P
′∗
iB

Σ
(
w̃

′Υ
iB−1 −PiBEa,i − μiμ

w̆
)}

.

(9.A.18)

On the RHS of (9.A.18) we find both the a priori error Ea,i and the leakage-transformed modified
weight-error vector w̃

′Υ
iB−1. However, both of these quantities were directly related to weight-

error vector w̃iB−1 in section 9.3 on page 427. Then by insertion of (9.3.12) and (9.3.14) into
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(9.A.18) the expression becomes

‖w̃iB‖2Σ = ‖Υχ
iΥ

wo
iB−1 + q̄iB + ΥiΥw̃iB−1‖2Σ + ‖μiμ

w̆‖2Σ
− 2�

{(
wo∗

iB−1(χ
∗I−Υ∗

iΥ) + q̄∗
iB

+ w̃∗
iB−1Υ

∗
iΥ

)
ΣPiB

(
w̃iB−1 + q̄iB − (1− χ)wo

iB−1

)}
− 2�

{(
wo∗

iB−1(χ
∗I−Υ∗

iΥ) + q̄∗
iB

+ w̃∗
iB−1Υ

∗
iΥ

)
Σμiμ

w̆
}

+ 2�
{(

w̃iB−1 + q̄iB − (1− χ)wo
iB−1

)∗
P∗

iB
Σμiμ

w̆
}

+
(
w̃iB−1 + q̄iB − (1− χ)wo

iB−1

)∗
U∗

i A
Σ
iB

Ui

(
w̃iB−1 + q̄iB − (1− χ)wo

iB−1

)
+ V∗

i A
Σ
iB

Vi

− 2�
{
V∗

i P
′∗
iB

Σ
(
Υχ

iΥ
wo

iB−1 + q̄iB + ΥiΥw̃iB−1

−PiB

(
w̃iB−1 + q̄iB − (1− χ)wo

iB−1

)
− μiμ

w̆
)}

.

(9.A.19)

Finally, by collecting the various weighted norms of w̃iB−1,wo
iB−1 and q̄iB into one term each

using the superposition principle (9.1.12a) and the linear transformation property (9.1.12g), we
get

‖w̃iB‖2Σ = ‖w̃iB−1‖2ΣΥ
iB

+ ‖q̄iB‖2Σq
iB

+ ‖wo
iB−1‖2Σo

iB

+ ‖μiμ
w̆‖2Σ

+ 2�
{
wo∗

iB−1Υ
χ∗
iΥ

ΣΥiΥw̃iB−1

}
+ 2�

{
wo∗

iB−1Υ
χ∗
iΥ

Σq̄iB

}
+ 2�

{
q̄∗

iB
ΣΥiΥw̃iB−1

}
− 2�

{
wo∗

iB−1Υ
χ∗
iΥ

ΣPiB

(
w̃iB−1 + q̄iB

)}
− 2�

{
q̄∗

iB
ΣPiB

(
w̃iB−1 − (1− χ)wo

iB−1

)}
− 2�

{
w̃∗

iB−1Υ
∗
iΥΣPiB

(
q̄iB − (1− χ)wo

iB−1

)}
− 2�

{(
wo∗

iB−1Υ
χ∗
iΥ

+ q̄∗
iB

+ w̃∗
iB−1Υ

∗
iΥ

)
Σμiμ

w̆
}

+ 2�
{
(w̃∗

iB−1 + q̄∗
iB
− (1− χ∗)wo∗

iB−1)P
∗
iB

Σμiμ
w̆
}

+ w̃∗
iB−1P

∗
iB

ΣPiB

(
q̄iB − (1− χ)wo

iB−1

)
+ q̄∗

iB
P∗

iB
ΣPiB

(
w̃iB−1 − (1− χ)wo

iB−1

)
− (1− χ∗)wo∗

iB−1P
∗
iB

ΣPiB

(
w̃iB−1 + q̄iB

)
+ V∗

i A
Σ
iB

Vi

− 2�
{
V∗

i P
′∗
iB

Σ
(
Υχ

iΥ
wo

iB−1 + q̄iB + ΥiΥw̃iB−1

−PiB

(
w̃iB−1 + q̄iB − (1− χ)wo

iB−1

)
− μiμ

w̆
)}

,

(9.A.20)

where ΣΥ
iB
∈ KM×M represents the stochastic weight-error vector weighting matrix, Σo

iB
∈
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KM×M denotes the stochastic optimal weight vector weighting matrix and Σq̄
iB
∈ KM×M denotes

the stochastic random walk weight vector weighting matrix. They are defined by

ΣΥ
iB

� Υ∗
iΥΣΥiΥ −Υ∗

iΥΣPiB −P∗
iB

ΣΥiΥ + P∗
iB

ΣPiB (9.A.21a)

Σo
iB

� Υχ∗
iΥ

ΣΥχ
iΥ

+ (1− χ)Υχ∗
iΥ

ΣPiB + (1− χ∗)P∗
iB

ΣΥχ
iΥ

+ |1− χ|2P∗
iB

ΣPiB (9.A.21b)

Σq̄
iB

� Σ− ΣPiB −P∗
iB

Σ + P∗
iB

ΣPiB . (9.A.21c)

9.A.3 Transient Analysis of MC-αγΠε-APA, Weighted Variance Relation, Derivations

In order to obtain an expression for the time-evolution of the expected weighted energy norm
of the weight-error vector, that is, E‖w̃iB‖2Σ for some choice of Σ we proceed by taking the
expectation on both sides of (9.A.20) to obtain

E‖w̃iB‖2Σ = E‖w̃iB−1‖2ΣΥ
iB

+ E‖qiB‖2EΣq̄
iB

+ |1− χ|2‖wo‖2
EΣq̄

iB

+ E‖wo
iB−1‖2Σo

iB

+ E‖μiμ
w̆‖2Σ

+ 2 E�
{
wo∗

iB−1Υ
χ∗
iΥ

ΣΥiΥw̃iB−1

}
+ 2 E�

{
wo∗

iB−1Υ
χ∗
iΥ

Σ(1− χ)wo
}

+ 2 E�
{
(1− χ∗)wo∗ΣΥiΥw̃iB−1

}
− 2 E�

{
wo∗

iB−1Υ
χ∗
iΥ

ΣPiB

(
w̃iB−1 + (1 − χ)wo

)}
− 2 E�

{
(1− χ∗)wo∗ΣPiB

(
w̃iB−1 − (1− χ)wo

iB−1

)}
− 2 E�

{
w̃∗

iB−1Υ
∗
iΥΣPiB (1− χ)(wo −wo

iB−1)
}

− 2 E�
{(

wo∗
iB−1Υ

χ∗
iΥ

+ (1− χ∗)wo∗ + w̃∗
iB−1Υ

∗
iΥ

)
Σμiμ

w̆
}

+ 2 E�
{

(w̃∗
iB−1 + (1− χ∗)wo∗ − (1− χ∗)wo∗

iB−1)P
∗
iB

Σμiμ
w̆
}

+ E w̃∗
iB−1P

∗
iB

ΣPiB (1− χ)(wo −wo
iB−1)

+ E(1− χ∗)wo∗P∗
iB

ΣPiB

(
w̃iB−1 − (1− χ)wo

iB−1

)
− E(1− χ∗)wo∗

iB−1P
∗
iB

ΣPiB

(
w̃iB−1 + (1− χ)wo

)
+ Kσ2

v Tr {EAΣ
iB
}.

(9.A.22)

Here we have used that the last term in (9.A.20) cancels upon expectation by the LEM as-
sumptions on system noise (9.2.1d) and (9.2.1g) and that by applying assumptions (9.2.1e) and
(9.2.1g) and using Proposition 9.1 (9.1.2) and (9.2.4) results in EV∗

i A
Σ
iB

Vi = Tr {σ2
V EAΣ

iB
} =

Kσ2
v Tr {EAΣ

iB
}. Moreover, in (9.A.22) we have used that (9.3.13) and LEM assumptions on non-

stationarity (9.2.1b) and (9.2.1d) and the independence property of the weighted norm (9.1.12d)
lead to E q̄iB = (1− χ)wo and E‖q̄iB‖2Σq

iB

= E‖qiB‖2EΣq̄
iB

+ |1− χ|2‖wo‖2
EΣq̄

iB

.

From inspection of (9.A.22) we appreciate that in order to describe the transient mean-square
behavior of the MC-αγΠε-APA adaptive filter we need to evaluate all the moments in Table 9.1.

From the discussion in subsection 9.A.1 on page 453 we saw that the random sequences ΥiΥ

and PiB themselves involve moments of order four and seven respectively. Hence, a term
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Ewo∗
iB−1ΣΥiΥw̃iB−1 Ewo∗

iB−1Υ
∗
iΥΣΥiΥw̃iB−1 EwiB−1 EΥiΥwo

iB−1

EΥiΥw̃iB−1 Ewo∗
iB−1ΣPiB Ewo∗

iB−1Υ
∗
iΥΣPiB Ewo∗

iB−1ΣPiB w̃iB−1

Ewo∗
iB−1Υ

∗
iΥΣPiB w̃iB−1 EPiB w̃iB−1 EPiBwo

iB−1 E w̃∗
iB−1Υ

∗
iΥΣPiB

E w̃∗
iB−1Υ

∗
iΥΣPiBwo

iB−1 Eμiμ
Ewo∗

iB−1Υ
∗
iΥΣμiμ

E w̃∗
iB−1Υ

∗
iΥΣμiμ

EP∗
iB

Σμiμ
E w̃∗

iB−1P
∗
iB

Σμiμ
Ewo∗

iB−1P
∗
iB

Σμiμ
Ew∗

iB−1P
∗
iB

ΣPiB

E w̃∗
iB−1P

∗
iB

ΣPiBwo
iB−1 EP∗

iB
ΣPiB w̃iB−1 EP∗

iB
ΣPiBwo

iB−1 P
′∗
iB

ΣP′
iB

E w̃∗
iB−1Σ

Υ
iB

w̃iB−1 EΣq̄
iB

Ewo∗
iB−1Σ

o
iB

wo
iB−1 E μ∗

iμ
Σμiμ

Tab. 9.1: MC-αγΠε-APA mean-square weight-error vector update moments.

like E w̃∗
iB−1P

∗
iB

ΣPiBwo
iB−1 involves a sixteen order moment. In conclusion the recursion for

E‖w̃iB‖2Σ in (9.A.22) is in the general case exceedingly difficult to propagate.

Moreover, the propagation of the recursion for E‖w̃iB‖2Σ in (9.A.22) is complicated by the pres-
ence of the expectation operator. This expectation is difficult to evaluate as the weighting-
function, that is, ΣΥ

iB
itself is a RS that depends on Ui viz. (9.3.10) and due to the dependence

of w̃iB−1 on previous regressors Ui−1,Ui−2, . . . (9.3.8) which means that w̃iB−1 and ΣΥ
iB

them-
selves are dependent, but not if Ui is i.i.d.. At this stage we might therefore be tempted to enforce
the famous independence assumption viz. Assumption 2. However, although this assumption is
sufficient it is by far not necessary here. Hence, by inspection of (9.A.21a) we see that the
auxiliary matrix PiB defined in (9.3.10c) as well as the transformed leakage matrix ΥiΥ defined
in (9.3.6) enter the expression for ΣΥ

iB
. Accordingly, Assumption 5 - 6 are sufficient conditions

for the ease of the evaluation of the term E‖w̃iB−1‖2ΣΥ
iB

that enters (9.A.22). Hence, by applying

Assumption 5 - 6, (9.A.6)-(9.A.7) and by using the independence property of the weighted norm
(9.1.12d) we get E‖w̃iB−1‖2ΣΥ

iB

= E‖w̃iB−1‖2EΣΥ
iB

.

Moreover, from the expression for Σo
iB

(9.A.21b) we observe that by using the independence
property of the weighted norm (9.1.12d) and Assumption 5, (9.A.6) then the term E‖wo

iB−1‖2Σo
iB

in (9.A.22) can be evaluated as E‖wo
iB−1‖2Σo

iB

= ‖wo
iB−1‖2EΣo

iB

. Similarly, from the expression

for Σq
iB

(9.A.21c) we appreciate that by using the independence property of the weighted norm
(9.1.12d) and LEM assumption on non-stationarity (9.2.1c) that the term E‖q̄iB‖2Σq

iB

in (9.A.22)

can be expressed as ‖q̄iB‖2EΣq
iB

.

Although Assumption 5 - 6 enable us to evaluate E‖w̃iB−1‖2ΣΥ
iB

, E‖qiB‖2EΣq̄
iB

and E‖wo
iB−1‖2Σo

iB

that enter (9.A.22), however, we will need the two more assumptions in order to reduce the order
of the moments in Table 9.1.

Assumption 7 (Independence of PiB ,ΥiΥ).

The auxiliary matrix PiB defined in (9.3.10c) is independent of the transformed leakage matrix
ΥiΥ , that is,

∀iB ≥ 0, iB ≥ iΥB : fP (PiB |ΥiΥ) = fP (PiB ), (9.A.23)

Assumption 7 holds for example under the conditions ➁ ➂, ➃ and ➄ listed above under Assumption 6.

Assumption 7, (9.A.23) implies that EPiBΥiΥ = EPiB EΥiΥ .

Finally, the presence of weight regularization necessitates the following assumption.

Assumption 8 (Independence of μiμ
,wo

iB−1, w̃iB−1,PiB ).
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The step-size matrix μiμ
is independent of the optimal weight vector wo

iB−1, the weight-error
vector w̃iB−1 and the auxiliary matrix PiB , that is,

∀iB ≥ 0, iB ≥ iΥB : fμ(μiμ |wo
iB−1, w̃iB−1, PiB ) = fμ(μiμ ), (9.A.24)

Now by Assumptions 6-7 ΥiΥ is independent of wo
iB−1, w̃iB−1,PiB . Then by (9.3.6) we can

conclude that Assumption 9.A.24 (9.A.24) holds for example under the conditions ➁ ➂ and ➄
listed under Assumption 6. It should be remarked that Assumption 6 point ➃ is not a sufficient
condition as the combined dynamic effects of, e.g., μiμ

and αiα may tends to counter balance
each other. Although this effect makes ΥiΥ independent of wo

iB−1, w̃iB−1,PiB this does not
necessarily apply to μiμ

.

In summary, Assumption 8 holds for example under the conditions listed below.

➀ The step-size matrix μiμ
is constant or varies slowly with time.

➁ Many block-updates have passed since μiμ
was updated last time, that is, iB � iμB. Then

the effect from the change in μiμ
will be smoothed out.

➂ In the absence of weight regularization ΠiΠ = 0. Then w̆ = 0 and the pertinent terms in
(9.A.22) disappear.

Assumption 8, (9.A.24) implies that Ewo∗
iB−1Υ

∗
iΥΣμiμ

= E(wo∗
iB−1Υ

∗
iΥ)Σ E(μiμ

), E w̃∗
iB−1Υ

∗
iΥΣμiμ

=
E(w̃∗

iB−1Υ
∗
iΥ)Σ E(μiμ

), EP∗
iB

Σμiμ
= E(P∗

iB
)Σ E(μiμ

), E w̃∗
iB−1P

∗
iB

Σμiμ
= E(w̃∗

iB−1P
∗
iB

)Σ E(μiμ
)

and Ewo∗
iB−1P

∗
iB

Σμiμ
= E(wo∗

iB−1P
∗
iB

)Σ E(μiμ
).

Now applying all these remarks and in particular Assumption 5 - 8 to (9.A.22) we therefore
obtain

E‖w̃iB‖2Σ = E‖w̃iB−1‖2ΣΥ
iB

+ E‖qiB‖2Σq̄
iB

+ |1− χ|2‖wo‖2
Σq̄

iB

+ E‖wo
iB−1‖2Σo

iB

+ E‖μiμ
w̆‖2Σ

+ 2�
{
E(wo∗

iB−1) E(Υχ∗
iΥ

ΣΥiΥ) E(w̃iB−1)
}

+ 2�
{
E(wo∗

iB−1) E(Υχ∗
iΥ

)Σ(1 − χ)wo
}

+ 2�
{
(1− χ∗)wo∗Σ E(ΥiΥ) E(w̃iB−1)

}
− 2�

{
E(wo∗

iB−1) E(Υχ∗
iΥ

)Σ E(PiB )
(
E(w̃iB−1) + (1 − χ)wo

)}
− 2�

{
(1− χ∗)wo∗Σ E(PiB )

(
E(w̃iB−1)− (1− χ) E(wo

iB−1)
)}

− 2�
{
E(w̃∗

iB−1) E(Υ∗
iΥ)Σ E(PiB )(1− χ)

(
wo − E(wo

iB−1)
)}

+ 2�
{(

E(wo∗
iB−1)− E(w̃∗

iB−1)
)
E(Υ∗

iΥΣμiμ
)w̆

}
− 2�

{(
(1− χ∗)wo∗ + χ∗ E(wo∗

iB−1)
)
Σ E(μiμ

)w̆
}

+ 2�
{(

E(w̃∗
iB−1) + (1− χ∗)wo∗ − (1− χ∗) E(wo∗

iB−1)
)
E(P∗

iB
)Σ E(μiμ

)w̆
}

+ E(w̃∗
iB−1) E(P∗

iB
ΣPiB )(1 − χ)

(
wo − E(wo

iB−1)
)

+ (1− χ∗)wo∗ E(P∗
iB

ΣPiB )
(
E(w̃iB−1)− (1 − χ) E(wo

iB−1)
)

− (1− χ∗) E(wo∗
iB−1) E(P∗

iB
ΣPiB )

(
E(w̃iB−1) + (1 − χ)wo

)
+ Kσ2

v Tr {EAΣ
iB
},

(9.A.25)



9.A. Miscellaneous Derivations 463

and where ΣΥ
iB
∈ KM×M represents the deterministic weight-error vector weighting matrix,

Σo
iB
∈ KM×M denotes the deterministic optimal weight vector weighting matrix and Σq̄

iB
∈

KM×M is the deterministic random walk weight vector weighting matrix, that is, the determin-
istic weighting matrices corresponding to the stochastic weighting matrices in (9.A.21). They
are defined by

ΣΥ
iB

� EΥ∗
iΥΣΥiΥ − E(Υ∗

iΥ)Σ E(PiB )− E(P∗
iB

)Σ E(ΥiΥ) + EP∗
iB

ΣPiB (9.A.26a)

Σo
iB

� EΥχ∗
iΥ

ΣΥχ
iΥ

+ (1− χ) E(Υχ∗
iΥ

)Σ E(PiB )

+ (1− χ∗) E(P∗
iB

)Σ E(Υχ
iΥ

) + |1− χ|2 EP∗
iB

ΣPiB (9.A.26b)

Σq̄
iB

� Σ− Σ EPiB − EP∗
iB

Σ + EP∗
iB

ΣPiB (9.A.26c)

respectively. Next by applying LEM assumptions on non-stationarity (9.2.1b) to (9.A.25) and
using Definition 9.2 (9.1.10b) we therefore obtain

E‖w̃iB‖2Σ = E‖w̃iB−1‖2ΣΥ
iB

+ Tr {QΣq̄
iB
}+ |1− χ|2‖wo‖2

Σq̄
iB

+ E‖wo
iB−1‖2Σo

iB

+ E‖μiμ
w̆‖2Σ

+ 2�
{
wo∗ E

(
Υχ∗

iΥ
ΣΥiΥ

)
E(w̃iB−1)

}
+ 2�

{
wo∗ E(Υχ∗

iΥ
)Σ(1− χ)wo

}
+ 2�

{
(1− χ∗)wo∗Σ E(ΥiΥ) E(w̃iB−1)

}
− 2�

{
wo∗ E(Υχ∗

iΥ
)Σ E(PiB )

(
E(w̃iB−1) + (1− χ)wo

)}
− 2�

{
(1− χ∗)wo∗Σ E(PiB )

(
E(w̃iB−1)− (1− χ)wo

)}
+ 2�

{(
wo∗ − E(w̃∗

iB−1)
)
E(Υ∗

iΥΣμiμ
)w̆

}
− 2�

{
wo∗Σ E(μiμ

)w̆
}

+ 2�
{
E(w̃∗

iB−1) E(P∗
iB

)Σ E(μiμ
)w̆

}
+ Kσ2

v Tr {EAΣ
iB
},

(9.A.27)



464 9. αγΠε-APA Performance Analysis

that we may further reduce to

E‖w̃iB‖2Σ = E‖w̃iB−1‖2ΣΥ
iB

+ Tr {QΣq̄
iB
}+ ‖wo‖2

Σq′
iB

+ E‖wo
iB−1‖2Σo

iB

+ E‖μiμ
w̆‖2Σ

+ 2�
{
wo∗ E

(
Υχ∗

iΥ
ΣΥiΥ

)
E(w̃iB−1)

}
− 2�

{
wo∗ E(Υχ∗

iΥ
)Σ E(PiB ) E(w̃iB−1)

}
+ 2�

{
(1− χ∗)wo∗Σ

(
E(ΥiΥ)− E(PiB )

)
E(w̃iB−1)

}
+ 2�

{(
wo∗ − E(w̃∗

iB−1)
)
E(Υ∗

iΥΣμiμ
)w̆

}
+ 2�

{(
E(w̃∗

iB−1) E(P∗
iB

)− wo∗)Σ E(μiμ
)w̆

}
+ Kσ2

v Tr {EAΣ
iB
},

(9.A.28)

where the weighting matrix Σq′

iB
is defined by

Σq′

iB
� |1− χ|2(Σq̄

iB
+ Σ EPiB + EP∗

iB
Σ)

+ (1− χ) E(Υχ∗
iΥ

)Σ
(
I− E(PiB )

)
+ (1− χ∗)

(
I− E(P∗

iB
)
)
Σ E(Υχ

iΥ
)

by insertion of (9.A.21c)

= |1− χ|2(Σ + P∗
iB

ΣPiB ) + (1− χ) E(Υχ∗
iΥ

)Σ
(
I− E(PiB )

)
+ (1− χ∗)

(
I− E(P∗

iB
)
)
Σ E(Υχ

iΥ
).

(9.A.29)

Finally, be collecting common factors in (9.A.28) we obtain

E‖w̃iB‖2Σ = E‖w̃iB−1‖2ΣΥ
iB

+ Tr {QΣq̄
iB
}+ ‖wo‖2

Σq′
iB

+ E‖wo
iB−1‖2Σo

iB

+ E‖μiμ
w̆‖2Σ

+ 2�〈wo∗, E(w̃iB−1)〉JiB
+ 2�〈E(w̃∗

iB−1), w̆〉K∗
iB

+ 2�{wo∗(E(Υ∗
iΥΣμiμ

)− Σ E(μiμ
)
)
w̆} + Kσ2

v Tr {EAΣ
iB
},

(9.A.30)

where the auxiliary matrix JiB ∈ KM×M and the auxiliary matrix KiB ∈ KM×M in turn are
defined by

JiB � E
(
Υχ∗

iΥ
ΣΥiΥ

)
− E(Υχ∗

iΥ
)Σ E(PiB ) + (1− χ∗)Σ E(MiB ) (9.A.31a)

K∗
iB

� E(P∗
iB

)Σ E(μiμ
)− E(Υ∗

iΥΣμiμ
). (9.A.31b)

The next step is to use the expression (9.A.13) for the time-evolution of the mean weight-error vec-
tor E w̃iB−1 that enters in the terms 2�〈wo∗, E(w̃iB−1)〉JiB

and 2�〈E(w̃∗
iB−1), w̆〉K∗

iB
in (9.A.30).

By inspection of (9.A.13) and (9.A.30) it can be concluded that the term 2�〈wo∗, E(w̃iB−1)〉JiB
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can be expressed by

2�〈wo∗, E(w̃iB−1)〉JiB
= ‖wo‖2

JiB
Cwo

iB−1+Cwo∗
iB−1J∗

iB

− 2�〈wo∗, w̆〉JiB
Cw̆

iB−1
− 2�〈wo∗, w0〉

JiB
Cwo,1

iB

(9.A.32)

and that term 2�〈E(w̃∗
iB−1), w̆〉K∗

iB
can be expressed as

2�{E(w̃∗
iB−1)K

∗
iB

w̆} = −‖w̆‖2
KiB

Cw̆
iB−1+Cw̆∗

iB−1K∗
iB

+ 2�〈wo∗, w̆〉Cwo∗
iB−1K∗

iB

− 2�〈w0∗, w̆〉
Cwo,1∗

iB−1 K∗
iB

.

(9.A.33)

Then by insertion of (9.A.32) and (9.A.33) in (9.A.30) gives

E‖w̃iB‖2Σ = E‖w̃iB−1‖2ΣΥ
iB

+ Tr {QΣq̄
iB
}+ ‖wo‖2

Σq′
iB

+ E‖wo
iB−1‖2Σo

iB

+ ‖wo‖2JiB
Cwo

iB−1+Cwo∗
iB−1J∗

iB

+ E‖μiμ
w̆‖2Σ

− 2�{wo∗JiB Cw̆
iB−1w̆} + 2�〈wo∗, w̆〉Cwo∗

iB−1K∗
iB

− ‖w̆‖2KiB
Cw̆

iB−1+Cw̆∗
iB−1K∗

iB

+ 2�{wo∗(E(Υ∗
iΥΣμiμ

)− Σ E(μiμ
)
)
w̆}

− 2�〈wo∗, w0〉
JiB

Cwo,1
iB

− 2�〈w0∗, w̆〉
Cwo,1∗

iB−1 K∗
iB

+ Kσ2
v Tr {EAΣ

iB
}.

(9.A.34)

From LEM assumptions on non-stationarity (9.2.1b) we appreciate that we may express the term
E‖wo

iB−1‖2Σo
iB

in (9.A.34) in terms of the covariance matrix of the random-walk model Q and
the mean optimal weight vector wo

E‖wo
iB−1‖2Σo

iB

= E‖wo
iB−1 − wo‖2Σo

iB

− E‖wo‖2Σo
iB

+ 2�〈Ewo∗
iB−1, w

o〉Σo
iB

= Tr {E(wo
iB−1 − wo)(wo

iB−1 − wo)∗Σo
iB
} − E‖wo‖2Σo

iB

+ 2‖wo‖2Σo
iB

=
1

1− |χ|2 Tr {QΣo
iB
}+ ‖wo‖2Σo

iB

.

(9.A.35)

where the matrix ΘiB−1 � EθiB−1θ
∗
iB−1 ∈ KM×M is the covariance matrix of perturbation

vector θiB−1. Moreover, from LEM Assumption 1 on non-stationarity (9.2.1b) we find that in
steady-state we may express E‖wo

iB−1‖2Σo
iB

by

lim
iB→∞

E‖wo
iB−1‖2Σo

iB

=
1

1− |χ|2 Tr {QΣo
iB
}+ ‖wo‖2Σo

iB

. (9.A.36)

Finally, by using (9.A.35) and by collecting common terms in (9.A.34) we obtain

E‖w̃iB‖2Σ = E‖w̃iB−1‖2ΣΥ
iB

+ Tr {QΣq
iB
}+ ‖wo‖2Σwo

iB

+ ‖w̆‖2Σw̆

+ 〈wo∗, w̆〉Σwow̆
iB

− 2�〈wo∗, w0〉JiB
Cwo,1

iB

− 2�〈w0∗, w̆〉Cwo,1∗
iB−1 K∗

iB

+ Kσ2
v Tr {EAΣ

iB
}.

(9.A.37)
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where the mean optimal weight vector weighting matrix Σw′o

iB
∈ KM×M , the random walk weight

vector weighting matrix Σq
iB
∈ KM×M and the regularization weight vector weighting matrix

Σw̆
iB
∈ KM×M are defined by

Σw′o

iB
� Σq′

iB
+ Σo

iB
+ JiB Cwo

iB−1 + Cwo∗
iB−1J

∗
iB

= |1− χ|2(Σ + P∗
iB

ΣPiB ) + (1− χ) E(Υχ∗
iΥ

)Σ
(
I− E(PiB )

)
+ (1− χ∗)

(
I− E(P∗

iB
)
)
Σ E(Υχ

iΥ
)

+ EΥχ∗
iΥ

ΣΥχ
iΥ

+ (1− χ) E(Υχ∗
iΥ

)Σ E(PiB ) + (1− χ∗) E(P∗
iB

)Σ E(Υχ
iΥ

) + |1− χ|2 EP∗
iB

ΣPiB

+ JiB Cwo

iB−1 + Cwo∗
iB−1J

∗
iB

= EΥχ∗
iΥ

ΣΥχ
iΥ

+ (1 − χ) E(Υχ∗
iΥ

)Σ + (1− χ∗)Σ E(Υχ
iΥ

) + |1− χ|2(Σ + 2 EP∗
iB

ΣPiB )

+ JiB Cwo

iB−1 + Cwo∗
iB−1J

∗
iB

(9.A.38a)

and

Σq
iB

� Σq̄
iB

+
1

1− |χ|2 Σo
iB

= Σ− Σ EPiB − EP∗
iB

Σ + EP∗
iB

ΣPiB

+ ΘiB−1

(
EΥχ∗

iΥ
ΣΥχ

iΥ
+ (1− χ) E(Υχ∗

iΥ
)Σ E(PiB )

+ (1− χ∗) E(P∗
iB

)Σ E(Υχ
iΥ

) + |1− χ|2 EP∗
iB

ΣPiB

)
(9.A.38b)

and

Σw̆
iB

� E(μ∗
iμ

Σμiμ
)−KiBCw̆

iB−1 − Cw̆∗
iB−1K

∗
iB

. (9.A.38c)

The cross-weighting matrix Σwow̆
iB

∈ KM×M is finally defined by

Σwow̆
iB

� −JiB Cw̆
iB−1 + Cwo∗

iB−1K
∗
iB

+ E(Υ∗
iΥΣμiμ

)− Σ E(μiμ
). (9.A.39)
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ELECTROACOUSTICAL AND VIBROACOUSTICAL

ENVIRONMENT





10. HEARING PROTECTOR: PASSIVE ATTENUATION

10.1 Introduction

In this chapter a the brief technical description of the passive part of a hearing protection
device (HPD) will briefly be reviewed and reference made to some of the pertinent technical lit-
erature. In particular an ordinary model for the closed-back headset is developed and results
from parameterizations hereof presented. The closed-back headset model is used for example for
simulating the disturbance signals resulting when the HPD is subject to a diffuse sound field illu-
mination. One of the objectives pursued in this chapter and the accompanion chapter chapter 11
on page 481 is to establish simple lumped-element models that can be used quantitatively to de-
termine the passive attenuation and to explain the behavior of the group delays pertaining to
the primary paths and secondary paths involved in a an active HPD.

10.2 Brief Technical Description

Hearing Protector Devices (HPD) have been used widely for 5-6 decades. A fundamental de-
scription of the physical principles was established in the late 1950s by Shaw and Thiessen in
their classical papers [6, 7]. The HPD has successfully been modeled as a 2nd order compliance-
resistance-mass system. This mechanism is referred to as passive attenuation as it involves no
active components. In summary, the passive performance of a circumaural HPD is limited by:

1. Hearing Protector Vibration (Non-deformative normal and lateral movements of earcup)

2. Air Leaks (at the interface between the users head and the ear cushion)

3. Material Transmission. (Deformation of earcup, frequency > 1 kHz)

4. Bone and Tissue Conduction

Since then the performance has gradually been improved primarily due to the choice of better
material for the ear cushion and the earcups.

In modern HPD design the advantages of active noise control (ANC) have been accommodated in
the more expensive range of units. Basically, ANC refers to the technique of:

• Acquisition of a signal with a high coherence with the disturbance, e.g., by a microphone

• Determination of a cancelation response (adaptive filtering, signal processing)

• Activation of the secondary (cancelation) signal, e.g., by a loudspeaker
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In his doctorial thesis Schröter [3] developed comprehensive physical models of passive hear-
ing protection devices. Schröter established models for both earplugs and circumaural hearing
protectors. This work is summarized in [4, 5].

Recent developments and models for passive as well as active earmuffs can be found in [2].

10.3 Lumped Element Model

In order to establish a reasonable set of primary path functions gemxj , 1 ≤ m ≤ Ne, 1 ≤ j ≤ Nx

we used the ordinary model of a closed-back headset system in [1, Ch. 7]. However, in order to
provide attenuation decay rates that more closely resemble practical field measurements a leakage
term was added to the model in accordance with [6, 7]. Hence, following some straightforward
derivations our governing equation in the frequency-domain for the insertion loss is

p̃em(eıω)
p̃xj (eıω)

=
Ka

(
Kc + ıω(Rc + ZA

l S2
h)− ω2Ms

)
KaKc + ıω

(
KaRc + (Ka + Kc)ZA

l S2
h

)
− ω2(KaMs + RcZA

l S2
h)− ıω3MsS2

hZl

,

(10.3.1)

where the following parameters enter: stiffness of the air Ka, stiffness of the cushion Kc, acoustic
impedance related to leakage ZA

l = RA
l + KA

l

ıω , resistance of the cushion Rc, mass of the shell Ms

and an effective head surface area Sh. The system has a resonance frequency f0. By the inclusion
of the leakage term in (10.3.1) it is ensured that the passive attenuation shift from a decay-rate
of 40 dB ·decade−1 to 20 dB · decade−1 at frequencies above, say, fl. Then Rl = al

2πflMs

S2
h

for
some tuning constant al and Kl = 2πflRl, where low-pass cut-off frequency from leakage fl.

Provided that the reference sensors and error sensors possess the same sensitivity (10.3.1) also
gives the ratio between the m’th error signal and the j’th reference signal.

Moreover, it should be recalled that (10.3.1) pertains to ordinary closed-back headset systems.
In the present case of an Gentex HGU 55/P helmet the integral effect of the helmet should also
be taking into account. Although a detailed model of such a helmet closed-back headset system
would be beneficial for our analysis such model development is left for future research activities.

10.3.1 Parameter Study

The 2nd order compliance-resistance-mass system model for the closed-back headset (10.3.1) was
subsequently subject to a parameter study aimed to find those values of Ka, Kc, Rc, Z

A
l and Ms

that lead to time-domain and frequency-domain responses that most closely resemble practical
evidence. The main results from this study is presented in the subsequent text.

The magnitude and phase of the frequency response function for Ka = 26 kN · m−1, Kc =
100 kN ·m−1, al = 1 corresponding to RA

l = 2.51e7 N · s ·m−5 for the combination of Rc =
60, 80, 100, 120, 140, 160 N · s ·m−1 and Ms = 0.16 kg are shown in Simulation 10.3.1 - 10.3.2 on
pages 473–474.

We observe how the mechanical resistance of the cushion to a large extent controls the Q-factor
and the phase transition at the resonance frequency (f0 = 141 Hz). As we will seen in chapter 11
on page 481 this phase transition also has a great impact on the secondary path function. The
low-frequency passive attenuation amounts to 12 dB and is determined by the ratio Ka

Ka+Kc
.
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Now using the same parameters for the closed-back headset as above but for the acoustical resis-
tance to leakage decreased to RA

l = 1.26e7 N · s · m−5 corresponding to al = 0.5 the magnitude
and phase of the transfer function are shown in Simulation 10.3.3 - 10.3.4 on pages 476–477. The
associated impulse response function is depicted in Simulation 10.3.5 on page 478.

By comparing Simulation 10.3.3 with Simulation 10.3.1 we appreciate that by decreasing the
resistance to leakage the high-frequency decay-rate is lowered and the frequency response fits
better to practical measurements. We observe that it takes approximately 0.2− 20 ms for the
exterior pressure pxj (t) to manifest itself as the interior pressure pem(t). Finally, the group delay
associated with the primary path is shown in Simulation 10.3.6 on page 479. We see that the
HPD exhibit a very large group delay at the resonance frequency f0 and that the group delay
is actually negative in the frequency region 250− 550 Hz where the magnitude of the transfer
function decays by 40 dB · decade−1.

In conclusion, the following model parameter values are selected: Ka = 26 kN · m−1, Kc =
100 kN · m−1, Rc = 80 N · s · m−1, Ms = 0.16 kg and ZA

l = (1 + 2ωl

ıω )1.26e7 N · s ·m−5, where
ωl = 2π500 rad · s−1.
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11. HEARING PROTECTOR: ACTIVE ATTENUATION

11.1 Introduction

In this chapter a brief technical description of the active part of a hearing protection device (HPD)
will be carried out and reference made to some of the technical literature in the field. In particular
a simple model for the acoustical and electro-acoustical environment interior to closed-back
headset is introduced and results from parameterizations hereof presented. Our main objective
with this electro-acoustical model is to investigate the influence on the achievable active noise
reduction (ANR) performance as determined by group delays. Moreover, the electro-acoustical
environment model or secondary path model is used for example in a feedback system (FBS)
design employing internal model control (IMC).

In modern HPD design the advantages of active noise control (ANC) have been accommodated in
the more expensive range of units. Basically, ANC refers to the technique of:

• Acquisition of a signal with a high coherence with the disturbance, e.g., by a microphone.

• Determination of a cancelation response (adaptive filtering, signal processing).

• Activation of the secondary (cancelation) signal, e.g., by a loudspeaker.

An ideal circumaural earphone would provide maximum attenuation of extraneous noise and
optimum coupling between transducer an ear [10]. In his Ph.D. thesis Smeatham [12] provided a
detailed but non rigorous assessment of the performance of active noise reduction hearing protec-
tors. From this work it can be concluded that some of the passive attenuation limitations listed
in chapter 10 on page 471 also pose problems to the achievable benefits from the introduction of
an active noise controller. On the contrary, as the electro-acoustical system is embedded in the
mechanical-acoustical system constituted by the earcup the objectives on a high degree of noise
reduction and coupling efficiency are at least partially compatible.

Supplementary material on this topic can be found in [11] [5] [7] [3] [8] [1] [13] [2] [9] [4].

11.1.1 Chapter Outline

In section 11.2 a brief discussion of the electro-acoustical environment of a closed-back headset
will be made. Then in section 11.3 - 11.4 the Terma earcup system and a lumped-element model
hereof based on [10] will presented. Finally, in section 11.5 some results from a system identifi-
cation of the secondary paths partaking in the confined feedforward active control (CFFAC), that
is, gl,m

ey , gl,j
xy and gl,k

py , will be presented.
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11.2 Acoustical and Electroacoustical Environment

The total sound field, that is, the residual sound field in the earcup cavities is obtained from
superposition of a primary and a secondary field.

11.2.1 Primary Sound Pressure Field

In circumaural HPD a hemispheroidal cavity referred to as ear shell encloses the outer ear. Nor-
mally, a piston like movement of the ear shells has been assumed. The piston like movement
itself will yield some fractional excitation of higher order modes in the cavity. Recent research
has revealed that some higher order mode plate excitation will take place with increasing fre-
quency. This higher order mode plate excitation will also add to the fraction of higher order
mode contribution to the total primary sound field in the ear cavity.

Moreover, it has been observed that an excitation of the earcups from a direction dependent
incident sound field will also increase the level sound pressure variation. Finally, due to a large
variation in the mechanical impedance presented by the skin/flesh along the circumference of
the ear, the leakage present at the subjective head-ear cushion interface will have circumferential
position dependence. In summary, the primary sound field will generally exhibits some deviation
from perfect uniformity.

11.2.2 Secondary Sound Pressure Field

In an ANR system a secondary sound field is deliberately introduced in proximity of the ear.
Typically a loudspeaker - or more precisely - an earphone, is placed somewhere inside the earcup.

In the literature various problems associated with the earphones have been identified [12]:

• The annular suspension exhibits modes in an irregular manner. In general these resonances
are small and confined to a narrow bandwidth. Therefore, this annular mode response of
the transducer diaphragm does not affect the passive performance of the ANR system
significantly. The annular mode suspension resonances, however, will necessarily lead to
non-uniformity in the pressure distribution in the cavity at the particular frequencies.

• Other types of resonance associated with imperfections in the construction of the diaphragm
mounting have been reported. As a consequence abrupt changes in magnitude and signifi-
cant phase shifts has been introduced in the control system making it difficult to maintain
stability.

11.2.3 Residual Sound Pressure Field

As neither the primary field nor the secondary field exhibits spatial sound pressure uniformity
the residual sound field i.e. the sum of the primary and secondary fields in the cavity cannot be
considered uniform. In passive HPD the small variation in the primary sound can normally
be neglected, since it is the average magnitude of the residual field at the eardrum that is of
concern. In contradiction, the ANR system involves at least one so-called error microphone
positioned somewhere in the earcup. A deviation from uniformity in the residual field itself
might not be a problem when it can be compensated for by adaptive filtering. However, any



11.3. Terma Earcup Audio System 483

deviations from unity in the coherence function between the field measured at the position of the
error microphone and the field (not measured) at, e.g., the eardrum, will lead to the latter field
not being adequately suppressed by the ANR system. Only if it is possible to establish a link
between the measured and the sensed sound pressures some additional counter measures can be
enforced.

11.2.4 Transducers

Ideally, when designing a critical component as the earcup system is for the helmet based ANR

system appropriate models for the suite of embedded transducers, e.g., earphones and micro-
phones should be made.

The choice of earphones and microphones has to some extent been dictated from the environment
constraints pertinent to the airborne military applications. The earphones shall have a precise
response. The possible benefits from a multi channel control i.e. more than one earphone
and/or more than one microphone in each earcup have been pursued. Finally, the location of
each transducer have been obtained from a complex optimization procedure, which will involve
calculation of the attenuation figures and robustness of the system. The parameters involved
should been subject to a Monte Carlo based statistical error analysis.

In particular the design has been focused on environmental constraints pertinent to the airborne
military applications and the requirement to produce a sufficient high sound pressure level at
low frequencies for the CH-47 helicopter application.

11.3 Terma Earcup Audio System

Under a contract with the Royal Danish Air Force (RDAF) an ANR system has been developed.
An exploded view of the Terma earcup system can be found in Figure 11.1. This development
includes a solution for the acoustical/electro acoustical system constituted by the circumaural
earcups and the loudspeaker and microphone that both have been customized to the application.
The earcup system, however, was at the disposition of the present project at a very late stage.
It was therefore decided to use a simple lumped element presented next in the simulations.
Moreover, as will be evident from the system identification results in section 11.5 on page 489 it
turned out that the secondary path exhibit very large group delays in critical frequency region
active control (AC). Hence, by using a model we may be able to predict the achievable ANR

performance resulting from a second iteration of this design.

11.4 Lumped Element Model

From [10] the so-called1 earphone response-ratio R(eıω) is defined by

R(eıω) =
p̃em(eıω)
Q̃(eıω)

V

ρ0c2
=

p̃em(eıω)
Q̃(eıω)

S2
h

Ka
, (11.4.1)

where Q̃(eıω) represents the earphone volume displacement of ideal acoustical source with infinite
acoustic impedance.

1In our context we will preserve the phase information in order to determine the group delays.
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Fig. 11.1: Terma Earcup System Exploded View. Error Microphone not included.
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In the Terma earcup system a tweeter unit is used as earphone. In order to protect this unit
a second-order high-pass filter is inserted as cross-over network. Hence, the actual acoustical
source has a earphone volume displacement Q̃′(ω), that is obtained from Q̃′(ω) = Tt(ω)Q̃(eıω),
where T (ω) denotes the response of the second-order high-pass cross-over filter. This transfer
function in turn is govern by

Tt(ω) =
(ıωr)2

(ıωr)2 + ıωr/Qt + 1
, (11.4.2)

where ωr = ω/ωt and Qt denotes the quality factor of the cross-over network. For example,
refering to [6, Ch. 9] the quality factor can be realized from a simple cross-over network consti-
tuted by a capacitance Ct, and an inductance Lt, according to Lt = REt

2πftQt
and Ct = Qt

2πftREt
,

where REt is the voice-coil resistance and ft is the 6 dB cut-off frequency of tweeter.

Introducing now the auxiliary acoustic impedance related to mass-spring-resistance of the earcup
ZA

m(eıω), defined by

ZA
m(eıω) =

ıωMs + RC + Kc

ıω

S2
h

. (11.4.3)

Following some trivial derivations the earphone response-ratio defined in (11.4.1) can be expressed
as

R(eıω) =
ZA

3 ZA
l ZA

m

ZA
3 (ZA

l + ZA
m) + ZA

l ZA
m

S2
h

Ka
, (11.4.4)

where the auxiliary impedance ZA
3 (eıω) in turn is obtained as ZA

3 = Ka

ıωS2
h
.

Equivalent circuits (lumped elements) are only valid for systems where the quantity of an element
is not distributed within the space of the element. Therefore, lumped elements cannot be used in
connection with modal resonances unless higher order circuits models are introduced. Therefore,
the simple model in (11.4.4) will not hold for frequencies above approximately 1200 Hz where
the assumption of a uniform field distribution in the interior of the earcup no longer holds.

11.4.1 Simulations

A parameter study was conducted in order to shed light over the secondary path response as a
function of the various parameters involved. The following constant parameters were used: Ka =
26 kN · m−1, Kc = 100 kN · m−1, RA

l = 1.26e + 007 N · s ·m−5, f0 = 141.236 Hz, Ms = 0.16 kg. In
total six different values of the mechanical resistance of the cushion and two values of Qt were
investigated, namely Rc = 60, 80, 100, 120, 140, 160 N · s · m−1 and Qt = 1.0, 1.6.

The magnitude and phase of the in total twelve transfer function variants are shown in Simulation 11.4.1 -
11.4.2 on pages 486–487 respectively. The corresponding impulse response can be seen in
Simulation 11.4.3 on page 488.

We observe that the mechanical resistance of the cushion that controls the Q-factor and the
phase transition at the resonance frequency (f0 ≈ 141 Hz) also to a large extent determines the
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phase transition of the earphone response ratio. Accordingly, the behavior of active part of a
HPD and the corresponding passive part are interrelated.

In Simulation 11.4.4 - 11.4.5 on pages 490–491 the group delay and estimated achievable ANR

attenuation for the single-rate system (SRS) with f1
s = 48 kHz is depicted. For Qt = 1.6 the

group delay is approximately 670 µs at ft = 870 Hz which agrees with the result obtained from
a system identification in section 11.5 viz. Simulation 11.5.10 - 11.5.11 on pages 506–507. hence,
from group delay considerations we may conclude that the benefit of feedback based AC of random
signals above 150− 200 Hz dependent on the value of Rc - is rather limited. The advantage of
employing the confined feedforward (CFF) topology is clearly exhibited in Simulation 11.4.6 -
11.4.7 on pages 492–493 where a (frequency independent) spatially-weighted-averaged acquisition
lead time of 900 µs is included. Except for a small frequency range 200− 250 Hz the performance
will not be limited from group delays. Moreover, from Simulation 10.3.6 on page 479 we know
that the primary path exhibit a very large group delay at resonance frequency of the passive part
of the system which means that the effective acquisition lead-time is increased in this frequency
range too.

Finally, in Simulation 11.4.8 - 11.4.9 on pages 494–495 the influence of the quality factor Qt on
the group delay for two values of the cushion resistance Rc = 80, 120 N · s · m−1 for the same SRS

with f1
s = 48 kHz is shown.

We appreciate that for Rc = 120 N · s · m−1 and Qt = 0.5, the group delay is considerably reduced
as compated with actual system for which we have estimated Rc = 80 N · s ·m−1 and Qt = 1.6.
However, the fb based AC is still limited to the sub 200 Hz frequency regime from group delay
considerations.

11.5 System Identification of Secondary Pathes

The secondary paths all concern sensor signals in response to control output signals. Hence,
the secondary paths include the plants that link the control output signals to the error signals,
reference signals and performance signals, that is, gl,m

ey , gl,j
xy and gl,k

py respectively. The aim
of the secondary paths measurements are twofold. Firstly, we want to obtain measurements
independent of any adaptive filtering algorithm in order to verify similar - albeit adaptive -
system identification measurements within the frame of AC as discussed in chapter 7 on page 291.
Secondly, we may use the measurements to assess the quality of the ordinary lumped element
model presented in section 11.4.

The system identification measurements were conducted in a sound isolation box in order to
prevent interferences from extraneous noise sources. The topology consisted of a total of Nx = 10
BK4949 surface microphones flush-mounted on Gentex HGU-55/P helmet mounted on a BK 4128
C head and torso simulator (HATS) that in turn includes the BK 4159 C left ear simulator and
the BK 4158 C right ear simulator, that is, Np = 2. The performance signals acquired by the
left and right ear simulator are by dp

1 and dp
2 respectively. The Terma Earcup Audio System was

used on the left ear only that provide a disturbance signal that will be designated by d1, that is,
Ne = 1. Some photos illuminating the measurement setup can be found in Figure 2.1 - 2.2 on
pages 33–34.

For all statistical analysis the following power spectral density functions parameters have been
chosen: Periodogram, single-sided, fs = 65.536 kHz, NDFT = 16384, LDFT = 16385, RDFT =
8193, Hanning, TDFT = 0.25 s, Nfpts = 8193, ΔfDFT = 4 Hz, KDFT = 5.
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The system identification uses a random white noise (N(0, 0.2)) distributed signal described in
Appendix E on page 613. Measurements were acquired over a 0.8 s time period.

11.5.1 System Identification of Secondary Pathes gl,m
ey

System Identification of Secondary Pathes gl,m
ey Ordinary Coherence Function

The ordinary coherence function and related attenuation in the SysID is depicted in Simulation 11.5.1 -
11.5.2 on pages 497–498. We appreciate that for frequency above 30 Hz the ordinary coherence
function is very close to unity which in turn warrants for validity of the results to be presented
in the subsequent text.

System Identification of Secondary Pathes gl,m
ey Transfer Function

The secondary path transfer function is shown in Simulation 11.5.3 - 11.5.4 on pages 499–500.
It can be observed that the system is resonant with a resonance frequency of approximately
ft ≈ 840 Hz. The magnitude spans −40 dB from 10 Hz to 840 Hz in accordance with the lumped
element model in subsection 11.4.1. The transition from the low frequency region resonance
frequency, however, follows two different regimes. For 10 Hz to 100 Hz the magnitude apparently
increases by 30 dB ·decade−1 while in the frequency range 100 Hz to 840 Hz the rate is lowered
to 10 dB · decade−1.

For all transfer functions an indication of the calculated ±3 standard-deviations uncertainty
based on subsection C.3.3 on page 543 is made. Although only 5 averages are used (KDFT = 5)
owing to the close to unity ordinary coherence function involved in the system identification
process except in the very low-frequency range the uncertainty is rather small.

Moreover, we have divided the secondary path transfer function into its minimum-phase compo-
nents in Simulation 11.5.5 - 11.5.6 on pages 501–502 and its all-pass components in Simulation 11.5.7 -
11.5.8 on pages 503–504.

We appreciate that the magnitude of the minimum phase part |gl,m
ey,min| coincide with |gl,m

ey | and
that the phase is monotonically non-increasing. It can also be observed that the magnitude of
the all-pass component is unity and the phase is monotonically non-decreasing as expected.

System Identification of Secondary Pathes gl,m
ey Impulse Response Function

The impulse response function shown in Simulation 11.5.9 exhibit a similar pattern as obtained
from an adaptive system identification in Simulation 7.7.1 on page 335.

System Identification of Secondary Pathes gl,m
ey Group Delays

The group delay of the secondary path for the multi-rate system (MRS) with f0
s = 192 kHz, f1

s =
24 kHz, f2

s = 6 kHz with the discrete-time group delays listed in Table 5.1 on page 266 are shown
in Simulation 11.5.10 - 11.5.11 on pages 506–507. We appreciate that the group delay results
from our lumped-element model in section 11.4 viz. (11.4.4) corresponds fairly well with the
group delays obtained from system identification. However, in the frequency region 10− 150 the
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lumped-element model is inadequate as substantial deviations in the predicted group delays are
present.

11.5.2 System Identification of Feedback Pathes gl,j
xy

In Figure 2.3 on page 35 the positions of the 10 BK 4949 surface microphones flush-mounted on
Gentex HGU-55/P helmet are depicted.

System Identification of Secondary Pathes gl,j
xy Transfer Function

The feedback path transfer functions are shown in Simulation 11.5.12 - 11.5.13 on pages 509–510.

By comparing with the secondary path transfer function in Simulation 11.5.3 - 11.5.4 on pages 499–
500 we conclude that the magnitude of the feedback paths are approximately 35− 45 dB below
the secondary paths. Hence, the feedback signal cancelation scheme described in subsection 7.3.8
on page 310 is not really necessary for the helmet based hybrid MIMO confined-feedforward-
feedback system (HMIMOCFFFBS).

11.5.3 System Identification of Performance Pathes gl,k
py

System Identification of Secondary Pathes gl,k
py Transfer Function

The control-performance path transfer functions are shown in Simulation 11.5.14 - 11.5.15 on
pages 511–512.

By comparing with in Simulation 11.5.3 - 11.5.4 on pages 499–500 we see that the control-
performance path transfer function and the corresponding secondary path transfer function are
very similar up to 1200 Hz, while the earcup to earcup passage leads to a frequency dependent
attenuation of the order 30− 60 dB.
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12. CONCLUSIONS

In this report the research results obtained during the author’s Ph.D. project have been presented.

12.1 Major Achievements

On a conceptual level a to the author’s best knowledge new idea to hybrid feedforward feedback
control referred to as confined feedforward-feedback active control system (CFFFBACS) has been
developed. In this topology a set of reference sensors are positioned on a closed surface com-
pletely confining the volumes that should be subject to active control. The principle is based
on fundamental field theoretical law’s that relate field quantities measured on a closed surface
to field quantities exterior or interior to the surface. These fundamental laws have been used
extensively for many years in the test of antennas, scatters, acoustical sources etc. In such appli-
cations the so-called near-field of the unit under test is scanned on a surface completely confining
the unit under test. Accordingly, important quantities describing the far-field radiation pattern
of an antenna can be deduced. In the present context of active control the principle is some-
what reversed. Here it is assumed that every noise source is at positions exterior to the scan
surface constituted by a set of reference sensors. In addition secondary sound sources are placed
within this scan surface. Field quantities can therefore at least theoretically be determined in
the interior of the reference sensor surface. In the helmet hearing protection device instantiation
of the CFFFBACS such field quantities are not directly estimated. Instead adaptive filters in the
CFFFBACS implicitly when subjected to certain cost functions try to minimize the residual fields
at the positions of the error sensors.

The main advantage of this topology is twofold. Firstly, complete knowledge of the field in the
interior of the scan surface can theoretically be established. Secondly, time-advance information
is obtained by this method which is very important in active control applications where causality
constraints often put a limit to the achievable performance.

The first part in this report partially paved the road for development of more general framework
of sensor data acquisition with application to active control. In the field of acoustical signal
processing a new method - at least to the author’s best knowledge - that is referred to as joint-
channel residual spectral analysis (JCRSA) was developed for the extraction of timing information
in spatially distributed multi-channel systems. A problem exists when one attempts to model
a naturally spatial distributed system with no obvious input and output channel definition by
a finite lumped-elements multi-channel system. By joint-channel-conditioned spectral analysis
as opposed to using ordinary spectral analysis individual transfer function information are often
discernible from some average transfer function. This proposed method has roots in the multiple
coherence function (MCOF) and considers each output channel in turn. A jointly-conditioned
power spectral density matrix is constructed by diagonal elements of power spectral density
functions that are conditioned on every other input channel and where the off-diagonal elements
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are cross-spectral density function jointly-conditioned on all the other input channels. By the
term conditioned is meant that only that part of the signal that bears some unique information
that could not have been constructed by linear superposition of the signal contents present at
the other input channels is used. The ability of the developed method to extract individual
channel timing information in a diffuse sound field involving signal information deeply buried in
multi-channel interferences was demonstrated. Such timing information could subsequently be
used for the determination of a quantity that was referred to as the acquisition lead time. The
acquisition lead time in turn was used to assess the achievable active noise reduction performance
as limited by causality constraints.

The applicability of the method is limited by the spatial sampling frequency, which determines
the upper frequency above which spatial aliasing introduces non-linearities preventing correct
calculation of the conditioned spectra involved. A remedy for this is to constrain the analysis
well below the spatial Nyquist frequency. As is well known, however, low-pass filtering a signal
introduces temporal side lobes in the cross-correlation functions thereby blurring the timing
information somewhat.

A practical application of this CFFFBACS design is for example for an active noise reduction
system for humans wearing a helmet that can be used to support the reference sensors. Such
a prototype system has been developed and field measurements subsequently conducted under
laboratory conditions, but also conducted onboard airborne military platforms. Parts of these
measurements have been reported in this report. In two cases reported data were acquired
for an amount of ten respective eleven reference sensors and for two performance sensors that
were positioned in order to resemble the noise pressure experienced by humans at a similar
position in space. The JCRSA-based analysis was used for ”proof of concept”. Analysis of the
diffuse sound field measurements and field measurements indicated a theoretical active noise
reduction (ANR) capability ranging from 35 dB in the very low-frequency region from 20 Hz and
gradually decreasing up to 10 dB at 800− 1000 Hz. This assessment is based on a linear active
control feedforward system using such an amount of reference sensors. It should, however, be
recalled that at frequencies under approximately 50Hz the performance would typically be limited
by the limited dynamic range of the actuators. Moreover, no apparent saturation in MCOF with
increasing number of reference sensors was seen. Hence, by including additional reference sensors
the upper frequency limit determined by the MCOF would most likely increase as a consequence
of closer spatial sampling. Furthermore, a time-advance of the order of 800-900µs of the reference
sensors relative to the performance sensors was deduced. Such time-advance is of great advantage
as it basically eliminates causality problems. In comparison ordinary feedback system solutions
notoriously suffer from the time-lag that exists between an observation is made by the error
sensor and until an appropriately dosed rejection signal is available at the same position.

These observations have been confirmed in MATLAB®-based simulations involving multiple,
uncorrelated and spatially distributed noise sources.

Causality constraints pertaining to active control has been examined in depth. Fundamental
to the casuality analysis is the so-called plus operator that enters the formula that defines the
optimal causally constrained weight vector. Constructed examples, have revealed some of the
technicalities associated with the use of the nonlinear plus operator. Accordingly, new insights
to the actions of the plus operator

{
·
}

+
was provided.

A practical framework for multiple-channel (MC) spectral factorization using the prediction error
filter (PEF) was developed. This technique is referred to as the multiple-channel prediction error
filter spectral factorization algorithm. For the purpose of MC spectral factorization a variant of
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existing transfer function definitions was proposed. By using this definition more robust estimates
of the transfer function of the PEF was obtained. This multiple-channel prediction error filter
spectral factorization (MCPEFSF) algorithm has been used in all the presented examples in this
chapter. It was demonstrated that by using the MCPEFSF algorithm that the associated z-
domain Wiener-Hopf (WH) filter when exposed to random white noise signals even outperformed
the t-domain WH filter that is tailored to such flat spectral excitation. Moreover, for the single-
channel (SC) case the MCPEFSF algorithm even outperformed the cepstral method.

A suite of examples of increasing complexity was constructed in order to exhibit some of the
characteristics related to causality constraints. In a general context it can be concluded that
the inverse of the minimum-phase component of the plant is of profound importance for the
achievable ANR performance.

Moreover, it can be concluded that although group delays are often considered in an initial design
phase, however, in order to assess the ANR capability of a system, such analysis is often deemed to
be to primitive and will often leads to an underestimation of the achievable performance. It was,
however, confirmed that the discrete-time group delays have a direct impact on the achievable
performance while the impact of the continuous-time group delays is less predictable. Hence, the
performance analysis should preferably be based on simulations involving one of the expressions
presented for the optimal causally constrained and finite-order constrained weight vector for the
MC z-domain WH filter.

The analysis also revealed that the current version of the Terma Earcup System is rather un-
fortunate being insufficiently damped. However, simulations did reveal that by decreasing the
Q-factors associated with the resonance of the passive spring-mass-damper system and the Q-
factor associated with the cross-over network of the tweeter unit this would significantly improve
the ANR performance of the helmet system. Such improved design is beneficial both for a feedback
system and a feedforward system. Hence, from the examples presented, it can be concluded that
a considerably amount of ANR performance is available from a well-designed hearing protection
device (HPD) in particular the plant that in the present case coincides with the Terma Earcup
system. Accordingly, in the design of an active HPD the optimal choice of the secondary path
and in particular the resulting inverse of the minimum-phase component is crucial and should
receive much attention in the design phase. Such design effort, however, is considered outside
the scope of the present Ph.D. project and therefore left for future research activities.

Considering, the proposed confined feedforward system (CFFS)for the actual HPD it was found
that owing to the acquisition lead times provided by this topology a higher active control at-
tenuation level is in general obtainable than by a feedback system in particular if we use a
finite-duration impulse response (FIR) filter of sufficiently high order and enforce the feedback
system to be robustly stable. However, due to the fewer total weights involved the feedback
system provides the fastest convergence. The examples also revealed that by optimizing the HPD

as discussed above the feedback system will then typically provide the best ANR performance
in the low-frequency range while the CFFS is in favour at higher frequencies. Requirement on
robust stability, however, may severely limit the upper operational band width of the feedback
system.

In a practical design the active control engineer may prefer to use frequency-domain-based adap-
tive filters in order to tailor the systems to specific costumer preferences and the actual frequency
contents of the disturbance signals.

Finally, it should be remarked that the added complexity of the CFFS over the ordinary feedback
system (FBS) may render such system prohibitive costly.
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Active control systems notoriously suffer from causality constraints which are of particular im-
portance in an ordinary feedback system[s] or the feedback part of a hybrid FFFBS. In order
to reduce delays related to the conversion stages a novel and general multirate (triple-rate) sys-
tem for active control of sound and vibration (ACSV) applications that is based on time-domain
adaptive filters (TDAFs) was developed. By using a very fast system (zeroth level) sampling fre-
quency (192 kHz) almost negligible conversion delays are obtained. Active control is conducted
at a slower downsampled (first level) speed which, however, is still largely oversampled compared
with the operational bandwidth of the system. The one sample control output delay is therefore
small while preserving the computational effort required for the generation of the control output
signals at an acceptable level. Tap-weight adaptation takes place at even slower downsampled
(second level) speed. This sampling frequency is selected as a compromise between the compu-
tational burden involved in the adaptive tap-weight updates and the requirement on fast update
rates to ensure similar fast convergence and good tracking capabilities to nonstationary signals.
Moreover, by limiting the bandwidth subject to adaptive control well below the full frequency
span corresponding to the highest sampling frequency potential problems of large eigenvalue
spread and poor frequency resolution leading to poor tap-weight convergence rates can be al-
leviated. Furthermore, instead of operating at the highest sample rates but by restricting the
bandwidth of adaptive control the corresponding requirement on very long FIR filters for adap-
tive tap-weights and plant representation can be avoided. Enforcing some reasonable constraints
on the amount of sampling frequencies supported this multi-rate functionality was successfully
integrated in the hybrid MIMO feedforward-feedback system (HMIMOFFFBS). Moreover, it should
however, be recalled that the multi-rate level 0 is not implemented in the simulator. As a conse-
quence the real benefits are first experienced in the real-time environment (RTE) implementation
in terms of a higher operational bandwidth and/or active control involving a higher amount of
sensors. The actual computational savings provided by a multirate ANR system will be applica-
tion dependent. In particular, for computational expensive adaptive filtering algorithms as the
fast array recursive least-squares (FARLS) multi-rate adaptive control presents the greatest advan-
tage. For the normalized LMS (NLMS) family the benefit from a slow second level sampling rate
is largely lost by the necessity of upsampling of the adaptive tap-weights to the first multi-rate
level.

Probably one of the most complicated systems used for active noise control (ANC) in particular
for headset applications has been developed. A bottom-up description of the HMIMOFFFBS from
basic multiple-input and multiple-output (MIMO) feedback system and MIMO feedforward system
to the full blown hybrid MIMO confined-feedforward-feedback system (HMIMOCFFFBS) including
provision for system identification and integrated communication (IC) was made. Provision is
also made for elimination of feedback systemig[s] that potentially can disturb the reference signals
with possible loss of performance as a consequence.

In the active control community the least-mean-squares (LMS) and variants hereof that are most
commonly applied both for adaptive control and adaptive plant representation. In a demon-
stration off-line simultaneous system identification capabilities of twenty feedback paths, four
secondary paths and four primary paths was made. The superiority of the αγΠε-affine projection
algorithm (αγΠε-APA) over both the FARLS algorithm and in particular over the LMS algorithm
in terms of the converging time of the adaptive tap-weights representing the individual plant
response was demonstrated. A fast converging times is of practical importance for fast adapta-
tion to changing plant condition and for minimum artificial noise dose, that can be annoying to
the user. Moreover, the minimum filter length associated with a FIR filter representation could
be determined. Current research addresses the use of α-stable random noise signals for on-line
system identification.



12.1. Major Achievements 521

A new idea for efficient implementation of a multi-channel system in which the adaptive filters
involved are allowing to take different lengths was presented. This is accomplished by instead of
using matrix-like structures to use cell-like structures allowing much more flexibility. Depending
on the specific distribution of the filter length required for the weight representation the number
of floating point operations can be reduced by expectably 0-40%. Similarly, considerations apply
to the choice of adaptive tap-weight representation of the feedback paths, secondary paths and
primary paths. The governing expressions for the control system, however, become a somewhat
more involved.

A novel performance analysis of the developed linear-least-mean-squares estimate (l.l.m.s.e.)-based
multiple-channel-αγΠε-affine projection algorithm (MC-αγΠε-APA) adaptive filter encompassing
both dynamic weight-driven leakage and dynamic control-effort-driven leakage and numerical
regularization as well as weight regularization was conducted. Moreover, in our presentation we
also allowed the step-size μ, the leakage control parameters α, γ and the numerical regularization
parameter ε to attain matrix-values and to be time-variant. Closed-form expressions for the
mean- and mean-square steady-state performance as well as transient response performance of
the adaptive filter were obtained. The main contribution to the performance analysis theory is
the inclusion of time-variant parameters that in turn may be either deterministic or stochastic in
nature. Furthermore the analysis conducted in this report uses an advanced random-walk model
and also allows a non-vanishing initial weight vector. Usually, the random-walk model is omitted
from the transient analysis. However, in the presence analysis we allowed a general random-walk
model to take the non-stationarity of the system into account.

The performance expressions for the MC-αγΠε-APA adaptive filter in general are considerably more
complicated than similar results pertaining to the ordinary ε-affine projection algorithm (ε-APA)
and ε-NLMS (ε-NLMS) algorithms.

A suite of adaptive filtering algorithms has been implemented and tested with the use of the
ACSV simulation tool.

Owing to the complexity of the system a considerably amount of time has been spent on the
development and test of the software underlying the simulator. The RTE implementation is
presently being subject to extensive tests.

Although the three branches of physics, acoustics, elasticity and electromagnetics seem quite
dissimilar and describe completely different phenomena, however, they are all subjectable to
analysis in the mathematical framework of field theory. Therefore, by taking the necessary
precautions results that have been developed for one type of physical system can in some specific
cases be adapted to one of the other two physical systems considered. In particular, thorough
examination of the governing equations revealed that results for spherical near-field antenna
testing (SNFAT) as used for more than 30 years for example at Ørsted TUD potentially can be
generalized to predict field quantities from sensors being responsive to acoustical as well as
elastoric waves. Among such sensors we find ordinary pressure microphones, (radial) velocity
microphones and accelerometers. For this purpose a so-called probe description of the sensor
supposedly used for the acquisition of the sensor information must be made. As implicitly appear
from the name SNFAT scanning of the fields takes place on a sphere. However, as discussed in
Appendix F the spherical coordinate system is also the only coordinate system in which the
vector wave equations separate for all three physical systems considered which in turn greatly
simplifies the analysis. The confined array technique is indeed dependent on the availability of
a sufficient number of reference sensors in order to avoid spatial aliasing.

The HMIMOCFFFBS is prepared for future replacement of FIR filters by implementation, e.g.,
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Kautz/Laguerre filters. An indication of how such replacement should be carried out is made.

12.2 Other Achievements

Besides conducting the research activities that have formed the basis for the production of the
present thesis some other work activities have been carried out during the course of the project.
Starting from scratch measurement facilities have gradually been established at Terma premises,
laboratory equipment as well as equipment for field test have been defined, purchased and imple-
mented. Owing to the long time experience of Terma in the field of military airborne applications
three on-site noise recordings F-16/B, CH-47D Chinook and AS-532 Cougar could therefore suc-
cessfully be conducted. Some indicative examples of noise spectra have been presented. The
detailed information, however, is considered Terma property and therefore not included in this
thesis.

As part of the project a MATLAB®-based general purpose tool for the analysis and synthesis of
ACSV systems and in particular the HMIMOCFFFBS has been developed. This software tool has
also largely been used to compensate for the lack of a hardware platform with sufficient channel
bandwidth and processing capability to support the HMIMOCFFFBS.

12.3 Present Research and Development Activities

At the time of writing most parts of the active control system has been embedded in a RTE that
comprises a digital signal processor (DSP). Unfortunately, this hardware board only supports
four microphones. As one channel should always be reserved for the error sensor the number of
reference sensors supported accordingly amounts to three. Hence, a new hardware board must
be designed and manufactured before the the advantages of the proposed HMIMOCFFFBS can be
fully exploited.

The MC-αγΠε-APA and MC-αγΠε-NLMS adaptive filters will be subject to extensive future test and
evaluation activities. Verification of the developed sliding window FARLS adaptive filter algorithm
is also planed.

The hybrid continuous-time discrete-time topology (HCTDTT) introduced in chapter 4 and the
underlying continuous-time-controller is currently under development outside this project on a
contract.

For the development of a reference test unit (RTU) for active control an acoustical transparent
sphere and an acoustical semi-transparent-semi-opaque hollow sphere are currently being con-
sidered. The aim of the RTU is to provide a highly accurately modeled framework with which
reliable and accurate tests and evaluations of developed theories and methods can take place.
In contrary, for the specific instantiation of an active control system, namely the helmet based
HPDs only very crude models are available. Therefore, when applying a complex active control
system including hybrid combination of adaptive feedforward and adaptive feedback elements it
may often be exceedingly difficult to predict very accurately the attenuation achievable.

The adaptation of the SNFAT technique discussed in Part V to the domain of acoustics looks as
a promising idea in the development of such reference test unit.
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12.4 Future Research and Development Activities

Of course not all research work elements involved in the design of a complex active control (AC)
system can be carried out within the scope of a single Ph.D. project. Therefore some avenues of
future research activities will be suggested in this section.

The JCRSA method developed in chapter 2 should formally be verified including and assessment
of the obtainable accuracy. The ACSV RTU described in Appendix G is candidate hardware
platform for this purpose.

In the design of an active HPD the optimal choice of the secondary path and in particular the
resulting inverse of the minimum-phase component is crucial and should receive much attention
in a future design phase.

In the literature it is often seen that the noise attenuation predicted by a HPD measured by the
error microphone in the active control loop exceeds the attenuation obtained from either physical
ear channel measurements or psychophysical measurements by as much as 10 dB. Measurements
made under laboratory conditions as well as field measurements also revealed a loss of coherence
between the disturbance signal and the performance signal present at the error sensor and perfor-
mance sensor respectively. Therefore, the acoustical/electro acoustical environment in modern
active HPD determines an upper limit to the achievable attenuation figures, which probably is
more problematic than the performance limitations associated with bone conduction. Accord-
ingly improved plant models for the secondary paths and primary paths are required. Such
plant model improvement can ultimately lead to better controllability and increased bandwidth
of the system. Hence, higher attenuation figures should be obtainable while the requirements on
controller robustness are preserved.

In chapter 4 adaptive inverse control (AIC) was proposed as a method to achieve adaptive control
of unknown and possible time-varying systems by using adaptive filters. The objective of the
adaptive inverse controller is to in cascade with the actual plant (secondary path) to obtain a
plant that seen from the digital controller equals the transfer function of a chosen reference plant.
As the earcup system is still under development, and the plant uncertainties therefore not well
known the verification of the AIC is postponed to the completion of this earcup system conducted
and experiments exploiting these variations in a practical environment have been conducted.

Upon completion of the ANR hardware tests of the adaptive filter algorithms should recommence.
Moreover, the different algorithms and their individual parameterizations will be assessed. Fi-
nally, the adaptive filters will be subjected to additional performance analysis and system opti-
mization when the hardware supporting the HMIMOCFFFBS becomes available.

Another avenue of future research is the exploitation of Kautz/Laguerre adaptive filters for more
computational efficient representation of the various plants in the system.

In the military domain the trend is to wear complex triple layer hearing protection devices.
The first level of protection is provided by the helmet itself. The earcups constitute the second
protection layer. The third protection layer is provided by earplugs that are either shallowly
or deeply inserted in the ear channels. Both the earcups and the earplugs will be equipped
with ANR hardware. The proposed HPD instantiation of the HMIMOCFFFBS involves the first
and second protection layer therefore comply with this trend. Future research, however, should
therefore also investigate the potential benefit of integrating ANR earplugs into a multi-channel
ANR system.

The analysis of stability of MIMO systems with mixed feedback and feedforward topologies is
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considerably more complicated than in the single-input and single-output (SISO) feedback case.
The requirement on using adaptive filters as opposed to fixed (analogue) filters renders the
analysis and synthesis of such filters even more challenging.

The Chinook CH-47D helicopter noise recordings revealed an exceedingly complicated behavior
of the signals with large spatial variations and time-dependencies. The behavior is not fully
understood and additional measurements are required. An in-depth analysis of acoustical fields
experienced in the military aircrafts and in particular helicopters is required in order fully to
comprehend how to address this field variation from an AC perspective. Furthermore, previous
measurements exclusively were in terms of passive noise recordings. A comprehensive measure-
ment scheme comprising in-situ performance measurements on the developed active control of
sound (ACS) should be conducted. In addition the ANR measurements should include microphone
in the ear (MIE) techniques.

For passive HPDs a set of physical and subjective based measurements procedures exist. However,
at the moment of writing no such standard exists for the test of active HPD. Based on the
experiences acquired during future evaluation of realized ANR systems, contribution to such
standardization work should be made.

Throughout the report numerous references are made to the literature pertaining the scientific
subject being analyzed. Therefore, this present report should among other sources hopefully
provide fruitful information for future AC research and development activities.
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A. ACTIVE NOISE CONTROL PERFORMANCE

A.1 Introduction

The performance of a modern complex active noise control system (ANCS) is determined from
numerous system parameters. The objective of this chapter twofold. Firstly, we want to define
evaluation criterions for the assessment of the performance of an active noise control (ANC)-
system. Secondly, approximate formulas for the frequency-dependent achievable attenuation as
a function of delays are provided for feedback system (FBS) and feedforward system (FFS) design.

Our main interest in this chapter is the overall performance of an ANCS. For a more subject
specific performance evaluation, e.g., on adaptive filters the reader is referred to relevant chapters,
e.g., chapter 9 where the adaptive filter performance is illuminated.

A.1.1 Chapter Outline

This chapter is organized as follows. Following these introductory remarks section A.2 presents
various methods to assess the overall performance of an ANC system ranging form single-channel
(SC) systems to multiple-channel (MC) systems evaluated over multiple trials and scenarios. Such
practical active noise reduction (ANR) performance quantities are also useful when formulating
cost functions as presented in chapter 8 on page 371. Moreover, the simulations presented in
chapter 5 on page 249 and chapter 7 on page 291 make extensive use of the attenuation quantities
involved.

In a real system constraints on causality apply. Hence, delays in the control loop will often be one
of the most important factors that limit the achievable performance. This in particular pertains
to FBS design. An expression for the achievable ANC performance as a function of frequency
for a FBS when limited exclusively by delays in the secondary path is presented in section A.3.
For FFS design time-advanced information may be provided by a set of reference sensors. For
the same reason a hybrid MIMO confined-feedforward-feedback system (HMIMOCFFFBS) has been
proposed in this report.

A.2 ANC Attenuation

The probably most established figure of merit within the active control (AC) community is the
steady-state integrated noise attenuation provided by the system over the volumes in space. This
figure of merit is usually obtained by averaging the attenuation over some discrete positions in
space. We will generally measure or estimate the performance locally at each of the Np locations
of the performance sensors depicted in Figure 1.1.
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A.2.1 ANC Attenuation Time-Frequency Domain

The local attenuation at, e.g., the k’th performance sensorAp
k(f, t) will be a function of frequency

and generally exhibit time-dependence. The computation of A will primarily be based on signal
analysis which is treated in more details in Appendix C. We will define the time-frequency-
domain attenuation by

Ap
k(f, t) � 10 log10

(
W p

k (f, t)
Sep

kep
k
(f, t)

Sdp
k
dp

k
(f, t)

)
[dB]. (A.2.1)

Here Sψaψa(f, t) denotes the instantaneous (short term) auto spectral density function (power
spectral density (PSD)) of signal ψa(t). Similarly, Sψaψb

(f, t) will be used to denote the instan-
taneous (short term) cross-spectral density function between signal ψa(t) and ψb(t) [1]. The
quantity W p

k (f, t) is a frequency (time-variant) weighting function, that will be subject to the
normalization constrain

∫ ∞
−∞ W p

k (f, t) df = 1, ∀t ∈ R, is applied to the k’th performance sen-
sor. For example W p

k (f, t) may be a A-, B-, C- or D-weighting filter. An unweighted attenuation
expression is obtained by assigning unity to W p

k (f, t). The overall objective of the ANC-system is
to suppress possibly time-variant disturbances. Hence, in order to adapt to changing environmen-
tal conditions the cost functions involved in the AF should accommodate this behavior. Tracking
capabilities of the adaptive filter algorithms are discussed in detail in chapter 9. Time-variance
in the weight functions are therefore sometimes required in order to allow for time-variant ANC-
system objectives.

The global attenuation capability measure is obtained as a logarithmic-weighted sum of the local
attenuation quantities above (in dB), that is,

Ap(f, t) �
Np∑
k=1

W p
kA

p
k(f, t) [dB]. (A.2.2)

The quantity W p,dB
k denotes the attenuation weight factor of k’th performance sensor. Often a

normalization constraint
∑Np

k=1 W p
k = 1 will be preferred.

In a more advanced analysis we should estimate the performance by considering a number of
trials (simulations) Nt . By running multiple independent and identical distributed (i.i.d.) trials
we can decrease the variance the estimate of Ap(f, t).

A trial-averaged attenuation estimate Āp(f, t) is then obtained from

Āp(f, t) =
1
Nt

Nt∑
n=1

Ap(f, t, n) [dB], (A.2.3)

where n is the trial index. Finally, as the environmental conditions in which the ANC-system
shall operate normally is not known in advance we should examine the robustness of the system
to varying conditions by using a number of (different) scenarios Nsc

1. Hence, we will define the

1Scenarios will usual not be jointly i.i.d.
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scenario-averaged attenuation estimate scenario-averaged attenuation estimate Ǎp(f, t) by

Ǎp(f, t) =
1

Nsc

Nsc∑
s=1

Āp(f, t, s) [dB], (A.2.4)

where s is the scenario index.

A.2.2 ANC Attenuation Time Domain

In the time-domain will usually apply the mean-squared-error reduction criteria and define the
attenuation at the k’th performance sensor Ap

k(t) by

Ap
k(t) � 10 log10

(
E (ep

k(t))2

E (dp
k(t))2

)
[dB], (A.2.5)

where ep
k and dp

k designate error signal and disturbance signal at the k’th performance sensor
respectively both considered as RVs. The expectation operator is designated by E .

In practice except for theoretical analysis, however, we will use the discrete-time realizations of
the error and disturbance signals ep

k(i) and dp
k(i) and obtain a filtered estimate of Ap

k(i) Âp
k(i)

from

Âp
k(i) = 10 log10

(
̂(ep
k(i))2

̂(dp
k(i))2

)
[dB]. (A.2.6)

The estimated squared-disturbance ̂(dp
k(i))2 and estimated squared-error ̂(ep

k(i))2 in turn are
obtained from an exponential-time-weighting procedure:

̂(dp
k(i))2 = ‖dp

k,i‖2ΛA (A.2.7a)

̂(ep
k(i))2 = ‖ep

k,i‖
2
ΛA . (A.2.7b)

In (A.2.7) the MA × 1 column vectors dp
k,i and ep

k,i defined by

dp
k,i � col {dp

k(i), dp
k(i− 1), . . . , dp

k(i−MA + 1)} (A.2.8a)

and

ep
k,i � col {ep

k(i), ep
k(i− 1), . . . , ep

k(i−MA + 1)} (A.2.8b)

have been introduced. The quantity MA denotes the number of samples used in the attenuation
calculations and the quantity ΛA is a MA×MA positive-definite exponential weight matrix used
in time-averaged attenuation calculations

ΛA � diag λ0
A, λ1

A, . . . , λMA−1
A , (A.2.9)
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where the weight scalar (forgetting factor) used in time-averaged attenuation calculations λA
usually is very close to one (0� λA ≤ 1).

In practice rather than specifying MA it is probably more convenient to specify an attenuation
estimation time that we will denote by TA. Then MA is readily obtainable from the sampling
frequency fs

MA = !{fsTA}, (A.2.10)

where the operator !( · ) designates taking the ceil of the term inside the parentheses.

Usually, in an operational ANC-system no performance sensor exists and the performance is
assessed directly from the error sensors. The attenuation at the m’th error sensor Ae

m(f, t)

Ae
m(f, t) � 10 log10

(
Semem(f, t)
Sdmdm(f, t)

)
[dB]. (A.2.11)

Similar expressions for global attenuation (A.2.2), the trial-averaged attenuation (A.2.3) and
for the scenario-averaged attenuation (A.2.4) using the error sensors instead of the performance
sensors are readily obtainable. However, it should be remarked that using an error sensor that
partakes in the control loop might lead to an overestimation of the ANR performance. This
problem is for example reported in [2, Ch. 7].

A.2.3 ANC Attenuation Frequency Domain

Under the assumption of wide-sense stationary (WSS) the steady-state frequency-domain atten-
uation can readily be obtained from (A.2.1) - (A.2.4) by omitting the time-index.

A.3 Delays

A.3.1 Delays in Secondary Signals Generation

In signal processing applications, delays are usually not an important issue as long as the wave-
form is preserved. However, as will be discussed next delays become crucial in control systems,
especially for ANC application owing to the relatively large bandwidth that generally is involved.
In pure continuous-time applications delays are contributed by the transducers and the propa-
gation of the rejection signals. In modern discrete-time systems additional delays are encoun-
tered. Delays are involved in the analogue to digital converter (ADC) and digital to analogue
converter (DAC) conversion stages, the anti-aliasing filter (AAF) and the reconstruction filter (RF)
as well as at the computation stage. In multi-rate system (MRS) design delays associated with
the decimation interpolation filters (DIFs) should also be taking into account.

From elementary control theory, e.g., [3, Ch. 5], it is well known that delays in the control path
will limit the operational bandwidth of a feedback based active control system. In [2, Ch. 6] we
can obtain the following expression for the obtainable ANR attenuation limited by delays in a
random white noise (RWN) Aτ as a function of the delay in plant response τ and frequency f

Aτ (f) = 20 log10

∣∣1− e−ı2πfτ(f)
∣∣ [dB], FBS. (A.3.1)
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A.3.2 Acquisition Time

In a FFS one of the objective is to obtain time-advanced information concerning the disturbances.
However, delays can ultimately limit the compactness of the ANR-system. In section 2.4 on
page 32 the acquisition lead-time was defined viz. Definition Definition 2.1. Loosely speaking
the acquisition lead-time refers to the time τxjdm = t2 − t1 that passes from the acquisition of
the j’th reference signal xj(rj , t1) at time t1 and at position rj in space, until the (coherent)
disturbance signal, dm(rm, t2) is acquired by the m’th error sensor at time t2. Similarly, the
delay τ = t3 − t1, where t3 is the time where the rejection signal, rm(rm, t3) is acquired by the
m’th error sensor. Intuitively in a diffuse sound field the events that t2 ≤ t1 and t2 ≥ t1 both
take the probability 0.5. However, as we observed in chapter 2 propagation delays in the primary
paths of a confined feedforward system (CFFS) often lead to positive acquisition lead-times. For
the FFS (A.3.1) applies but with τ corrected for the acquisition lead-time, that is,

Aτ (f) = 20 log10

∣∣1− e−ı2πf max {0,τ(f)−τacq(f)}∣∣ [dB], FFS. (A.3.2)

Causality constraint refers to the condition under which τ(f)− τacq(f) < 0 (or t3 < t2). Accord-
ingly, in application with strict space limitation like a helmet ANR system or an active mufflers
for motorcycles delays can ultimately limit the achievable performance especially in the upper
frequency bandwidth. In the general case of propagation in a dispersive medium τacq will exhibit
dependence on frequency.

Delays caused by the plant in a feedforward active control system (FFACS) has historically been
considered as source of instability. As explained in section 6.3 on page 275, by employing the
mFx technique synchronization between the reference signal and the error signal is establish
and this undesired effect caused by plant delays can largely be compensated for. Of course the
secondary source pathes do not in general resemble pure delays. However, as in chapter 2 on
page 17 we may determine acquisition lead-times experimentally and use these as a first order
delay estimates for more complex systems.
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B. RANDOM SIGNALS

In section B.1 we will briefly review the formal definition of random variables (RVs) and random
processs (RPs). The formal definition will then be put into perspective using the F-16 application
as an example. Subsequently the theme of section 5.3 and section 5.4 is the processing stages
involved in the sensed signals and actuated signals respectively.

B.1 Signals and Stochastic Processes

In the course of active noise cancelation design and analysis extensive use of the term signal is
made. The term signal is often associated with something that conveys information in contrast to
noise that tends to deteriorate the perception of the information. In the context of for example
active noise control applied to fighter pilot helmets the communication signal and possible 3-D
audio constitute conveying signals. However, in this report we will use the term signal in a
more broad sense meaning that it could refer to something that does convey information but
also to something that stems from some noise process. It should be recalled that in practice
measurement noise will inevitably also be present. Hence, no exact knowledge regarding any of
the signals is available anyway.

Signals are encountered at the input and output as well as intermediate stages of an ANR
controller. A descriptive name will be assigned to each of these signals.

B.1.1 Signal Classification

A signal can generally be classified as being either a deterministic or a nondeterministic signal [1,
7]. The latter class of signals is also referred to as stochastic signal. Further classification of
deterministic and random signals can be made [1]. We will address the classification of signals
in more details during the discussion of the F-16 noise recordings provided in Appendix D on
page 547.

Although estimation historically has been divided in deterministic least-squares estimation and
linear least-mean-squares estimation, these estimation problems are equivalent in the sense that
solving a problem from on class also solves a problem from the other and vice-versa. We will
return to this classification in chapter 8 on page 371.

B.1.2 Stochastic Processes

In the following formal discussion of a RP, time will be chosen as the ordinate axis. However, it
should be recalled that the theory of RV is general and therefore also pertains to cases where the
RP involved exhibits spatial-dependence instead of time-dependence.
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In the mathematical analysis it is convenient to consider all signals as stochastic signals. Hence,
in the extreme case a deterministic signal can also be viewed as RP with a variance at all time
equal to zero (σ2

ψa
= 0).

Preceding the definition of a stochastic process we need to define a random variable [1, 7].
Basically, a RV is a rule, that is, a function for assigning to every outcome ζ of an experiment
(measurement) S a number ψa(ζ) where we by ψa denote an arbitrary random variable, that
is, a function of ζ. As is customary boldface type will be used to denote a random variable in
order to distinguish RV from dummy variables. By process is understood something that goes
on for some period of time (or some range in space). Accordingly a stochastic process or RP is
a natural extension to the concept of RV. A RP is a family of time functions depending on the
instance parameter ζ. The stochastic process is observed continuously in time or at discrete-
time point conducting new but similar experiments. Then an arbitrary stochastic process ψa

is a rule for assigning to every ζ a function ψa(t, ζ) that generally varies with time. The RVs

ψa are characterized by a set of probability distribution functions that in general exhibit time-
dependence. By ψa(t, ζ) we make explicit reference to a particular sample function of the RP.
A collection of such identical experiments is referred to as an ensemble in the literature.

Hence, a particular signal can be considered as a sample sequence of a RP. For example in
experiment S the objective is to measure the instantaneous sound pressure p(ra, t, ζ) at some fixed
but else arbitrarily chosen position ra in an F-16 cockpit in the time interval t1 � t � t2 following
an event that is repeated in total, e.g., NE number of times (1 � ζ � NE). An event could be
to make some kind of operation invoking the hydraulic system in the F-16. By conducting this
experiment repeatedly the stochastic process involved in the activation of the hydraulic system
can then be observed and subsequently be subject to a more comprehensive statistical analysis.
The main problem in this example is to repeat the experiment while preventing other factors
contributing to p(ra, t, ζ) from changing too. Otherwise, the significance of, e.g., invoking the
hydraulic system as compared with other variables.

For a more rigorous treatment of the concept of stochastic processes refer to [1, 5, 7].

We will return to the issue of stochastic processes in the analysis of the F-16 noise recording
provided in Appendix D.

The concept of RPs is often applied as a model for the various signals involved in the theoretical
analysis of adaptive filters. In some contexts, however, only a single measurement and not an
ensemble of experiments is available. Instead the statistical information might be derived form
time-averages rather than ensemble averages. However, this requires that the signal is ergodic
in the pertinent parameters. Basically, ergodicity is a topic dealing with relationship between
statistical averages and sample averages. For example. if a signal is ergodic in a wide sense,
that is, ergodic in the mean and covariance this implies that corresponding ensemble averages
and root-mean-square averages can be substituted by similar time-average quantities [7, Ch. 12].
Moreover, it should be remarked that the signal will then necessarily also exhibit stationarity
on the same parameter set. However, the converse is not necessarily true. Hence, stationarity
does not necessarily imply ergodicity. This means that two particular sample functions of a RP,
e.g., ψa(t, ζ1) and ψa(t, ζ2), might each be stationary in some statistical sense and though be
different in one or more of the statistical variables. In the previous example two consecutive
activations of the hydraulic system could possibly lead to a root-mean-square pressure that does
not vary with time in the observation interval [t1; t2]. However, the sound pressure level could
be different in the two experiments.
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B.1.3 Signal Representation

For the sake of convenience the choice of terminology and symbols used to represent signals will
be defined in the subsequent text.

In order to preserve mathematical generality throughout this report complex notation will be
used. This choice has been made even though complex-valued baseband signal are not being
considered in the active noise reduction system, but made to ensure smooth transition to other
applications involving complex-valued signals. The implementations in MATLAB® and real-time
environment are at present, however, confined to real-valued data.

The ANR hearing protection device (HPD) of course is a physical system and involves continuous-
time signals. The hybrid controller depicted in Figure 4.1 on page 241 encompasses both an
analogue filter that operates directly on continuous-time signals and a digital filter that processes
digital signals. By definition digital signals are quantized both in amplitude and in time involving
a sampling process. We will use the term discrete-time signals for these two-fold quantized signals.
In the process of sampling a constant sampling time T will be assumed. In the description of
the digital controller, we will mostly be concerned with discrete-time signals.

In ψa(i) the integer i in parentheses is used as an abbreviation for ψa(iT ) that is the quantized
value of the corresponding continuous-time function ψa(t) at time t = iT . Hence, ψa(t) →
ψa(iT )→ ψa(i) where the latter abbreviation is chosen for notational convenience.

For a more exhaustive presentation of signal quantities the readers are referred to [1], [4, Ch. 2].

Moreover, we will use the common {d,u} notation in adaptive filtering, where d represents the
so-called ”desired signal” and u represents the observations (reference signal) respectively. When
the adaptive filter operates in interference cancelation mode defined in section 8.2 we consider d
as a disturbance. In estimation theory u is referred to as a regression vector [6]. In other contexts
u is called excitation [3]. Normally no statistical information regarding random variable d or the
random vector u is available. Then in practice we have to resort on the realizations {d(i), ui} of
{d,u}.
We will make extensive use of a finite-length signal vector ψa,i that is formed from the discrete-
time signal sequence, ψa(i), according to the first-in-first-out (FIFO) principle

ψa,i = [ψa(i) ψa(i− 1) . . . ψa(i−M + 1)]. (B.1.1)

The number of elements M in the signal vector is typically coincident with the number of tap-
weights used for adaptive filtering of the signal.

In the general time-varying case the cross-correlation matrix Rψaψb
(t) associated with the two

arbitrary signal vectors, ψa(i, t), ψb(i, t), is defined as the expectation of the outer product of
the input vector, with itself

Rψaψb
(t) � R∗

ψbψa
(t) = E

[
ψa(i, t)ψb∗(i, t)

]
. (B.1.2)

The asterisk superscript denotes Hermitian transpose and complex conjugation. The quantity
E [ · ] denotes the expectation operator. It should be remarked that this convention follows the def-
inition pursued in mathematical textbooks [1, 7] and also in MATLAB®. In other textbooks [2],
however, the two signal vectors are interchanged corresponding to a complex conjugation.
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C. STATISTICAL DATA ANALYSIS

C.1 Motivation

The objective of acquiring signal data from field measurements or from laboratory measurements
is to obtain information regarding signal characteristics pertinent to each channel involved, but
also to obtain information regarding joint signal characteristics. Hence, such signal data ac-
quisition has been conducted and reported in this report, e.g., Appendix A on page 529 and
Appendix D on page 547. However, some imperfections will inevitably always enter the data
acquisition process due to hardware limitations, imperfections in the installation, a finite time
slot available for the data acquisition and environmental conditions outside the control of the
operator etc. However, by following certain general guidelines, e.g., as recommended in [1, Ch. 10]
the level of error introduced during data acquisition especially under laboratory conditions can
normally be kept sufficiently low for the purpose. Moreover, domain specific considerations like
for instance those pertaining to the instrumentation airborne military platforms also have to be
taking into account.

The theme of this appendix is an assessment of the errors that result from the statistical data
analysis during post processing of the acquired data. Unfortunately, in engineering practice such
statistical analysis is often neglected. The present appendix does not intend to provide rigorous
(if at all possible) expressions for all estimation errors involved, but to provide relative simple
expressions that can be used for approximation of such quantities and which holds under fairly
reasonable assumptions that can be applied to many practical situations.

As described in Appendix B random signals are described in terms of gross characteristics like
for instance the auto- and cross-correlation functions in the time-domain and auto- and cross-
spectral density functions in the frequency-domain. The inferences of such quantities constitute
another type of error source.

Following this motivational section the periodogram based spectra estimation method is presented
in section C.2. The specific choice of the discrete Fourier transform (DFT) parameters involved
is subject to certain trade-off between different performance measures. Some basic guidelines
for the choice of these parameters that have been followed through the course of this project
is made. In section C.3 expressions for bias error and random error related to the estimation
of various often used quantities in the signal analysis and is provided. These expressions hold
under fairly general conditions. Confidence intervals can subsequently be determined from this
analysis. However, as the periodogram method operates on a finite amount of data it is prone to
such phenomena as leakage, smearing effects, unresolved signals and side lobes. The underlying
periodogram parameters of a statistical data analysis have therefore to a large extent been
included in the figure captions in this report.
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C.2 Modified Periodogram Analysis

The statistical analysis often involves estimation of power density spectra. The preferred type of
method for this purpose is the periodogram method. All periodogram methods are based on the
DFT. A windowing of the data must therefore take place in order to comply with the requirement
on finite-length data. In the ordinary periodogram analysis a rectangular window is multiplied to
the signal. In order to reduce spectral bias errors a method referred to as modified periodogram
which employ a (tapered) data window is used. For an explanation of these techniques the reader
should consult [5, Ch. 10] and [6, Ch. 12].

As will be seen in section C.3 the level of random errors related to our statistical data analysis can
to a large extent be reduced by averaging over many records. Hence, the number of full length
DFT averages designated by KDFT , that can be obtained is critical to the overall estimation
accuracy. This number of averages is largely determined from the amount of samples available
denoted by QDFT and the DFT window length LDFT . Provided that the amount of samples
available is large the LDFT should be sufficiently wide to comply with requirements on resolution
capabilities without compromising KDFT . Hence, in order to resolve two sinusoidal frequency
components LDFT and the choice of window type (Kaiser, Chebyshev, Hanning, Hamming,
Bartlett etc.) together should result in a sufficiently low main lobe width Δfm. The window type
dictates the side lobe level (SLL) while the main lobe width and the extent of the side lobes in
the time-domain vary inversely proportional with the window length.

Moreover, is should be remembered that time-variant signals also set an upper limit on QDFT

and therefore also directly on KDFT . However, if the number of samples QDFT cannot be made
arbitrarily large, and we wish to get a near maximum reduction in the variance out of a fixed
number of points then a reasonable procedure is overlap the segments. This can be accomplished
by moving the DFT window by a number of samples displacement between two consecutive DFT

averages denoted here by RDFT . In order not to discard samples the displacement should not
exceed the window length, that is RDFT ≤ LDFT . The assumption on independent records
of course does not hold for the overlapping windows technique, that is, for RDFT < LDFT .
Accordingly, we will introduce yet another quantity K ′

DFT that denotes effective number of
DFT averages. A common choice is to overlap one half of their length, that is, to let RDFT =
0.5LDFT . Then as proved in [7] under the assumption of a Gaussian process the associated
variance increase due to overlapping data segments only equals a factor of 11

9 corresponding to

K ′
DFT =

(
9
11

)2

KDFT .

Another important parameter for the (modified) periodogram analysis is the the DFT (block)
size represented by NDFT . Usually, an oversampling in which NDFT � LDFT is applied by
zero padding in order increase the number of DFT frequency points Nf,DFT and therefore also to
improve the DFT frequency resolution ΔfDFT . Hereby, fine grain information is provided that can
be useful to extract important features. However, the resolution capabilities is solely determined
by the window length LDFT and the type of window. Furthermore, some bias errors increase
squarely with this frequency resolution bandwidth cf. (C.3.3) on page 542, which accordingly
should be small as possible.

A computational efficient implementation of the DFT is provided by the fast Fourier transform
(FFT). For optimal operation of the FFT a radix 2 number is usually selected for NDFT . Finally,
according to the discussion in section 2.2 on page 18 the sizes of the various channel spectral
density matrices are proportional to the number of DFT frequency points in use. Hence, for
computational reasons Nf,DFT cannot be made arbitrary large.
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C.3 Estimation Uncertainties

Various factors contribute to statistical errors in the estimates of the various parameters char-
acterizing the signals. In second-order statistics the imperfect estimates manifest themselves
as bias errors, random errors and rms errors. For higher order statistics (HOS) corresponding
higher-order types of estimation errors exist.

As discussed above spectral estimation procedures involve spectral windows. The bias error is
always in a direction that understates the dynamic range of the spectra, that is, the peaks are
underestimated and the toughs are underestimated. In practice only a finite amount of data is
available for the statistical data analysis. Therefore, some variance or (random errors) in the
estimated parameters will prevail. However, for consistent estimates the variance will in the
limiting process of an infinite amount of data vanish. In the subsequent text we will list some
relations governing the bias and random error pertaining to both single sample records and to
the joint sample records statistical data analysis used in this report including the autospectral
density functions (ASDFs), ordinary coherence functions (OCOFs), transfer functions and the
multiple coherence functions (MCOFs) and partial coherence functions (PCOFs). The results
stem primarily from [1, Ch. 8-9], but are adapted here for the use of a modified periodogram.
More advanced readings on the statistics of the intervals in ordinary coherence function estimates
can be found in [2–4].

Let ϕ denote an (arbitrary) parameter. The normalized errors considered are then the normalized
bias error in the estimation of (arbitrary) parameter ϕ designated by εb(ϕ) � E ϕ̂

ϕ − 1, the

corresponding normalized random error denoted by εσ(ϕ) �
√

E ϕ̂2−E2 ϕ̂

ϕ , and the normalized

root-mean-square (rms) error represented by ε(ϕ) �
√

E(ϕ̂2−ϕ2)

ϕ .

For most sampling distributions the central limit theorem (CLT) can be invoked provided that
K ′

DFT 
 5− 30 [6, ch. 7]. Hence, as the effective sample size K ′
DFT becomes large, the sampling

distribution of the estimated parameter, say, ϕ approaches a normal distribution regardless of the
distribution of the original variable. In Appendix L on page 773 this result is generalized in the
discussion of so-called stable distributions. A fundamental consequence of this stability property
that is possessed by certain phenomena encountered in various aspects (refer to Appendix L
on page 773 ) is the generalized central limit theorem (GCLT) that states that if the sum of
i.i.d. random variables has a limiting shaped distribution as the number approaches infinity, the
limiting distribution must be a member of the stable distributions.

Henceforth, the CLT assumption is invoked. The implicit assumption on Gaussian distributed
sampling distributions is of profound importance. For example the random error in a variance
estimate involves the determination of a fourth order moment for which a relative simple expres-
sion is obtainable for the normal distribution. Hence, in general the CLT assumption eases the
complexity of the expressions involved considerably. In [1, Ch. 8] an assumption of negligible
bias error and a small normalized rms error is invoked. However, with an increasing number of
samples this will also be the case provided that the estimator is unbiased and consistent. In this
case the normalized rms error and the normalized random error coincide, that is, εσ(ϕ) ≈ ε(ϕ).
Now denoting by nε the number of standard deviations the confidence interval can accordingly
be expressed by

ϕ̂
1

1 + nεε(ϕ)
≤ ϕ ≤ ϕ̂

1
1− nεε(ϕ)

. (C.3.1)
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For small relative normalized rms error, that is, for ε � 0.1 the following approximation is valid

ϕ̂(1 − nεε(ϕ)) ≤ ϕ ≤ ϕ̂(1 + nεε(ϕ)) (C.3.2)

C.3.1 Autospectral Density Estimate

The bias in ASDF estimate of the random signal ψa will be designated by b
(
Ŝψaψa

)
, and is to a

first order approximated by

b(Ŝψaψa(f)) ≈ Δf2
DFT

24
∂2Sψaψa(f)

∂f2
. (C.3.3)

Actually, (C.3.3) holds for rectangular DFT windows to first order irrespective of the probability
density function of the auto spectral density function. The bias error will be less for tapered
windows (modified periodogram analysis) [6, Ch. 12]. It should be observed that, the bias error
is inversely proportional to the squared resolution in the spectrum estimation.

In practice the second-order derivative of the auto spectral density function with frequency is
rarely known and should therefore be obtained within the estimation process introducing yet
another source of uncertainty.

For sinusoidal signals the auto spectral density function is theoretical a Dirac delta function
that takes an infinite value at the corresponding frequency. However, due to the finite spectral
resolution capabilities and the finite main lobe width of the windowing function the power will
be spread over a number of frequency points that approximately counts Δfm divided by the
spectral resolution ΔfDFT . This represent another type of bias error in the auto spectral density
function estimates. However, as the ASDF estimate is used further in the join sample record
estimates, e.g., cross-spectral density function (CSDF) and OCOF and MCOF, these estimates are
therefore also effected by the lack of ability correctly to determine spectral peaks.

The normalized rms error in ASDF estimate denoted by ε
(
Ŝψaψa

)
, is to a first order approximated

by

ε
(
Ŝψa · ψa(f)

)
≈ 1√

K ′
DFT

, (C.3.4)

which generally holds provided that K ′
DFT is large and b(Ŝψaψa(f)) ≈ 0.

C.3.2 Ordinary Coherence

The key entry to the joint sample record uncertainty calculations is the OCOF that was defined
in subsection 2.2.3 on page 23.

The estimate of ordinary coherence squared function (or just coherence function) between the
(arbitrary) random signal ψa and the (arbitrary) random signal ψb denoted by γ̂2

ψaψb
, represents

the linear dependence (correlation) between the spectral components of ψa and those of ψb. It is
defined from the ASDF estimate of the random signal ψa designated by Ŝψaψa , the ASDF estimate
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of the random signal ψb denoted by Ŝψbψb
and the CSDF estimate between the random signal

ψa and ψb represented by Ŝψaψb

γ̂2
ψaψb

(f) ≈ |Ŝψaψb
(f)|2

Ŝψaψa(f)Ŝψbψb
(f)

. (C.3.5)

A source to bias error is the somewhat erroneous expression (C.3.5) for the mean of a random
variable (RV) divided by the product of two RVs. Another source to bias error in joint esti-
mates is propagation time delays τ between the investigated sensor signals. From [1, Ch. 9] we
find that cross-spectral density function, transfer function and ordinary coherence function are
underestimated according to

Ŝψaψb
(f) =

(
1− τ

TDFT

)
Sψaψb

(f) (C.3.6a)

Ĥψaψb
(f) =

(
1− τ

TDFT

)
Hψaψb

(f) (C.3.6b)

γ̂2
ψaψb

(f) =
(
1− τ

TDFT

)2

γ2
ψaψb

(f). (C.3.6c)

The normalized rms error in the estimate of ordinary coherence squared function between the
random signal ψa and the (arbitrary) random signal ψb denoted by ε

(
γ̂2

ψaψb

)
, is under the

assumption of a underlying Gaussian process approximated by

ε
(
γ̂2

ψaψb
(f)

)
≈
√

2
(
1− γ2

ψaψb
(f)

)
|γψaψb

(f)|
√

K ′
DFT

. (C.3.7)

Recalling that in the operational bandwidth of active control (AC) we mostly deal with ordinary
coherence functions close to unity as otherwise according to section 2.2 on page 18 the attenu-
ation figures obtainable would be limited. With reference to (C.3.7) the parameters with small
normalized errors which in turn substantiates the validity of (C.3.2).

C.3.3 Transfer Functions

Similarly, the normalized rms error in the estimate of the magnitude of the transfer function
between the random signal ψa and the random signal ψb denoted by ε

(
|Ĥψaψb

|
)
, is also under

the assumption of a underlying Gaussian process approximated by

ε
(
|Ĥψaψb

|(f)
)
≈

√(
1− γ2

ψaψb
(f)

)
|γψaψb

(f)|
√

2K ′
DFT

, (C.3.8)

and the standard deviation random error in the estimate of phase of the transfer function between
the random signal ψa and the random signal ψb denoted by σ

(
�Ĥψaψb

)
, is also under the
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assumption of a underlying Gaussian process approximated by

σ
(
�Ĥψaψb

(f)
)
≈

√(
1− γ2

ψaψb
(f)

)
|γψaψb

(f)|
√

2K ′
DFT

. (C.3.9)

C.3.4 Multiple Coherence

The uncertainty assessment pertaining to the MCOF that was defined in subsection 2.2.5 on
page 25 can be established in a similar way as above. It should, however, be recalled that during
the iterative generation of the conditioned transfer functions lead to a successive decrease of the
number of independent observations.

Accordingly, the normalized rms error in the estimate of the multiple magnitude-squared coher-
ence function between the random signal ψa and the (arbitrary) random signal set ψC denoted
by ε

(
γ̂2

ψa ·ψC

)
, is under the assumption of a underlying Gaussian process approximated by

ε
(
γ̂2

ψa ·ψC (f)
)
≈

√
2
(
1− γ2

ψa · ψC (f)
)

|γψa ·ψC (f)|
√

K ′
DFT −NC

ψ + 1
. (C.3.10)

If the effective number of DFT average K ′
DFT is too small such that K ′

DFT < NC
ψ very unpre-

dictable and most likely unreliable results might be experienced. By not properly appreciating
(C.3.10) in a statistical data analysis unity multiple coherence function may erroneously be
predicted for ψa completely uncorrelated with ψC .

C.3.5 Partial Coherence

The PCOF was defined in subsection 2.2.5 viz. (2.2.28) on page 28. The expression for the
normalized rms error in the estimate of the partial coherence function of the random signal ψa,
the random signal ψb and the (arbitrary) random signal set ψC denoted by ε

(
γ̂2

ψaψb⊥ψC

)
, is

similarly obtained from

ε
(
γ̂2

ψaψb⊥ψC (f)
)
≈

√
2
(
1− γ2

ψaψb⊥ψC (f)
)

|γψaψb⊥ψC (f)|
√

K ′
DFT −NC

ψ + 1
. (C.3.11)

The same consideration concerning an insufficient number of independent samples made for the
multiple coherence function apply also here.

C.4 Summary

Following the general guidelines for the modified periodogram method in section C.2 it should
then be verified that the bias errors really are negligible. If this is not the case, it should be
investigated if some remedy to these bias problems exists. For example, negative bias in the
ordinary coherence function and transfer function estimate due to propagation delays could po-
tentially be compensated for by appropriate time alignment of the joint sample records involved.
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If however, bias errors still prevail then the results in section C.3 are not correct anymore as the
underlying assumptions made are not valid. In such cases more advanced analysis methods are
required. Otherwise, confidence intervals pertaining to the different parameters investigated in
section C.3 can be obtained from applying (C.3.7), (C.3.8), (C.3.9) and (C.3.10) to (C.3.2) for
the specified choice of the value of nε.

Actually these expressions pertain to the use of unknown true values of the desired quantities.
However, assuming fairly accurate estimates we may replace the unknown values by estimated
values on the RHS of the expressions, that is, γ2

ψaψb
← γ̂2

ψaψb
, γ2

ψa ·ψC ← γ̂2
ψa · ψC and γ2

ψaψb⊥ψC ←
γ̂2

ψaψb⊥ψC .
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D. ANALYSIS OF NOISE RECORDINGS

D.1 Objectives

The Terma active noise reduction (ANR)-system has initially been tailored to military personnel
and in particular aircraft pilots. This type of military staff often operates in an environment
where high sound pressure levels are experienced. Unfortunately, the availability of noise record-
ings from the pertinent platforms, however, is rather limited. Moreover, existing measurement
only quantitatively describes the operational environment in which the ANR-system should work.
In the published literature only a few accounts of ANR related helicopter measurement can be
found [4, 5]. Previous measurements conducted by the Danish Rigshospitalet in various Dan-
ish military aircrafts and helicopters, however, to a large extent supported the identification of
flight scenarios [6]. Accordingly, it has therefore been considered important to identify the noise
picture more qualitatively with the overall objective of better facilitating the synthesis of the
ANR helmet design leading to an improved performance. Hence, a number of noise recordings in
various military platforms was conducted during the course of the project. Some of these noise
recordings were supplemented with practical ANR tests.

Before each flight test extensive tests in the laboratory but also in cars were carried out in order
to be fully prepared for the on-site measurements in the airborne military platforms involved.
During the phases of flight test a lot of experience was gained in the field acoustical measurement
in a military environment. This experience largely complemented our experience in avionics
engineering (electrical/mechanical) acquired over the past twenty years.

A description of the test suite used to perform recordings and a general description of the test
philosophy is provided in [7].

D.1.1 Appendix Outline

Following this introduction a description of the customization of the Gentex HGU-55/P helmets
is provided in section D.2. These helmets are used both for the F-16/B and the CH-47D Chinook
recordings presented in this Appendix. Next the theme of section D.3 is noise recordings made
in an F-16/B Fighting Falcon cockpit. This section contains information regarding the planned
flight scenarios, installation of the measurement equipment in the F-16/B Cockpit and the applied
strategy for data acquisition and processing. Moreover, the results from a statistical data analysis
(SDA) applied to one of the defined noise scenarios are presented. Finally, the results from noise
recordings made in a CH-47D Chinook are presented in section D.4.
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D.2 Preparation of Helmets

The Gentex HGU-55/P helmet is an advanced lightweight fighter/attack helmet that is used
Worldwide by fighter pilots and also by the Danish F-16 pilots. Some description of the helmet
and the assembling procedure is considered relevant as the passive noise attenuation is provided
by the helmet system. In Part IV the vibro acoustical properties of a helmet fitted to a human
is modeled.

The helmet shell is a rigid composite, pressure molded using graphite and aramid fibers (Graphid®).
The assembling of the helmets is carried out at the SUN workshop at the airbase Skrydstup shown
in Figure D.1 and Figure D.2.

Fig. D.1: SUN Workshop Airbase Skrydstrup, © Leth Data & Foto, 2003

Each helmet is individually customized for the pilot. First a medium, large or X-large shell
that suits the pilot’s head best is selected. A soft leather edgeroll covers an open cell foam core
around the entire periphery of the shell. Visor buffers and bump stops are cemented (from the
factory) to the shell to provide for stowing of the visor and protect the shell surface during visor
operation. The inner layer is an energy absorbing liner that has nominal thickness of 0.5 inch.
This primary impact energy absorbing medium is provided from expanded polystyrene beads,
pressure molded to match the dimensions of the shell.

The custom fitting is primary provided by the light weight Thermoplastic Liner (TPL). It in-
corporates a removable, launderable cover. Gentex delivers the TPL preformed from the factory
to a nominal headform in each helmet size. However, in order to obtained optimal fit the SUN

workshop at the airbase makes the moulding themselves as illustrated in Figure D.3.

Following the moulding process the headset is assembled. The Gentex HGU-55/P helmet as-
sembly is normally equipped with an H-154A/AIC headset which provides communications of
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Fig. D.2: SUN workshop assembling of Helmets, © Leth Data & Foto, 2003

high intelligibility under extreme noise conditions. The headset assembly typically consist of the
following components:

• MX-8376/AR earcup assemblies which include noise attenuating ABS plastic shell, earphone
holders, and earseals.

• H-143/AIC earphones having frequency response of 100− 5500 Hz and 19 Ω impedance.

• CX-4708A/AIC four conductor cord assembly terminated at branched ends with pin type
terminals and modified at the other end with a U-179/U connector.

The lightweight Oxygen mask of suitable size is selected and fitted to the pilot by the chin/-
nape assemblies. Finally, the integrated chin/nape assemblies and the lightweight Oxygen mask
receiver kit is mounted on the helmet. The chin/nape strap provide a comfortable fit ensuring
helmet stability and retention.

D.2.1 Background

Noise measurements in an F-16 cockpit are notoriously very expensive and associated with a lot of
difficulties and instrumentation efforts. Approximately 1 month was spent on the preparation of
the equipment, flight scenarios definition and the practical conduction of the first single F-16/B1

flight measurement data acquisition.

1The B version of the F-16 is twin-seated and the measurement equipment could therefore be installed on the
back seat without any annoyance of the pilot.
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Fig. D.3: Customization of HGU 55/P Gentex Helmet, © Leth Data & Foto, 2003
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The Danish Tactical Air Command (DTAC) is interested in the progress of the Terma ANR

programme. DTAC therefore has been willing to assign an F-16/B flight time, a test pilot and
other manpower necessary for the instrumentation of the cockpit and the subsequent practical
acquisition of the noise recordings.

The objective of the noise recordings is to measure the noise levels inside the cockpit and also the
residual noise at the pilot’s ear following the passive attenuation provided by the helmet. Hence,
a real-time estimate of the attenuation provided by the helmet with embedded ANR is obtained.
The flight tests were thoroughly planned jointly by the DTAC pilots and Terma. Preferably, a
flight test should cover the majority of the various noise scenarios experienced by the pilots.

Prior to each installation a discussions with the and pertinent military personnel was initiated.
The objective of the measurements, the installation of the measurement equipment was identified.
An officer responsible for the flight should approved the installation before flight test could
commence.

D.2.2 Flight Scenarios

In order to assess the dynamic span of the noise experienced in a F-16/B various flight scenarios
were planned. Therefore test pilot (PEL) and former F-16 pilot Ole Kjølberg Træholt (KOL) were
interviewed regarding the circumstances that based on their experiences would lead to subjective
changes in the perceived noise characteristics. Moreover a previous data recording acquired in
1998 by Rigshospitalet was carefully examined together with KOL. Therefore 13 different flight
scenarios could be identified and planned for a test flight of 70 min duration.

When installing equipment in a military platform safety of flight (SOF) will always be an issue.
Therefore, the equipment was analyzed with respect to the environmental capabilities.

Altitude test in altitude chamber has been conducted it was decided that the equipment should
not be flown at altitudes above 10000 feet. This requirement stems from the decompression
considerations.

Moreover, it was decided to minimize the time at which the equipment would be exposed to
ambient temperatures outside the operational temperature range, 0− 40 ◦C. Finally, also for
SOF considerations Terma recommended that the flight envelope was kept within 0 to 3 G′s.

D.2.3 Measurement Equipment

The measurement equipment included a BK 4128 C HATS, BK PULSE unit, Sony PC208A DAT,
Dell Latitude D 800 laptop and two BK 1/2”4192-C pressure field condenser microphones each
positioned in a BK 1/2” UA 1317 microphone holder on each side of the mannequin is illuminated
in Figure D.4. The BK PULSE units and the digital audio tape (DAT) recorder were battery
powered from rechargeable nickel-metal hybrid batteries2. In order to support the measurement
gear a frame was customized. The following software (SW) modules were used during the test:
BK 7707 Unlimited Analysis Engine, 7701 Harddisc Recorder, 7705 Time Capture.

The noise equipment installed in the F-16/B can be seen in Figure D.4.

The head and torso simulator (HATS) is a mannequin with built-in ear and mouth simulators that
provides a realistic reproduction of the acoustic properties of an average adult human. The HATS

2The battery capacity is assessed to approximately 1.5 h operation.
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Fig. D.4: Noise Recording Equipment, © Leth Data & Foto, 2003
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is therefore often used in connection with electroacoustics test on, for example telephone handset,
headset, microphones, headphones and hearing aids. However, in test of hearing protection
devices (HPDs) some limitations, however, are encountered. In particular the low-frequency
attenuation capabilities of a HPD are therefore often largely overestimated. In Part IV the vibro
acoustical properties in general is compared with the similar acoustical properties of humans.

The BK 4128 C HATS is equipped with a BK 4158 C right ear simulator and a BK 4159 C left ear
simulator. During the test the HATS wore a cotton waistcoat and a pilot torsoharness.

Provision for 6 simultaneous measurement channels was made from a BK PULSE portable data
acquisition units. The BK PULSE unit was connected to a Dell Latitude D 800 1.7 GHz laptop
equipped with 2048 MB RAM, 1 GB solid-state HDD and a 2 GB flash memory module. The
portable PULSE system was configured by BK (Power Supply Type 2827, LAN Interface Type
7533, 6/1 Channel I/O module Type 3032A).

D.3 F-16/B Fighting Falcon Noise Recordings

D.3.1 Installation in F-16/B Cockpit

Figure D.5 - D.10 illustrate the final installation of the measurement equipment.

Fig. D.5: Installation in Hangar Airbase Skrydstrup, © Leth Data & Foto, 2003
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Fig. D.6: Flight Captain PEL Informed by Torsten Leth Elmkjær, © Leth Data & Foto, 2003
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Fig. D.7: HATS Installed in F-16/B Airbase Skrydstrup, © Leth Data & Foto, 2003

D.3.2 Data Acquisition and Processing

Data Acquisition

Prior to the measurement each of the four BK 1/2” 4192-C pressure field condenser microphones
were calibrated with a BK 4231 sound pressure calibrator. This calibration procedure was re-
peated shortly after the flight test. The deviation between pre flight and post flight measurements
were all within fractions of a dB and therefore within the measurement accuracy.

Data Qualification

Most data interpretation methods applies only to data that can be qualified as stationary Gaus-
sian random data. In the data qualification phase we therefore first validate if the data have a
Gaussian density function by examining if the measurement exhibit nonstationarity characteris-
tics, periodic components, and non-Gaussian properties.

Test for Stationarity

Firstly, as discussed in subsection D.2.2 the test flight should span a set of scenarios that ex-
pectably will lead to different noise pictures. During each of the specified test points all pa-
rameters should at least in theory be frozen. This goal, however, is hardly achievable as in
avionics there are many parameter outside the control of the testpilot and engineers that might
influence the properties of noise being recorded. It was anticipated that changes in the aircraft
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altitude or airspeed will lead to nonstationarities in the acquired data. Therefore, a inter-scenario
stationarity assessment and intra-scenario analysis for each of the scenarios has been conducted.

Data Validation

In a subjective test pilot (PEL) and former F-16 pilot Ole Kjølberg Træholt (KOL) have been
listening to reproduction of the recorded data. These experienced pilots found not remarks to
the validity of the data. Moreover, the spurious 4.8 kHz signal was confirmed to be related to
the environmental control system (ECS).

In order to prevent signal clipping the autorange procedure provided by the PULSE system was
invoked. Moreover, a safety margin of additional 10 dB was applied. Therefore the dynamic
range of PULSE was set to 10 dB - 16 bit. As a consequence no signal clipping was observed or
indicated by PULSE. Moreover, the noise level was also substantially greater than the noise floor
of the data acquisition systems.

Fig. D.8: Check of F-16/B setup by Jakob Krogh Sørensen, © Leth Data & Foto, 2003

D.3.3 Measurement Analysis

Approximately 1 GB of data was acquired during the flight. The stored data was then analyzed
afterwards. The analysis is based on [1–3].

In Figure D.11 the setup used during on-site analysis phase is shown.

The recordings were subsequently converted to MATLAB®- and Wave-format. The former format
was used for in-depth analysis and for synthesis of the Terma ANR headset. The WAVE-format
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Fig. D.9: Final inspection of F-16/B setup by Torsten Leth Elmkjær, © Leth Data & Foto, 2003

Fig. D.10: Flight Captain PEL Ready for take-off, © Leth Data & Foto, 2003
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Fig. D.11: Noise Recordings Analysis Setup, © Leth Data & Foto, 2003

was used for replay in the Terma noise chamber (TNC) facilities.

Topology

In the topology depicted in Figure D.4 we will consider the two microphones that are positioned
outside the left and right ear as reference sensor x1 and x2 respectively. The two auxiliary micro-
phones shown in Figure D.5 and Figure D.7 constitute reference sensor x3 and x4 respectively.
Hence, the number of reference sensors amounts to Nx = 4. The left and right ear simulators of
the HATS are the performance sensors that henceforth denoted by dp

1 and dp
2 respectively, that

is, Np = 2. At the time of measurements the Terma Earcup Audio System was yet developed
and no disturbance signal was acquired, that is, Ne = 0.

D.3.4 Scenario at 85% Power

In the first scenario presented the aircraft is operated at 85% power. Accordingly, relative medium
sound pressure levels are expectable. The parameters governed the periodogram spectra estimate
can be found in the figure captions. The results over the period from 0 s to 30 s are presented
next.

Statistical Data Analysis

The analysis of the underlying statistical behavior of the data is interesting in it own. Moreover,
the specific behavior can have a profound influence on the optimum choice of adaptive filtering



D.3. F-16/B Fighting Falcon Noise Recordings 559

algorithms. In particular it is important to verify if the data complies with an assumption of
Gaussianity.

In Simulation D.3.1 - D.3.4 on pages 560–563 the probability density functions (pdfs) of four dif-
ferent signals representing the most extreme characteristics, namely px1(p), px3(p), px4(p), pdp

1
(p)

are shown. As readily observed some deviance from zero-mean Gaussian distribution prevails.
Moreover, among the sensor signals some variation of the pdfs are experienced. Also some skew-
ness is observed in all the records. In order further to analyze this behavior the software pack-
age STABLE from Robust Analysis, Inc. was used for the estimation of the stable parameters
S(α, β, γ, δ) defined in Appendix L on page 773 using the maximum likelihood estimation (MLE).
The results can be found in Table D.1

Signal x1 x2 x3 x4 dp1 dp2
α 2.00 1.85 1.90 2.00 1.58 1.57
β 0.42 0.86 1.00 0.99 0.30 0.30
γ 0.25 0.20 0.23 0.26 0.09 0.10
δ −3.37 −2.53 −3.13 −3.84 −0.32 −0.36
±3εα 0 0.00 0 0 0.01 0.01
±3εβ 0 0.03 0 0 0.02 0.02
±3εγ 0 0.00 0 0 0.00 0.00
±3εδ 0 0.00 0 0 0.00 0.00

Tab. D.1: F-16/B Scenario where the aircraft is operated at 85% power. Stable parameters γ, δ re.
20 µPa.

As is well known uncertainty values do not make sense when a parameter is at the boundary of
the parameter space, e.g., α � 2 and is therefore set to 0 in such cases. Hence, except for the
performance signal the index of stability α is relative close to 2, but the skewness parameter β
takes large values that confirms the assumption of non Gaussian distributed signals. However,
owing to the lack of contents in the tails of the probability density functions nor do stable
distributions fit very well to the data.

The auto spectral density functions are shown in Simulation D.3.5 on page 564.

A pulsating ECS is responsible for the generation of a time-varying and extremely low-frequency
0.8 Hz signal exceeding 140 dB re 20 µPa. From 10 Hz to 800 Hz the exterior spectra exhibit
white noise characteristics. Above 800 Hz the pattern is more like brown noise with a decay
rate of 20 dB per decade superposed by many periodic signals. The corresponding averaged and
maximum sound pressure levels can be found in Simulation D.3.4.

Ch. # 1 #2 #3 #4 #5 #6
SPL 142.0 141.0 142.9 140.4 139.2 139.3

Tab. D.2: F-16/B Scenario at 85% Power, sound pressure levels re. 20 µPa.

The ordinary coherence functions (OCOFs) γ2
dp
1 ·x1

, γ2
dp
1 ·x2

, γ2
dp
1 · x3

, γ2
dp
1 · x4

, γ2
dp
2 ·x1

, γ2
dp
2 ·x2

, γ2
dp
2 · x3

and γ2
dp
2 ·x4

and related achievable attenuation estimated from (2.2.1) on page 18 are depicted in
Simulation D.3.6 on page 565 and Simulation D.3.7 on page 566 respectively.

Accordingly, from a feedforward system (FFS) based active control (AC) there is very little per-
spective in using a single reference sensor at the any of the four exterior positions shown in
Figure D.4. Hence, OCOF already becomes a problem at 10 Hz.

The magnitude and phase of the transfer functions from the first reference sensor to the first
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performance sensor, that is, Hx1dp
1

depicted in Simulation D.3.8 on the following page and
Simulation D.3.9 on page 569 respectively. Some variations in all the eight transfer functions from
the four reference sensors to the two performance sensor exist especially at higher frequencies as
expected considering the topology of the system.

Now, considering the multiple coherence functions (MCOFs) between the four reference sensors
and the first performance sensor, that is, γ2

dp
1 ·x1x2x3x4

displayed in Simulation D.3.10 - D.3.11 on
pages 570–571 only a small improvement in coherence is obtained as compared with the OCOF.
Unfortunately, at time of noise recordings the confined reference sensors array measurements
could be conducted due to lack of the required equipment.

The MCOFs between the four reference sensors and the second performance sensor follow a quite
similar pattern.

Finally, the cross-correlation functions from the joint-channel residual spectral analysis (JCRSA)
(refer to chapter 2 on page 17) are shown in Simulation D.3.12 on page 572 which also indicates
the time-advance information achievable with these positions of the reference sensors. In the
CH-47 recordings, however, the reference sensors will all be positioned on the helmet.

D.3.5 Remarks

As the measurement system was rigidly fixed to the backseat in the cockpit no emulations of
pilots movement could be made. Therefore, the influence of nonstationary relative noise source
positions was not measured. Moreover, no war-time events were simulated. In such situations
more impulsive noise signals are expected to be present due to gun blast etc.

D.4 CH-47D Chinook Helicopter Noise Recordings

In this section a brief presentation of the results from helicopter noise recordings conducted in a
CH-47D at Airbase Sosterberg will be presented. The measurements follows the test procedure
[7].

D.4.1 Measurement Equipment

In Figure D.12 - D.14 the overall instrumentation setup is illustrated. The BK 4128 C HATS

described in subsection D.2.3 was also used in this test flight.

Some photos illuminating the BK 4949 surface microphones flush-mounted on the Gentex HGU-
55/P helmet tailored to the BK 4128 C HATS were presented in Figure 2.1 - 2.2 on pages 33–34.
A total of 10 surface microphones were mounted on the helmet. For this purpose the BK Ø35 mm
UA 1668 mounting pads was used and protection grids BK UA 1669 were attached to each surface
microphone. In addition the BK 4128 C HATS mouth microphone was used as a reference sensor.

Provision for 17 simultaneous measurement channels was made by the BK PULSE portable data
acquisition unit that includes a BK 3560-C-E14 front-end equipped with a BK 3040-B 12 channel
(Dyn-X) module and a BK 7540 5 channel (Dyn-X) module integrated LAN module that in turn
was connected to a Dell Latitude D 800 1.7 GHz laptop equipped with 2048 MB RAM, 1 GB
solid-state HDD and a 2 GB flash memory module.
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Fig. D.12: Customized frame installed in CH-47D Chinook Helicopter © Leth Data & Foto, 2005.

The customized frame equipped with the BK 4128 C HATS, BK PULSE unit, Dell Latitude D
800 laptop and three BK 1/2” 4192-C pressure field condenser microphones each positioned in a
BK 1/2” UA 1317 microphoneholder is illuminated in Figure D.13 on the following page. The
two BK PULSE unit was battery powered from rechargeable nickel-metal hybrid batteries3. The
following SW modules were used during the test: BK 7707 Unlimited Analysis Engine, 7701 Harddisc
Recorder, 7705 Time Capture, 7789 PULSE Time, 7769 PULSE Auxiliary Parameter Logging, 7755
Bridge to MATLAB® .

Prior to the measurements each of the ten BK 4949 surface microphone were calibrated with a
BK 4231 sound pressure calibrator using the BK DP 0979 adapter. The external BK 4135 and
BK 4939 1/4” microphones and the BK 4128 C HATS microphones were calibrated as described
in subsection D.2.3 on page 551. This calibration procedure was repeated shortly after the flight
test. The deviation between pre flight and post flight measurements were all within fractions of
a dB and therefore within the measurement accuracy.

Next the results from a statistical data analysis of the data acquired during the course of two of
the prepared scenarios will be presented. The two scenarios represent high and extreme sound
pressure levels respectively.

Topology

The set of Nx = 11 reference sensors x1, . . . , x11 was constituted from the ten BK 4949 surface
microphones flush-mounted on the Gentex HGU-55/P helmet as shown in Figure D.13 together
with the BK 4128 C HATS mouth microphone. The left and right ear simulators of the HATS

3The battery capacity is assessed to approximately 1.5 h operation.
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Fig. D.13: Customized frame with BK 4128 C HATS, BK PULSE unit, 10 BK 4949 surface microphones
and BK 4128 C HATS mouth microphone, Dell Latitude D 800 laptop , © Leth Data & Foto,
2005.
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Fig. D.14: Chlinton Møller Nielsen examining the sound pressure levels from the 17 channels.
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constitute the Np = 2 performance sensors that will denoted by dp
1 and dp

2 respectively. At the
time of measurements the Terma Earcup Audio System was yet developed and no disturbance
signal was acquired, that is, Ne = 0.

D.4.2 Scenario with Engines and Auxiliary Power Unit (APU) turned off

In the first scenario presented the engines and the APU are turned off. Accordingly, relative
low sound pressure levels are expectable. The parameters governed the periodogram spectra
estimates can be found in the figure captions. The results from data averaging over the period
from 0 s to 30 s are presented next.

In Simulation D.4.1 - D.4.4 on pages 577–580 the pdfs for four different signals representing
the most extreme characteristics, namely, px1(p), px4(p), px10(p), pdp

1
(p) are shown. As readily

observed some deviances from zero-mean Gaussian distributions prevail and some skewness is
observed in all the records. Moreover, among the sensor signals some variation of the pdfs are
experienced. In particular, the probability density function of the performance signal is indeed
narrow without any tail content.

In order further to analyze this behavior the software package STABLE from Robust Analysis,
Inc. was used for the estimation of the stable parameters S(α, β, γ, δ) defined in Appendix L on
page 773 using the MLE. The results can be found in Table D.3

Signal x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 dp1 dp2
α 2.00 1.85 1.90 2.00 2.00 2.00 2.00 1.99 2.00 2.00 1.90 1.58 1.57
β 0.42 0.86 1.00 0.99 0.91 0.43 0.91 1.00 0.97 0.99 0.99 0.30 0.30
γ 0.25 0.20 0.23 0.26 0.28 0.30 0.24 0.23 0.25 0.32 0.26 0.09 0.10
δ −3.37 −2.53 −3.13 −3.84 −4.10 −4.71 −3.55 −3.38 −3.49 −4.76 −4.28 −0.32 −0.36
±3εα 0 0.00 0 0 0 0 0 0 0 0 0 0.01 0.01
±3εβ 0 0.03 0 0 0 0 0 0 0 0 0 0.02 0.02
±3εγ 0 0.00 0 0 0 0 0 0 0 0 0 0.00 0.00
±3εδ 0 0.00 0 0 0 0 0 0 0 0 0 0.00 0.00

Tab. D.3: CH-47D Scenario with Engines and APU turned off, Stable parameters γ, δ re. 20 µPa.

As is well known uncertainty values do not make sense when a stable parameter is at the boundary
of the parameter space, e.g., α � 2 and is therefore set to 0 in such cases. Hence, except for the
performance signal the index of stability α is relative close to 2, but the skewness parameter β
takes large values that confirms the assumption of non Gaussian distributed signals. However,
owing to the lack of contents in the tails of the probability density functions nor do stable
distributions fit very well to the data.

The auto spectral density functions are shown in Simulation D.4.5 on page 581. The correspond-
ing averaged sound pressure levels can be found in Table D.4.

Signal x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 dp
1 dp

2
SPL 104.6 102.0 103.9 105.7 106.3 107.5 105.0 104.6 104.9 107.6 106.6 85.1 85.8

Tab. D.4: Scenario with Engines and APU turned off, averaged sound pressure levels re. 20 µPa.

The OCOFs and related achievable ANR from (2.2.1) on page 18 for the first six reference
sensors and the two performance sensors are depicted in Simulation D.4.6 on page 582 and
Simulation D.4.7 on page 584 respectively. The OCOFs characteristics for the remaining channel
combinations are very similar.
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Accordingly, from a FFS based AC perspective these result might at first glance look disappointing.
Hence, attenuation figures above 10 dB is limited to frequencies less than 60 Hz. A deep trough
is observed in the OCOF in the vicinity of 100 Hz except for reference sensor 1.

Considering the magnitude and phase of the transfer functions from the eleven reference sensors
to the two performance sensors depicted in Simulation D.4.8 - D.4.9 on pages 585–586 respectively
only minor variations are observed except for the phase response at higher frequencies.

The MCOFs obtained from using both the matrix formulation described in section 2.2.5 on page 27
and the iterative procedure presented in section 2.2.5 is displayed in Simulation D.4.10 - D.4.13 on
pages 587–590. The MCOF corresponding to the disturbance signal taking every eleven reference
signals into account is designated by γ2

dp
1 ·x11!

(f) and γ2
dp
2 ·x11!

(f) using the matrix method and
by γ2

dp
1 ·x7,1,4,6,10,9,2,8,5,3,11

(f) and γ2
dp
2 · x9,2,6,7,4,8,1,10,5,11,3

(f) applying the iterative procedure for
performance signals dp

1 and dp
2 respectively. In this simulation the reference signals are sorted in

descending order with respect to their ordinary coherence function averaged over the frequency
band.

Within the graphical resolution the two methods give identical results as expected. In addition
the iterative procedure illuminates the successive increase in MCOF from increasing the number
of reference sensors. As seen active noise control (ANC) attenuation figures exceeding 10 dB
possible up to approximately 850 Hz is predicted. The deep trough observed in the MCOF at
100 Hz if only reference sensors 6 and 7 are used is largely removed by including reference sensor
1.

In Simulation D.4.10 no apparent saturation in MCOF with increasing number of reference sensors
is seen. Hence, by including additional reference sensors the upper frequency limit determined
by the MCOF would most likely increase as a consequence of closer spatial sampling. It should
be emphasized that we in the iterative multiple coherence function procedure successively enable
reference signals that exhibit decreasing coherence with the error sensor. If we instead succes-
sively add a reference sensor and reoptimized their positions the increase in multiple coherence
function would most likely be higher.

In section 2.4 very similar MCOFs patterns obtained from diffuse sound field measurements in a
reverberant chamber were presented.

The particular details including ±3ε confidence intervals for the MCOFs (refer to subsection C.3.4
on page 544) using all eleven reference sensors are shown in Simulation D.4.14 - D.4.15 on
pages 591–592.

We observe that the random errors correspond to an uncertainty in the attenuation estimation
of approximately +3,−6 dB. Even though the multiple coherence function is exceeding 0.9 up to
850 Hz this somewhat wide confidence interval stems from the use of a relative small number of
averages (KDFT = 46). The uncertainty in the attenuation estimation is relative constant over
the frequency band. The reasons for this are explained in section C.3 on page 541.

D.4.3 Scenario Flight at Constant Altitude and High Speed

The second scenario presented is from a flight at constant altitude and at high speed of 155
Knots indicated airspeed (KIAS). Accordingly, relative high sound pressure levels are expectable.
Also here the results over the period from 0 s to 30 s are presented.

In Simulation D.4.18 - D.4.21 on pages 596–599 the pdfs for the same signals as above are repre-
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sented. Except for this skewness the distributions most closely resembles a pattern characteristic
for a sinusoidal signal in Gaussian noise. This corresponds to the field being largely dominated
by the extreme noise field produced under the passage at a constant rotations per minute (rpm)
of the rotor blades above the helicopter hull. Now the variation among the sensor signal pdfs is
relative small. The pattern is skewed to positive pressures which might explained by the presence
of an acoustic flow in the helicopter cabin.

The auto spectral density functions are shown in Simulation D.4.22 on page 600. The corre-
sponding averaged sound pressure levels can be found in Table D.5.

Signal x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 dp1
SPL 132.5 132.2 131.8 131.3 131.7 131.6 131.2 130.6 131.4 132.5 132.5 129.6

Tab. D.5: Scenario Flight at Constant Altitude and High Speed, average sound pressure levels re. 20 µPa.

Compared with the previous scenario viz. Simulation D.4.5 on page 581 a general huge increase in
the auto spectral density function can be observed. In particular in the low frequency region the
increase is of the order of 50 dB. The OCOFs and related achievable ANR from (2.2.1) on page 18
are depicted in Simulation D.4.23 on page 601 and Simulation D.4.24 on page 602 respectively.

Comparing with the previous example viz. Simulation D.4.6 on page 582 and Simulation D.4.7
on page 584 the trough at 100 Hz is less pronounced here and the OCOF is in general slightly
higher in this extreme noise case. A possible explanation for this could be that the direction of
sound field propagation is more unidirectional. Still from an FFS based AC perspective using a
single reference sensor as opposed to the confined array of reference sensors would be very little
beneficial as attenuation above 10 dB is limited to the very low-frequency under approximately
60 Hz.

A deep trough observed in the OCOF observed in the vicinity of 100 Hz except for reference sensor
x1.

Now, considering the MCOFs displayed in Simulation D.4.25 - D.4.26 on pages 603–604 we observe
a general decrease in coherence. Hence, attenuation figures above 10 dB is now only predicted
possible up to 200 Hz.

In the low-frequency region up to 100 Hz the MCOF predicts from 2 dB to 10 dB better ANR

performance from using the confined reference sensor array as opposed to a single reference
sensor. Unfortunately, the apparent . The reason for this drop in coherence as compared with
the results in Simulation D.4.25 - D.4.26 on pages 603–604 is presently not understood. The
dynamic range (3% distortion level) of the BK 4158 C right ear simulator and BK 4159 C left
ear simulator extends to 161 dB re 20 µPa respectively. For the BK 4949 surface microphones
140 dB re 20 µPa (500 Hz, 3% distortion level) is specified. This corresponds to 200 Pa and
referring to Table D.5 we have actually pushed the surface microphones close to their limits for
linear operation. The actual behavior of the BK 4949 surface microphones exposed to this very
low-frequency contents has to be assessed by some BK experts. It should also be remarked that
performance sensor 2 failed during this measurement and therefore not considered here. During
the measurement acquisition it was observed that the entire frame depicted in Figure D.14 was
heavily vibrating like all of us owing to the extreme noise pressures and relative small vibration
isolation provided by bench used by helicopter personnel and passengers under flight. Moreover,
in Simulation D.4.25 some saturation MCOF is seen. Hence, by including additional reference
sensors would not push the upper frequency limit determined by the MCOF until the reason for
the general drop in MCOF has been clarified.
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Finally, we give an indication of the spatial variation of the signals acquired from the positions
of four of the helicopter personnel (pilot, loadmaster 1 and 2 and gunner), each equipped with a
BK 4135 or a BK 4939 1/4” microphones. Hence, the number of reference sensors now amounts
to 15 by inclusion of x12, x13, x14 and x15.

The pdfs for same scenario as above for px12(p), px13(p), px14(p), px15(p) are shown in Simulation D.4.27 -
D.4.30 on pages 606–609. Owing to different position (a span of 20 m) a large variation of the
recorded probability density functions can therefore be observed.

Finally, for the MCOF analysis presented in Simulation D.4.31 - D.4.32 on pages 610–611 in
comparison with Simulation D.4.25 - D.4.26 on pages 603–604 that no increase to the MCOF

level is made by including the reference signals from the positions of the personnel.

This is also expectable due to the remote distance of these additional reference sensors relative
to the performance sensors.
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E. RANDOM NOISE GENERATION

E.1 Algorithm

A versatile portable pseudo-random noise generator has been chosen [2, App. A] and [1, App. C].
The algorithm is also referred to as linear congruential sequence generator.

This algorithm ensures that subsequences of reasonable length will be distributed uniformly
between zero and one. Moreover, it can be started at any specified point in the sequence.

In the referenced textbooks, integer words up to 32 bits are considered. In the active noise
reduction (ANR)-system, a SHARC 21161N Processor that internally facilitates 32 bit words is
used. However, the analogue to digital and digital to analogue converters involved in the plant
are both limited to 16 bit. Therefore, some adaptation of the algorithm presented in [3, App. A]
is necessary.

By I we denote a column vector of M integer elements that is used to contain the random
data. The quantity M is the random sequence length. The sequence is initiated by assigning an
arbitrary number, say, I0 to the first element in I

I [0] = I0. (E.1.1)

Then the successive elements of I are determined recursively according to

I [n + 1] = (JI [n] + 1) mod M n = 0, 1, . . .M − 1. (E.1.2)

By [n] we refer to the n’th number in the sequence. As readily seen in (E.1.2), M also sets
an upper limit on the sequence period. In order to ease the theoretical analysis of a linear
congruential sequence M must be 2 raised to some integer power, L. Hence,

M � 2L. (E.1.3)

Ideally, the sequence periodicity should coincide with the number of words represented
(
M = 2L = 2Nb

)
.

However, in order to restrict I [n] from overflow and to ensure approximately sample indepen-
dence the periodicity must attain a (much) lower number (L < Nb).

The quantity J is used to ensure sufficient spread between two successive elements in I. In order
to guarantee that the buffer length, M, coincide with the periodicity, J shall be set as

J = 4K + 1, (E.1.4)

where K denote an integer value subject to some constraints discussed next.
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The largest value that the terms in the parentheses on the right side of (E.1.2) can attain is
(4K + 1) (M − 1) + 1.

In a system employing Nb-bit representation, however, it is required that

2L <
2Nb−1 − 1
4K + 1

+ 1 =
2Nb−1 + 4K

4K + 1
. (E.1.5)

Now defining a new variable, S, by

S � log2 (4K) � 2 (E.1.6)

then by inserting (E.1.5) in (E.1.14) we obtain

2L <
2Nb−1 + 2S

2S + 1
=

2S
(
2Nb−1−S + 1

)
2S (1 + 2−S)

= 2Nb−1−S 1 + 2−Nb+1+S

1 + 2−S
(E.1.7)

which leads to

L < Nb − 1− S − log2

(
1 + 2−Nb+1+S

1 + 2−S

)
(E.1.8)

= Nb − 1− S − log2

(
1 + 2−Nb+1+S

)
+ log2

(
1 + 2−S

)
(E.1.9)

= Nb − 1− S −
ln

(
1 + 2−Nb+1+S

)
− ln

(
1 + 2−S

)
ln 2

(E.1.10)

≈ Nb − 1− S − 2−Nb+1+S − 2−S

ln 2
(E.1.11)

= Nb − 1− S +
2−S

ln 2
(
1− 2−Nb+1

)
(E.1.12)

= Nb − 1− S + ε (E.1.13)

where the small (but strictly positive) quantity, ε, has been introduced

ε =
2−S

ln 2
(
1− 2−Nb+1

)
> 0. (E.1.14)

As readily seen from (E.1.7) the largest periodicity is obtained when L < Nb − 1− S.

In a 32 bit system it is customary to set L = 20 and K = 512⇒ S = 11 and (E.1.7) is obviously
satisfied: 20 < 32 − 1 − 11 + ε. For a 16 bit system, however, we chose to set K = 4 ⇒ S = 4
and we get L = 16− 1− 4 = 11⇒M = 2048 and J = 17.

E.1.1 Summary

In summary the pseudo-random noise algorithm is

I [0] = 12357∧ I [n] = (17 ∗ I [n− 1] + 1) mod 65536, n = 1, 2, . . .65535 (E.1.15)
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in 16 bit representation and

I [0] = 12357∧ I [n] = (2045 ∗ I [n− 1] + 1) mod 1048576, n = 1, 2, . . .1048575 (E.1.16)

in 32 bit representation.

E.2 Test

From incorporating random signal data generated by (E.1.15) into MATLAB® it has been con-
firmed that the signal exhibit a flat uniform frequency spectrum as expected.
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Part V

ACTIVE CONTROL OF FIELDS II





F. ACOUSTIC, ELECTROMAGNETIC AND ELASTIC FIELD THEORY

F.1 Motivation

The three branches of physics treated in this context namely acoustics, elasticity theory and
electromagnetics are all subjectable to analysis in the mathematical framework of field theory.
In field theory the underlying often very complicated behavior of a physical system is brought
aside and the gross behavior instead described in terms of fairly simple governing equations.
For example a system consisting of a cube 10 mm a side and containing a monoatomic gas
at atmospheric pressure and temperature. This volume contains approximately 1019 atoms.
From a microscopic point of view we must deal with in the order of 1020 equations to describe
the first-order kinematics, that is, position and velocity of each atom within the cube. The
macroscopic framework of field theory concerns the gross or average effects of many molecules,
thereby substantially reducing the number of equations required.

Despite the apparent similarities of acoustic and electromagnetic field theory only a few contri-
butions in the literature dealing with both types of fields can be found [12, 16, 26, 27].

Moreover, upon applying results from the electromagnetic domain to the acoustical domain or
vice versa careful examination of the underlying assumptions made in the governing equations
must be invoked.

The work carried out in the present chapter could generally be fruitful when attempting to
project results obtained in one of the physical system to one of the other two physical systems.
In particular in Appendix G where spherical near-field antenna testing (SNFAT) techniques used
primarily for antenna measurement will be accommodated to measurement of acoustical wave
fields as well as elastoric wave fields. In order to accomplish this goal, however, as proclaimed
above some care must be exercised when adapting results from one branch of physics to another.
Therefore, attention is to make a coherent presentation of the governing equations and the
various assumptions made in the particular physical applications. Moreover, in this process
different choices in nomenclature, terminology etc. among acousticians, elasticians and antenna
theoreticians has to be dealt with.

The following presentation of the field of acoustics, elasticity theory and electromagnetics, how-
ever, will mostly be brief and is aimed at exposing the similarities and dissimilarities. Hence, it
is assumed that the reader find himself sufficiently confident in these branches of physics. Refer-
ences to excellent textbooks on the specific domains will be made. However, it is the hope that
the present review of the fields of acoustic, elasticity and electromagnetics is sufficiently coherent
to provide the background necessary to be beneficial for Appendix G on page 707.

In recent years active control of sound and vibration (ACSV) systems have experienced a tendency
in growth in size and complexity. In particular ACSV systems with a multiple-input and multiple-
output (MIMO) topology have become exceedingly complicated. The increase in complexity,
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however, also manifests itself in the design and evaluation phase. Hence, a demand for a active
control sound and vibration test unit (ACSVTU) dedicated systematic test of developed systems
exist. Preferably, such unit should make provision for test of the acoustical/structural part as
well as the control/adaptive filtering part of a system. It is therefore another objective of this
report to provide the necessary theoretical background for the development of such ACSVTUs. It
suffice here to say that in comparison with ordinary active control (adaptive filtering) of electrical
signals confined to electrical wires the problems of active control of fields in general are more
numerous and considerably more difficult to be dealt with. The reasons for this increase in
complexity is due to fact that active control of fields involves in general vector quantities in
3-D space (as opposed to a scalars in 1-D space), phenomena like polarization and two different
and mode-dependent wave propagation velocities have to be taking into account. Moreover,
field theory normally concerns the problem of estimating some unknown field variables from
source distributions that is assumed known taking various boundary conditions into account.
This process we will refer to as field analysis. The inverse problem or field synthesis, that is,
to consider the field variables as known and then to deduce the source distributions responsible
for this field is considerable more involved and generally no unique solution exists. If the field
variables are known from measurements, a real source, of course, exists but other sources might
lead to the same fields. This has an impact on the active control of fields where one introduces
a secondary source distribution so that the resulting field, that is, the sum of the primary field
and the secondary field attains the desired distribution (it should normally vanish). However,
in this case even the existence of such secondary source distribution is by no means guaranteed
and some kind of comprise must be made.

F.1.1 Chapter Outline

Following this motivational section general field theory aspects common to the three types of
fields considered will be discussed in section F.2. Then the theme of the following three sections,
that is, section F.3, section F.4 and section F.5 is the theory of fluid mechanics, elasticity and
electromagnetics respectively. The former two have roots in continuum mechanics and are to a
certain extent much alike. Following the very general discussion of acoustical and electromagnetic
field theory the theoretical foundation has then been made and section F.6 will reflect on the
similarities and dissimilarities encountered in the three physical domains. Our anticipation on a
fair amount of similarities in the domain acoustic, electromagnetic and elasticity field theory is
fully confirmed and formalized. A detailed analysis of electromagnetic and linear acoustic fields
is carried out with roots in integral equations. The theme of section F.7 and section F.8 is the
uniqueness and the existence of the fields respectively. These topics will be examined in parallel
for the two domains. In section F.11 we then establish the very close relationship there exists
between the two domains when we consider spherical wave decomposition. Spherical time-domain
field expansions are considered in section F.12. Whereas the above topics have been the subject of
a number of previous studies, the novelty of the present approach is in examining them thoroughly
in the time domain as well as the frequency domain. The time-domain formulations are derived
in two ways: by Fourier transforming the corresponding frequency-domain expressions, and then
directly in the time domain from the properties of Green functions. The identity of the results,
sometimes after long and difficult mathematical manipulations, helps the reader gain confidence
in the final product even if she or he was unable to follow all the details of the derivation.

The chapter comprises a total of six appendices. In section F.A an expression related to the
material derivative is obtained. Next in section F.B a proof of an alternative version of the
Reynolds transport theorem that will be used extensively in the development is provided. Then
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in section F.C an expression relating the rate of entropy change to the thermodynamic properties
and the dilatation rate is derived. Pressure and velocity fields from surface integrals are consid-
ered in section F.D. Finally, the theme of section F.E and section F.F is miscellaneous vector
identities and time-dependent potential functions encountered in acoustic and electromagnetic
field theory.

F.2 General Field Theory

The main ingredients in field theory is a set of sources responsible for the generation of the fields,
a set of field variables representing the underlying (complicated) physical behavior of the system
and a set constitutional parameters that describes the medium supporting the fields. With these
quantities being defined a fundamental equation describing the overall behavior of the system
is sought for. This process depends on theoretical deduction or experimental evidence, e.g.,
Maxwell’s equations and by invoking a statement on a continuity relationship among the source
quantities.

F.2.1 Sources

Sources are the cause of fields and in the absence of sources no fields therefore exist. The space
spanned by all sources are referred to as the source region and denoted by VS . It is important to
note that the governing field equation presented in subsection F.2.5 are inhomogeneous inside the
source region and homogeneous outside the source region. Examples of scalar, vector and tensor
sources are the electrical charge density1 ρ, the volume source of mass flow s and the traction T
acting on the surface of an elastic medium. The phenomena of acoustical sound generation due
to violent fluid motion will be presented in subsection F.3.11 on page 654.

F.2.2 Field Variables

Fields are the consequence of the presence of sources. The field variables are used to describe
the state of a physical system. Similar to the sources, scalar, vector and tensor field variables
are encountered. For example, the acoustical pressure p in a fluid, the electric intensity E in
a dielectric and the strain S inside an elastic medium represent scalar, vector and tensor fields
respectively.

Some field variables are considered primary field variables while other are secondary field vari-
ables.

F.2.3 Constitutive Relationships

In the work of formulating the fundamental equations it will, however, turn out that we end
up with to few equations in comparison with the number of unknown field variables. A third
relationship that involves the media supporting the field is also required. The constitutive rela-
tionships establish the ”missing link” among the field variables themselves or between sources
and field variables. Such parameters will be referred to as constitutive parameters. A consti-
tutive parameter might be a scalar, vector or a tensor quantity, that varies with position in

1Density generally means the amount of a quantity per unit volume.
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space and with time. Moreover, a constitutive parameter will to a certain degree vary with the
frequency. This dependence on frequency can often be taking into account by defining a complex
version of the constitutive parameter where the imaginary part is responsible for the variation
with frequency. Furthermore, most of the constitutive parameters may vary with ambient condi-
tions. However, we will usually assume the ambient conditions to be constants. Finally, different
sources to nonlinear behavior exist. For example the value of a constitutive parameter might
depend on the excitation level. Practical examples hereof will be provided in the subsequent
sections.

In case of a linear, homogeneous2, isotropic3, time-independent and frequency-independent con-
stitutive (scalar, vector or tensor) parameter, say, υa we may write

υa(r, t, ω, A(ψ)) → υa, (F.2.1)

υa denotes an arbitrary constitutional parameter and where A(ψ) is used to signify the depen-
dence on the excitation level of the field variable ψ.

If LΥ parameters suffice to describe the system they may be absorbed in the structure Υ =
[υ1, υ2, . . . , υLΥ].

Explicit forms for these constitutive parameters can be found by experimentation, e.g., Hooke’s
Law or deduced, e.g., from kinematic gas theory.

F.2.4 Taylor Expansion of Field Variables

The constitutive parameters will vary as a function of one or more of the field variables. In
many contexts in physics the underlying phenomena is governed by system equations that are
inherently nonlinear. Various causes for such imperfections exist and we will in section F.3
explain why acoustical fields always will possess some degree of nonlinearity.

We will next establish a framework to address such situations. The approach in [28, Ch. 14.2]
to expand the various acoustical parameters to higher-order.

We can perform a Taylor expansion of an arbitrary field variable, say, ψa(r, t, s), according to,
e.g.,

ψa(r, t, s) =
∞∑

n=0

ψa
n(r, t, s). (F.2.2)

In (F.2.2) r denotes the spatial position, t is the time and s is an amplitude parameter. Index,
n, is the order of expansion of the field and no index simply refers to the total field. In general,
ψa

n denotes the n-order value of the field variable ψa that in turn is obtained from

ψa
n(r, t, s) =

sn

n!

(
∂nψa(r, t, s)

∂sn

)
0

. (F.2.3)

2The properties of a homogeneous medium are constant from point to point. Some examples of an inhomoge-
neous medium exist. Gravity is responsible for stratification of the density with the depth in the ocean and with
the height in the air. Such regular inhomogeneities can have significant effect on long range propagation in the
air or in the sea. In a turbulent air flow the medium will be randomly inhomogeneous.

3If the physical properties of a body in the neighborhood of some interior point are the same in all directions,
the body is said to be isotropic.
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Hence, ψa
0 refer to the zero-order value of the arbitrary field variable. Other terms are quiescent

(acoustics)4, unperturbed or equilibrium value. Moreover, if the ambient field quantity is time-
independent (or at least very slowly varying compared with the time frame of the investigation)
it is referred to as a static value or stationary value. The first order value of the arbitrary field
variable is ψa

1 . Finally, we will by ψa
−0 denote the dynamic value of ψa, that is, the total value

subtracted the equilibrium value

ψa
−0(r, t, s) = ψa(r, t, s) − ψa

0 (r, t, s) (F.2.4a)

=
∞∑

n=1

ψa
n(r, t, s). (F.2.4b)

It shall be emphasized that the Taylor expansion procedure in (F.2.2) normally only becomes
meaningful if the terms are decreasing terms, so that

|ψa
0 (r, t, s)| � |ψa

1 (r, t, s)| � |ψa
2 (r, t, s)| � . . .� |ψa

n−1(r, t, s)| � |ψa
n(r, t, s)|, ∀n ∈ N,

(F.2.5)

where N designates the set of natural numbers. In the governing equations terms involving
multiplication of two or more field variables or constitutive parameters can be encountered. In
such cases some assessment of the actual order of factorization terms must be exercised. For
example, if both ψa and ψb represent field variables or constitutive parameters that comply with
(F.2.5), say, ψa

0 = 10ψa
1 = 100ψa

2 ∧ψb
0 = 200ψb

1 = 40000ψb
2. Then we have the following relations

|ψa
1 ||ψb

0|, |ψa
0 ||ψb

1| � |ψa
2 ||ψb

0|, |ψa
1 ||ψb

1| ∧ |ψa
0 ||ψb

1| � |ψa
0 ||ψb

2|, but |ψa
0 ||ψb

1| < |ψa
2 ||ψb

0| .
In most cases the assumption in (F.2.5) holds. Otherwise the analysis often becomes prohibitive
complicated. In section F.3 we will in an example make some further assessments on the degree
of nonlinearity of acoustical fields. One exception from (F.2.5), however, is made if we let
ψa(r, t, s) represent the fluid velocity, u(r, t, s). Then we of course should allow for the normal
case of negligible fluid flow, |u0(r, t, s)| ≈ 0. The impact of this deviation from this assumption
of elsewhere decreasing terms will be provided in the relevant context.

Finally, it should be emphasized that it takes only a single field variable or constitutive parameter
to exhibit nonlinear behavior before second and higher order terms of the (other) field variables
enter as artificial source terms in the governing equations in order so to say to ”balance” the
nonlinearities introduced.

It should, however, also be mentioned that the higher-order terms need not necessarily be unde-
sirable, but may actually be exploited. Some applications involves the acoustic radiation force
that is solely a non-linear acoustic phenomenon as discussed in [7] and the references herein.

F.2.5 Governing Equations

For later reference we will list some of the partial differential equation encountered in direct
somewhat modified form in the three branches of physics studied. They will therefore also
appear in the subsequent sections. Different equations will appear for the static and dynamic

4A quiescent fluid is also subject to u0 = 0.
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field cases. Both scalar field and vector field versions of the equations exist. Static fields are
often described by the Laplace equation

∇2ψ = 0 (F.2.6a)
∇×∇×ψ = 0; ∇ · ψ = 0 (F.2.6b)

in the absence of sources or by the Poisson’s equation

∇2ψ = −4πρ (F.2.7a)
∇×∇×ψ = 4πJ; ∇ · ψ = 0 (F.2.7b)

in the presence sources. The quantities ψ and ψ are representatives for scalar and vector fields
respectively. The description of dynamic fields depends on whether a time-domain or a frequency-
domain representation is used. In the time-domain the wave equation is encountered

∇2ψ − 1
c2

∂2ψ

∂t2
= 0 (F.2.8a)

∇×∇×ψ +
1
c2

∂2ψ

∂t2
= 0; ∇ · ψ = 0, (F.2.8b)

where c refer to the wave speed. In the frequency-domain the Helmholtz equation is considered

∇2ψ + k2 ∂2ψ

∂t2
= 0 (F.2.9a)

∇×∇×ψ − k2 ∂2ψ

∂t2
= 0; ∇ · ψ = 0, (F.2.9b)

where k denotes the wave number. We will return in more details to some of these equations
later.

F.2.6 Time-Domain Frequency-Domain

The constant frequency results can be determined with the prescription that the retarded time
t − c/R in the argument of a function corresponds to the presence of a factor of eıkR in the
complex amplitude and with the replacement of ∂/∂t by −ıω.

This report will use time dependence notion e−ıωt where ω denotes the angular frequency.
Fourier-transform uses the conventions (for each r)

pω(r) =
1
2π

∫ ∞

−∞
p(r, t)eıωt dt (F.2.10a)

p(r, t) =
∫ ∞

−∞
pω(r)e−ıωt dω, (F.2.10b)
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thereby producing a time-harmonic function pω(r)e−ıωt, where p(r, t) denote acoustic pressure
at position r at time t and pω(r) is the corresponding frequency-domain acoustic pressure at
position r.

The frequency is chosen positive (ω > 0) as we can use the reality condition (f−ω = f∗
ω) to

determine fields, sources and equations for negative frequencies.

F.3 Field Theory of Fluid Mechanics

In this section we will present the field theory governing fluid mechanics on which theoretic
acoustics is founded. The presentation will be based on [26, Ch. 2.3] and [28, Ch. 6.2, 6.4, 14.4].

Definition F.1. A fluid such as water or air, deforms continuously when acted on by shearing
stress of any magnitude.

From the very outset it should be remarked that is considered impossible to develop a universal
model for fluid mechanics that suits all possible circumstances in fluid-static or fluid-dynamic
and for all types of fluids. If such universal fluid dynamical model could be obtained the inherent
complexity implies that it would be prohibitively difficult to solve. Instead specialized models
are made to suit particular cases. An example of such specialization is made when we are making
certain assumptions upon entering the domain of acoustics.

Fluid Mech. Field Theory Assump.# 1. Macroscopic domain. Fluid mechanics is char-
acterized by the behavior of average values of the quantities of interest, where the average is
evaluated over a small volume (compared with the physical system of interest) yet containing a
large number of molecules. The molecular spacing under ordinary conditions is of the order of
1 nm for gases and 0.1 nm for liquids. In practice volume sizes of the order of 100 nm3 for gases
and 10 nm3 for liquids would let us consider the fluid a continuous distribution. Furthermore,
in the high frequency region the shortest wavelength should still be many order of magnitude
larger than the size of the infinitesimal volume which serves to define the densities of the field
for the wave equation to hold. Accordingly, the upper frequency limit as regards a macroscopic
point of view under similar conditions is of the order of 3× 102 MHz for gases and 1.5 GHz for
liquids.

Basically, the theory of fluid motion is founded by five sets of equations that include:

1. A continuity equation in mass flow density (F.3.48) on page 642.

2. A continuity equation in momentum density (F.3.53) on page 644.

3. An expression of the conservation of energy (F.3.66) on page 647.

4. An expression related to entropy generation (F.3.68) on page 648.

5. A set constitutive relations section F.3.9 on page 648.
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However, before entering these fundamental equations it would probably be useful to investigate
in some details the mechanism of sound propagation in gases as an example of propagation of
a perturbation in a fluid. The mechanism of wave propagation is indeed a characteristic of
each physical system. Hence, the mechanism of wave propagation of acoustical waves in fluids
and electromagnetic waves in vacuum has very little in common. Despite the very different
mechanisms involved, as regards the corresponding field theories a large number of similarities
between the two physical systems exist.

F.3.1 Thermodynamical Considerations

The motivation for introducing concepts from thermodynamics is twofold. Firstly, as is well
known acoustics involve wave propagation of (small) pressure, temperature and density per-
turbations superposed on the corresponding ambient parameters. Hence, wave propagation is
actually supported by a thermodynamic process (a contour on (P − v−T ) surface plot) in space
and in time. Secondly, the losses in a fluid mechanical system in general and therefore also the
attenuation of acoustic waves are governed by the first and second law of thermodynamics.

Thermodynamics is the branch of physics that deals with the interior of a system, work, heat
and those properties of substances that bear a relation to heat and work. It is also the science
of the abstract concepts of energy and entropy. Newton’s laws of motion concerns mechanical
energy of a solid body and works on mechanical coordinates such as position and velocity.

Thermodynamic Systems

A (simple) thermodynamic system is described by a set thermodynamic coordinates that are
consistent with the fundamental laws of thermodynamics. Different thermodynamic systems are
considered in different branches of physics. Among such simple thermodynamic systems we find a
hydrostatic system, a stretched wire, a surface film, an electrical cell and a paramagnetic solid [36,
Ch. 2]. Compound systems (as opposed to simple systems) are constituted by two or more similar
or dissimilar simple systems that may interact thermally or not. For compound systems more
than one equation of state (EOS) exist and generally more than two independent thermodynamic
properties are required to describe the state of the system. In the present analysis only simple
hydrostatic systems will be considered. The stretched wire type of thermodynamic system is
useful in the study of thermodynamic effects associated with elastic wave propagation in solid
mechanics that will be presented in section F.4 on page 660.

A hydrostatic system or simple compressible system is a constant mass system that in the absence
of surface, gravitational, magnetic and electrical effects exerts on the surroundings a uniform
hydrostatic pressure. Hydrostatic systems are divided into the following categories [36, Ch. 2]

1. A pure substance is one that has a homogeneous invariable chemical composition in the
form of a solid, a liquid, a gas, a mixture of any two, or a mixture of all three.

2. A homogeneous mixture of different constituents all of which are in the same phase.

3. A heterogeneous mixture, such as a mixture of different gases in contact with a mixture of
different liquids.

The pure substance system is simplest to analyse while the heterogeneous mixture system is
the most complex. Experimental evidence shows that the state of a hydrostatic system in ther-
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modynamic equilibrium is uniquely determined from only two independent intensive properties
(thermodynamic coordinates). 5 This also implies that there exists an EOS which connects the
thermodynamic coordinates and which robs of one of them of its independence. Air is not com-
plying with the definition of a pure substance, but air exhibits some of the characteristics of a
pure substance as long as there is no change of phase. A mixture of liquid air and gaseous air,
however, is not a pure substance because the composition of the liquid phase is different from
that of the vapor phase.

In the case of a mixture of ideal gases the overall average properties can under the assumption
of Dalton’s law of additive pressures be estimated from the corresponding value of the property
of the constituting gases on a mass or mole basis [34, Ch. 12]. Functions that are independent
of the pressure like internal energy and enthalpy are determined on a mass basis. Pressure is
determined on a mole basis and functions like entropy that depends on the pressure accordingly
involve the mole basis in the average determination. Once, the mixture properties are found from
the composition and the component properties, we can treat the mixture similarly to a pure
substance. Unfortunately for solutions of solids or liquids where intermolecular force prevails
there is generally no such simple way to determine the overall properties.

Thermodynamic Coordinates

The state of a thermodynamic pure substance system is uniquely described by certain indepen-
dent observable, macroscopic properties. Among these thermodynamic properties are pressure,
temperature, specific volume, density, mass, internal energy, enthalpy, entropy, constant-pressure
and constant-volume specific heats, the Helmholtz function6 and the Gibb’s function (F.3.27) on
page 637.

Of these properties only pressure, mass, volume and temperature can measured directly. The
other properties should then be deduced from these measurable properties using certain ther-
modynamic relations. The state of a simple compressible pure substance is as mentioned above
uniquely determined from only two independent intensive properties. By the adjective simple is
understood that body forces and surface forces are absent. Hence, for such simple compressible
pure substance the state can be determined from property pairs (P, T ) or (v, s) or (m, g) etc. How-
ever, as v = ρ−1 the specific volume and mass density functions, or course, are not independent.
A complication to the analysis arises in two-phase mixtures that occur during sublimation (solid
to vapor) or the opposite solidification (vapor to solid); melting (solid to liquid) or the opposite
solidifying (liquid to vapor); and vaporization (liquid to vapor) or the opposite condensation
(vapor to liquid). In such case the pressure and temperature are not independent properties.
Instead pressure and specific volume or pressure and the quality that identifies the position on
the solid-vapor line or solid-liquid line or liquid-vapor line is required to specify a saturation state
of a pure substance [34, Ch. 3]. Hence, for solidification and vaporization processes the quality
is defined as the ratio of the mass of vapor to the total mass. Likewise, for a fusion process
the quality is defined as the ratio of the mass of liquid to the total mass. Quality, however,
has only meaning when the substance is in a saturated state, that is, at saturation pressure and

5Thermodynamic properties can be divided into two general classes, extensive properties that are mass de-
pendent and intensive properties that are mass independent. Mass, total volume are examples of extensive field
parameters [34]. The intensive field quantities count pressure, temperature, density and all the specific (per unit
mass) field variables.

6 The specific Helmholtz function f defined as f ≡ u − Ts is a property that is of interest in chemistry and
is useful in considering chemical reactions that take place isothermally and isochorically. The Helmholtz function
is normally not used in acoustics.
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temperature. However, if surface effects, magnetic effects or electrical effects cannot be assumed
negligible, then, additional thermodynamic properties like tension in a stretched wire, surface
tension on a stretched surface film, electromagnetic force in a reversible cell, magnetic intensity
in a paramagnetic solid etc. are required for unique determination of the state [36, Ch. 3]. Work
involved by action of such effects should be recognized and treated separately.

Each of the properties of a substance in a given state has only one definite value, and these
properties always have the same value for a given state, regardless of how the substance arrived
at the state [34, Ch. 2]. In thermodynamics the control mass and control volume approaches are
equivalent to the Lagrangian and Eulerian views respectively.

Ideal Gases

When the density of gas is sufficiently low such that intermolecular potential energy associated
with forces between molecules can be ignored, an assumption of an ideal gas law often is made,
where the pressure specific volume and temperature are linked according to

PV = nR̄T, (F.3.1)

where n denotes the number of moles of the gas and R̄ is the universal gas constant. The ideal
gas law is particular useful due to the very simple EOS. Another important fact is that the
internal energy is a function of temperature only, that is,

U = f(T ) (F.3.2a)(
∂U

∂V

)
T

=
(

∂U

∂P

)
T

= 0. (F.3.2b)

The ideal property (F.3.2) is particular useful in the analysis of a fluid dynamic system.

Real Gases

In many cases of interest, however, the gas is real (as opposed to ideal) and more elaborate
methods must be considered. The internal energy of a real gases is a function of pressure as well
as temperature. A measure of deviation from ideal gas behavior is provided by the compressibility
factor Z

Z =
Pv

RT
. (F.3.3)

From (F.3.1) we appreciate that Z ≡ 1 for an ideal gas. Many gases exhibit the same compress-
ibility diagram, that is, Z as a function of P for various T in a qualitative sense [34, Ch. 3].
General quantitative compressibility diagrams can be obtained from introducing the reduced
pressure Pr and the reduced temperature Tr for a given state as the value of respective property
in this state divided by the value of this same property at the critical point7. Hence,

7The critical point of a fluid is the unique state in which saturated liquid and saturated vapor coincide in
density.



F.3. Field Theory of Fluid Mechanics 629

Pr ≡
P

Pc
(F.3.4a)

Tr ≡
T

Tc
, (F.3.4b)

where Pc is the critical pressure and Tc denotes critical temperature. For simple molecules a
generalized chart, that is, Z versus (Pr, Tr) can be made [34, App. D]. This generalized chart is
particular useful for a substance for which no experimental data is available in the (P − v − T )
region of interest. In practice Z → 1 for P � Pc irrespective of temperature or if T 
 2Tc, P �
4− 5Pc.

Equation of State

As already mentioned every thermodynamic system has its own EOS, although in some cases
the relation may be so complicated that it cannot be expressed in terms of simple mathematical
functions over the entire (P − v − T ) domain. In certain cases it desirable to have an EOS that
accurately represent the P −v−T behavior for a particular gas beyond the ideal gas region, that
is, over the entire superheated region.

Another implication arises as many systems are not pure substances but mixtures of two or more
substances. For mixtures of different pure substances the mass fraction and the mole fraction
accordingly enter the system equations. By Gibb’s theorem the entropy of a mixture of ideal
gases is the sum of the partial entropies [36, Ch. 16.3]. The same applies to the critical pressure
and the critical temperature, that is,

Pcmix =
Nκ∑
κ=1

yκPcκ
(F.3.5a)

Tcmix =
Nκ∑
κ=1

yκTcκ
, (F.3.5b)

where yκ is the mole fraction of the κ’th constituent defined by

yκ =
nκ∑Nκ

κ′=1 nκ′
. (F.3.6)

A more elaborate EOS is constituted by the Lee-Kesler equation involving 12 constants [19]

Z =
Pr v̌r

Tr
= 1 +

B

v̌r
+

C

v̌2
r

+
D

v̌5
r

+
c4

T 3
r v̌2

r

(
β +

γ

v̌2
r

)
exp

(
− γ

v̌2
r

)
(F.3.7a)

B = b1 −
b2

Tr
− b3

T 2
r

− b4

T 3
r

(F.3.7b)

C = c1 −
c2

Tr
+

c3

T 2
r

(F.3.7c)

D = d1 +
d2

Tr
, (F.3.7d)
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where v̌r denotes the modified reduced specific volume

v̌r =
Pcv

RTc
(F.3.8)

and b1, b2, b3, b4, c1, c2, c3, c4, d1, d2 and β, γ are Lee-Kesler EOS constants.

Heat and Work

Work and heat are energy transfer between a control volume (CV)8 and its surroundings. Work
is said to be done if a system undergoes a displacement under the action of a force, the amount of
work being equal to the product of the force and the component of the displacement parallel to
the force. Accordingly, the character of the work depends on the specific type of thermodynamic
system listed in subsection F.3.1 on page 626. Work is done by the system when the resultant
force exerted by the system on its surroundings is in the same direction as the displacement and
by convention such work is considered positive. Conversely, when the force exerted by a system
on its surroundings is opposite to the displacement, work is done on the system, and this work
is called negative [36, Ch. 3.1].

Heat is energy transferred due to temperature differences and manifest itself as heat conduction,
heat convection or thermal radiation. Heat is an universal phenomena and is independent of the
type of thermodynamic system introduced in subsection F.3.1 on page 626. By definition heat
is positive when it enters a system and negative when it leaves. The oppositive sign convention
used for work and heat stems from early applications of thermodynamics in the study of heat
engines whose normal operation involves the inflow of heat and the output of work.

Zeroth Law of Thermodynamics

The zeroth law of thermodynamics is the basis for temperature measurements and precedes the
first and second laws (from which it cannot be deduced). Basically, the zeroth law expresses
that two systems in thermal equilibrium with a third are in thermal equilibrium with each other.
The zeroth law, however, will only be used implicitly in our development as it facilitates the
temperature concept.

First Law of Thermodynamics

For a process involving only infinitesimal changes in the thermodynamic coordinates of a sys-
tem is known as an infinitesimal process. For such process we can formulate the first law of
thermodynamics on differential form for a CM as

dU = δQ− δW − dEkin − dEpot. (F.3.9)

The first law predicts the existence of the function known as internal energy function U of the
coordinates of a thermodynamic system whose value at the final state of a process minus its
value at the initial state is equal to the amount of heat supplied to the CM subtracted the work
done by the CM on its surroundings and subtracted the bulk energy transferred to kinetic energy

8In this subsection we may consistently replace CV by control mass (CM).
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function Ekin and potential energy function Epot . The symbol δ denotes an inexact differential .
The quantity of heat received by the system δQ is denoted δQ rather than dQ because it is
not a perfect differential since it is not necessary that the total heat of a system is supplied
as heat; it may come from mechanical energy in compression. Both work and heat involve
inexact differentials as both the work and the heat are functions of the integration path as well
as the beginning state and end state. There is no function of the thermodynamic coordinates
representing the work nor the heat in a body.

Fluid Mech. Field Theory Assump.# 2. In a quasi-static process the system passes from
an initial equilibrium state to a neighboring equilibrium state9. This in turn implies that dU
and δW can be expressed in terms of thermodynamic coordinates only. For a hydrostatic system
the first law for a CM becomes

dU = δQ− P dV − dEkin − dEpot. (F.3.10)

If the assumption of a quasi-static process fails then there exists a time during the process in
which the process is not infinitesimal near a state of thermodynamic equilibrium. Then at least
one of the requirements on (1) mechanical equilibrium, (2) thermal equilibrium or (3) chemi-
cal equilibrium is violated [36, Ch. 3.2]. As a consequence the EOS is not valid for all these
states. This in turn complicates the analysis in which the EOS plays a fundamental role viz.
subsection F.3.9. The impact of this depends on the degree and nature of the violation and on
the particular thermodynamic system considered. For a hydrostatic system violation of the as-
sumption of a quasi-static process could be caused by large and/or rapidly varying perturbations.
Processes that not at all times are infinitesimal near thermodynamic equilibrium will most likely
be accompanied by losses as will discussed in section F.3.1 on page 634.

Another thermodynamic property that is often used to describe the energy flows across open
boundaries of a control surface (CS) fluid dynamics and acoustics is the enthalpy H defined by

H ≡ U + PV (F.3.11)

and the specific enthalpy h that is similarly defined by

h ≡ u + Pv. (F.3.12)

We will make use of the first law in subsection F.3.7 on page 646 dealing with the conservation
of energy in a material element.

Second Law of Thermodynamics

While the first law denies the possibility of creating or destroying energy; the second law denies
the possibility of utilizing energy in a particular way. The second law of thermodynamics on
differential form for a CM may be expressed as

dS =
δQ

T
+ δSgen, (F.3.13)

9The requirement of a quasi-static process is more restrictive than a requirement of an infinitesimal process.
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δSgen represents the amount of entropy generation in the process due to irreversibilities occurring
inside the system. This entropy generation in turn is subject to the following constraint:

δSgen

{
= 0; reversible process
> 0; irreversible process.

(F.3.14)

Hence, according to the second law of thermodynamics the total energy of a CM (or for that sake
a closed system) does not increase. Like the internal energy property enabled us to use the first
law quantitatively for processes (as opposed to cycles) the entropy property enables us to use
the second law quantitatively for processes.

The concept of energy raises from the first law of thermodynamics and the concept of entropy
from the second law of thermodynamics. In statistical thermodynamics the entropy represent
a likelihood of a the substance to be in a certain state. Accordingly, a change of state from a
less probable state to a more probable state occurs in a irreversible process associated with an
increase of entropy. Entropy increase is experienced in relation to diffusion processes.

Hence, the entropy increases as a sound wave attenuates as energy is transferred from a less
likely state of organized motion to a more likely state of disorganized motion in terms of heat.

We will make use of the second law in subsection F.3.8 on page 648 addressing the generation of
entropy in a material element.

Third Law of Thermodynamics

The absolute value of the entropy of substances is governed by the third law of thermodynamics
that is of particular importance in low temperature chemistry. Based on statistical thermody-
namics the third law of thermodynamics states that at the absolute zero of temperature the
entropy of a perfect crystal is zero, that is, it attains its maximum degree of order [34, Ch. 14].
The third law provides an absolute base from which to measure the entropy of each substance.

As we are concerned about relative changes to the thermodynamic coordinates including the
entropy and do no concern about absolute values of these coordinates we will make no further
reference to the third law. It is included here merely for the sake of completeness.

Internal Energy

The internal energy is a concept used in thermodynamics and generally represents the total
energy due to the motion of molecules, energy in all chemical bonds (intermolecular energy),
potential energy associated with intramolecular energy, rotational energy and vibrational and
electric energy of atoms within molecules or crystals, nuclear energy and electron energy of
a result of both orbital angular momentum of the electrons about the nucleus and angular
momentum of the electrons spinning on their axis and the energy of a free conducting electrons
in metals. It should be remarked that kinetic energy due to bulk (organized) motion, is not part
of the internal energy. This energy associated with bulk motion makes up the acoustic energy
kinetic density (F.3.108) on page 659. The concept of internal energy plays a central role in the
propagation of perturbations in a fluid.

A gas will often be a mixture (as opposed to a pure substance) constituted by various species of
mono-, di- and polyatomic molecules. Examples of monoatomic molecules are He and Ar. Among
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the diatomic molecules of most interest we find N2 and O2. In dry air the volume content ratios
of the constituents (N2, O2, Ar) are (78%, 21%, 1%) corresponding to the following weight ratios
(75%, 23%, 1%) [33, Ch. 1.9]. These ratios are relative constants, but the water H2O contents
is subject to large variations.

The mono-, di- and polyatomic molecules are characterized by different degrees of freedom (dof)
in their storage of internal energy. Every molecule, mono-, di- and polyatomic possess a number
of dof for translational movements Ndof

tr identical to 3. In addition, the diatomic and polyatomic
molecules possess a number of dof for rotational movements Ndof

rot . This number equals 2 for di-
atomic and linear polyatomic molecules and equals 3 for nonlinear polyatomic molecules. Finally,
the number of dof for vibrational movements Ndof

vib is 3N − 5 for diatomic and linear polyatomic
molecules and equals 3N − 6 for nonlinear polyatomic molecules, where N denotes the number
of atoms in molecule.

In the air it normally suffices to consider kinematic energy contribution from translational, ro-
tational and vibrational motion of molecules. However, as discussed in section F.3.1. in gas
mixtures like combustion products absorption of sound waves due to chemical reactions, particu-
larly in the high-frequency limit at high temperatures and pressures must be taking into account.
Sound waves in sea water can initiate pressure-dependent chemical reactions thereby causing a
temporary perturbation from local chemical equilibrium. The principal chemicals contributing
to such processes in sea water are dissolved magnesium sulfate MgSO4 and dissolved boric acid
H3BO3.

In the following we will define different forms of specific internal energy10. In a fluid mixture
composed of a total number of gas species Nκ the specific internal energy u(r, t) is constituted by
the specific translational kinetic internal energy utr(r, t) , the specific rotational kinetic internal
energy urot(r, t) and the specific vibrational kinetic internal energy uvib(r, t) added the specific
chemical bound internal energy uch(r, t) and the specific electron internal energy ue(r, t), that
is,

u(r, t) = utr(r, t) + urot(r, t) + uvib(r, t) + ue(r, t) + uch(r, t) (F.3.15a)

=
Nκ∑
κ=1

uκ(r, t) (F.3.15b)

=
Nι∑
ι=1

Nκ∑
κ=1

uκ

ι (r, t), (F.3.15c)

where κ is the species indicator, and where ι is the internal energy index, which takes the
following values

ι =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1; translation
2; rotation
3; vibration
4; electron
5; chemical.

(F.3.16)

10The terms specific and per unit mass are synonyms.
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By assuming additivity of internal energy modes it is implicitly also assumed that no interaction
between the rotational and vibrational modes of energy occurs. Nuclear energy, which, except in
the case of nuclear reactions, is constant an omitted from our analysis. The contribution to the
internal energy from electrons with the common exceptions of the monoatomic gases O, Cl and
F and the diatomic gases O2, NO and OH is usually very small compared with the translational
energies except at very high temperatures. Hence, the number of internal energy modes Nι

considered equals 5. For monoatomic molecules the contribution to rotational and vibrational
energy densities is negligible, that is, urot ≈ uvib 
 0.

Relaxation

By definition the apparent temperature associated with mode ι for species κ T̆ κ
ι (r, t) is related

to the internal energy density for the same species and energy mode

T̆ κ

ι (r, t) =
2

Ndof,κ
ι

uκ
ι (r, t)

R
. (F.3.17)

The quantity R denotes the gas constant for a particular gas that is determined from the universal
gas constant by division of the molecular weight M , that is,

R =
R̄

M
. (F.3.18)

From statistical thermodynamical considerations internal equilibrium is not established until the
apparent temperatures corresponding to the translatoric, rotational and vibrational coincide,
that is, T = T̆tr = T̆rot = T̆vib and generally in a mixture T = T̆ κ

ι ; ∀κ ∈
¯
Nκ, ι ∈

¯
Nι [33,

Ch. 10.7]. Due to finite sluggishness a delay refereed to as the relaxation time will occur before
internal equilibrium is fully obtained.

Finally, the degree of relative excitation of each internal energy mode term uκ
ι is described by a

function F κ
ι (T )

F κ

ι (T ) = 2
Mκ

Rκ

(
∂uκ

ι

∂T

)
V

. (F.3.19)

It suffice to say here, that F κ
ι (T ) ∈ [0; 1] and by definition F κ

ι (T ) = 0 for T = 0. For translational
and rotational modes F κ

ι (T ) � 1 for temperatures of normal interest. The vibrational modes,
however, are normally only very weakly excited, that is, F κ

ι (T ) 
 0 at ordinary temperatures.

By definition the pressure corresponds to translatoric and no other kinematic terms.

The molecules in the gas are moving randomly and uniformly distributed in space with the
root-mean-square of the molecular speed approximately equal to the speed of sound in the fluid.
At standard atmospheric pressure and a temperature of 20 ◦C the density will be such that
the mean-free-path of molecules l is of the order of 10−5 cm and each molecule will statistically
experience a collision approximately each 1 ns.

Imagine a source radiating, say, a compressional pulse of acoustical energy into the surrounding
fluid. During compression a fluid element absorbs energy and as a consequence it is somewhat
warmer, more denser and will exert higher forces per unit surface area than the ambient fluid,
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that is, (p > 0, ρ > 0, τ > 0). The increase in internal energy of compressed fluid elements is
(almost) immediately propagated to the yet undisturbed surrounding region of space in terms
of interactions on a molecular scale. Upon each of the aforementioned collisions, energy and
momentum transfer with a net transfer from the warmer to the colder fluid will take place. For
time-harmonic waves this process will be reverse during rarefaction.

Each mode of internal energy per unit mass uκ
ι will follow a mode-dependent exponentially-

decaying transition curve from one equilibrium point at, say, Te1 towards another equilibrium
point at, say, Te2 . This transition is characterized by the time constant in relaxation process τκ

ι

ŭκ

ι (T ) = uκ

ι (Te2) + (uκ

ι (Te1)− uκ

ι (Te2)) expt/τκ

ι . (F.3.20)

Using the expansions in subsection F.2.4 on page 622 we may express the transition curves in
terms of the internal acoustic energy per unit mass associated with mode ι for species κ uκ

ι,−0 as

ŭκ

ι,−0(T ) = uκ

ι,−0(Te2) + (uκ

ι,−0(Te1)− uκ

ι,−0(Te2)) expt/τκ

ι . (F.3.21)

The time constants for the three relaxation process are related as follows

τtr ≈ 0.1 ns � τrot ≈ 1 ns� τ
O2
vib ≈ 10 µs� τ

N2
vib ≈ 1 ms, (F.3.22)

where τtr, τrot, τvib are the relaxation time constants for translational-, rotational- and vibrational
modes respectively. The indicated time constants pertain to air at meteorological temperatures.
Hence, translation respond almost immediately to a change in equilibrium. Rotational modes
are also easily excited whereas the vibrational modes are much more difficult to excite. The
indicated figures for N2 and O2 are very strongly dependent on the humidity. During a collision
with a H2O molecule statistically much more energy is namely set into vibration than when
colliding with another O2 or N2 molecule.

An example of a chemically reacting fluid is the ocean where the two most important chemical
relaxation processes are due to dissolved magnesium sulfate τ

MgSO4
ch ≈ 10−5 s and dissolved boric

acid τ
H3BO3
ch ≈ 10−3 s.

A consequence of the nonuniform time constants in (F.3.22), the wave propagation will be dis-
persive. In the high-frequency limit, some of the relaxation time-constant might be of the order
of several periods of the signal and no appreciably activation of these modes takes place as the
sound wave passes. The speed of sound attains it frozen value that might be appreciable higher
than the low-frequency (equilibrium) value. In between the low- and high-frequency limits where
the dispersion is most pronounced the fluid composition oscillates through non-equilibrium states
which complicates the analysis.

The relaxation process, however, might be interrupted at three principal stages. At low fre-
quencies (f � 1

max τκ

ι
) the transition will have sufficient time to complete for all internal energy

modes and the process can be assumed to be in constant equilibrium. At medium frequencies
(f ≈ 1

min τκ

ι
), however, the process is interrupted at a non-equilibrium point and as a consequence

hysteresis and dissipation is introduced. At higher frequencies (f � 1
min τκ

ι
) the relaxation pro-

cess is never initiated. Under usual conditions the frequencies can be considered low and the
fraction of internal energy contained in vibrational mode is very low. Hence, the dispersive
nature can normally be ignored except for propagation of sound waves in moist air.
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The level of internal energy excitation will vary inversely proportional to the squared-distance
from the source. Depending on the type of source (monopole, dipole, quadropole etc.) different
radiation pattern is experienced.

This transfer of sound wave energy may be accompanied by dissipative losses due to heat con-
duction and finite viscosity. It is however important to appreciate that impurities in the air (as
opposed to dry air) due to a content of H2O or CO2 may lead to an increased level of absorption.

Chemical Relaxation

Among chemical reactions we find dissociation, ionization, association, precipitation.

We may write a generic chemical process in a heterogeneous system of a number of constituents
Nκ whose chemical symbols are A1, A2, . . . ANκ

as

Nκ,l∑
i=1

νiAi 
Nκ∑

i=Nκ,l+1

νiAi. (F.3.23)

Nκ in turn is obtained as the sum of the number of constituents on the LHS of (F.3.23) Nκ,l and
number of constituents on the RHS of (F.3.23) Nκ,r, that is, Nκ = Nκ,l + Nκ,r. The number
νi is the stoichiometric coefficient of the i’th constituent that is proportional to the number of
moles of the i’th constituent.

At chemical equilibrium the forward chemical reaction rate is exactly equal to the backward
chemical reaction rate and there is no change in chemical composition. However, the pressure
and temperature variations accompanied with the passage of a sound wave will cause temporary
perturbation of the fluid from the equilibrium, and the chemical reaction will, in the net, proceed
in a direction to retain chemical equilibrium.

The composition of a heterogeneous mixture is described by the set of n
(ϕ)
κ changes due chemical

activity or by virtue of a transportation of mass across the boundaries between phases, or both.
Such kind activities continues until chemical equilibrium is attained. However, provided that
thermal equilibrium and mechanical equilibrium is maintained for each of the phases it is assumed
that they each be represented with the aid of the coordinates P, V, T, n

(ϕ)
1 , n

(ϕ)
2 , . . . , n

(ϕ)

N
(ϕ)
κ

of which
only two of (P, V, T ) are independent [36, Ch. 16.7].

It should be remarked that from this definition of a phase any extensive property such as
V, U, S, H, F or G for a heterogeneous system is obtained as the sum of the contribution of
each of the phases, that is,

X =
Nϕ∑
ϕ=1

X(ϕ), (F.3.24)

where X is a surrogate for an arbitrary extensive property, where the phase components X(ϕ) in
turn are function of (P, T, n

(ϕ)
1 , n

(ϕ)
2 , . . . , n

(ϕ)

N
(ϕ)
c

) and where as usual (P, V ) or (V, T ) may replace
(P, T ).

The equations of phase equilibrium represent an important fact in the development which is that
at equilibrium the chemical potential of a constituent in one phase must be equal to the chemical
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potential of the same constituent in every other phase, that is,

∀ϕ, ϕ′ ∈
¯
Nϕ, κ ∈

¯
Nκ : μ(ϕ)

κ = μ(ϕ′)
κ . (F.3.25)

The number of components in the thermodynamic system Nc can be obtained from

Nc = Nκ −Nr −Nz −Nϕ + 2, (F.3.26)

where Nr is the number of independent reactions, Nz denote the number of independent re-
stricting equations, such as an equation expressing electric neutrality or an equation expression
balance of mole fractions. The number 2 appearing in (F.3.26) stems from necessity also in the
pure substance case to include two independent thermodynamic properties among (P, v, T ). The
number of component Nc is the smallest number of constituents whose specification is sufficient
to determine the composition of every phase.

The specific Gibb’s function g defined as

g ≡ h− Ts (F.3.27)

is a property that is of interest in chemistry, since chemical reactions can be conceived as to take
place isothermally and isobarically. The Gibb’s function is normally not used in acoustics, but
will be used in the present context to address the general problem of describing propagation of
waves in substances that are heterogenous and chemically active. In thermodynamics a phase is
defined as a system or a portion of a system composed of any number of chemical constituents
satisfying the requirement (1) that it is homogeneous and (2) that it has definite boundaries [36,
Ch. 16.7]. In the heterogeneous system the total Gibb’s function G is the sum of the Gibb’s
functions of all the phases, that is,

G =
Nϕ∑
p=1

N(ϕ)
κ∑

c=1

μ(ϕ)
c n(ϕ)

c , (F.3.28)

where n
(ϕ)
c is the number of moles of the c’th constituent of the p’th phase and where the

quantity μ
(ϕ)
c denotes the chemical potential of the c’th constituent of the p’th phase defined by

[36, Ch. 18]

μ(ϕ)
c =

∂G

∂n
(ϕ)
c

. (F.3.29)

The degree of reaction ε is defined by

ε =
nκ′,l, max − nκ′,l

nκ′,l, max − nκ′,l, min
, (F.3.30)

where the index κ′, l refer to (one of) the left-hand side (LHS) substances that if the reaction
proceeded to the right would completely disappear. In this case nκ′,l = nκ′,l, min = 0. Similarly,
if the reaction proceed to the left then nκ′,l = nκ′,l, max. Hence, ε ∈ [0, 1] and ε = 0 when the
reaction is completely to the left and ε = 1 when the reaction is completely to the right. Moreover,



638 F. Acoustic, Electromagnetic and Elastic Field Theory

the partial derivative of the degree of reaction with respect to temperature for constant pressure
and the derivative of the degree of reaction with respect to pressure for constant temperature
are related to the Gibb’s function according to

(
∂εe

∂T

)
P

=

(
δQ
dε

)
T,P

T
(

∂2G
∂ε2

)
T,P

(F.3.31a)

(
∂εe

∂P

)
T

= −
(

∂V
dε

)
T,P(

∂2G
∂ε2

)
T,P

. (F.3.31b)

Since G is at a minimum at thermodynamic equilibrium, ∂2G
∂ε2 is positive at ε = εe. Hence,

(F.3.31a) states that an increase of temperature at constant pressure always causes a reaction to
proceed in the direction in which heat is absorbed at constant P . From (F.3.31b) we similarly
recognize that an increase in pressure at constant temperature causes a reaction to proceed in
the direction in which the volume decreases. For low frequencies, the chemical reaction rate is
fast enough to essentially instantaneously maintain equilibrium and the fluid can be considered
to be in quasi-equilibrium state during the passage of the sound wave.

In the high-frequency limit, the chemical reaction rate is to slow to appreciably change the
chemical composition as the sound wave passes and the fluid composition can be treated as a
constant. The speed of sound attains it frozen value that might be appreciable higher than the
low-frequency (equilibrium) value.

In between the low- and high-frequency limits the fluid composition oscillates through non-
equilibrium states which complicates the analysis. The manner in which a sound wave propagates
within a chemically reacting substance (such as high temperature combustion products [2] or sea
water with a contents of boric acid and carbonate [25]) is therefore dependent upon the frequency
of the sound wave and the chemical reaction times involved.

In [2] calculations indicated a strong absorption due to O2 −−⇀↽−− 2O chemical reaction, partic-
ularly in the high-frequency limit at high temperatures and pressures. In a series of papers
Mellen, Browning, and Simmons proposed a coupled model for the chemical relaxation in sea
water supporting experimental data [22–25].

From these studies it was concluded that the chemical relaxation mechanism associated with
acid-base exchange between boric acid and carbonate is responsible for low-frequency sound
absorption in sea water. These, mechanisms, however, are quite involved and probably not yet
fully understood. Experimental evidence suggests that the following coupled processes partake
in the low-frequency chemical relaxation [25].

1. The boric acid/borate equilibrium mechanism

Na+ + B(OH)3 + CO 2−
3 + H2O

1−⇀↽− Na+ + B(OH)−
4 + HCO−

3 (F.3.32)

that as indicated by the Na+ ion is dependent on the NaCl concentration as the following
reaction takes place in parallel [25]

NaCO−
3 + B(OH)3 + H2O

2−⇀↽− NaB(OH) 0
4 + HCO−

3 · (F.3.33)

Accordingly the LHSs of (F.3.32) and (F.3.33) are linked �� 3 through a dissociation of
NaCO –

3 and the right-hand sides (RHSs) are linked �� 4 through dissociation of NaB(OH) 0
4 .
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We deduce the following: Nκ = 8 (Na+, B(OH)3, CO 2
3 , H2O, B(OH) –

4 , HCO –
3 , NaCO –

3 ,
NaB(OH) 0

4 ), Nr = 3 (4 reactions of which only 3 are independent), Nz = 1 (electric
neutrality 2yNa+ = 2yCO 2−

3
+ yNaCO−

3
+ yHCO −

3
). By insertion in (F.3.26), we obtain

Nc = 8 − 3− 1 − 2 + 2 = 4. Hence, in addition to the pressure P and the temperature T
we need two mole fractions, such as, yNaB(OH) 0

4
, yH2O

in order uniquely to determine the
state of the system.

The relaxation frequency is approximately 1 kHz.

2. The magnesium carbonate absorbtion

Ca 2+ + B(OH)3 + CO 2−
3 + H2O

1−⇀↽− Ca 2+ + B(OH)−4 + HCO−
3 (F.3.34)

coupled to
CaCO 0

3 + B(OH)3 + H2O
2−⇀↽− CaB(OH)+

4 + HCO−
3 · (F.3.35)

3. The magnesium carbonate absorbtion

Mg 2+ + B(OH)3 + CO 2−
3 + H2O

1−⇀↽−Mg 2+ + B(OH)−
4 + HCO−

3 (F.3.36)

coupled to
MgCO 0

3 + B(OH)3 + H2O
2−⇀↽−MgB(OH)+

4 + HCO−
3 · (F.3.37)

The actual effect of this chemical process, however, is an open question.

There are three principal chemical relaxations processes contributing to low-frequency sound
absorption in sea water. The actual absorption coefficient will exhibit large variations with
frequency, and the concentrations of NaCl, MgCl2 and CaCl2. The reason for the slow chemical
reactions and hence low relaxation frequency is due to structural change between the trigonal
planar boric acid molecule and the tetrahedral borate ion.

Summary

In summary, the four laws of thermodynamics, the concepts of work, heat, energy and entropy
have been presented. The mechanism responsible for propagation of a perturbation in a fluid in-
cluding the relaxation phenomena was discussed. The dissipative effects of thermal conductivity,
viscosity and relaxation hysteresis will be ”absorbed” by using a complex wave number k with a
finite imaginary part

k = kre + ıkim =
ω

c0

{
1 +

ıω

2ρc2
0

[
μB + 4

3μ + (γ − 1)
κ

CP

]}
, (F.3.38)

where

c0 =
√

1
Ksρ

(F.3.39)
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(F.3.38) also exhibits the inherent dispersive nature of wave propagation in the constitutent
dissipative media.

In order to proceed we will invoke the following assumption.

Fluid Mech. Field Theory Assump.# 3. Continuous in time and space. In the development
of the Navier-Stokes system of equations for fluids partial derivative with respect to time or space
of the field variables will be required. In practice, this excludes, e.g., fluids with contents of voids
formed by bubbles of dissolved gases or contents of aggregated particles.

F.3.2 Material Derivative

In fluid dynamics and thermodynamics two interrelated viewpoints are used. In the Eulerian
viewpoint or control volume approach the fluid properties within a CV and the corresponding CS

that both are fixed in time as the fluid flows across the CS and through the CV. In this case, the
fluid motion is given prescribing the necessary properties such as pressure, fluid velocity, density
etc. as functions of space and time. However, as will turn out during the development, all of
the laws governing the motion of a fluid are most easily stated in the basic form in terms of
the Lagrangian viewpoint or system approach. The concept of the material derivative11 is very
useful in the analysis of field variables in fluids or solids. The material derivative D()

Dt establishes
a link between the Eulerian and Lagrangian perspective and is defined as the rate at which an
arbitrary variable changes with time, as measured in a frame of reference moving with the fluid,
that is, the Lagrangian description [29, Ch. 4]

D()
Dt

≡ ∂()
∂t

+ (u(r, t) ·∇)(), (F.3.40)

where u(r, t) is the local fluid material velocity at position r in space and a time t.

In section F.A on page 684 the following general expression for the material derivative applied to

the product of a scalar function ψ(r, t) and a vector field quantity B(r, t), that is,
D
(
ψ(r,t)B(r,t)

)
Dt

is obtained using tensor notation

D(ψ(r, t)B(r, t))
Dt

=
∂(ψ(r, t)B(r, t))

∂t
+∇ ·A(r, t) − ψ(r, t)B(r, t)∇ · u, (F.3.41)

where A(r, t) = ψ(r, t)B(r, t) ⊗ u(r, t) and ⊗ denotes the tensor product. We will use (F.3.41)
in subsection F.3.6 on page 643 in order to establish a CV interpretation of the expression for
continuity in fluid moment density.

F.3.3 Reynolds Transport Theorem

The Reynolds transport theorem presented next establishes another link between the Lagrangian
and Eulerian12 perspectives and is widely used in fluid mechanics.

11Also referred to as substantial derivative or Lagrange derivative.
12The Eulerian description set up a fixed coordinate system and describes the properties of the fluid what ever

happens to be at given point at a given time.
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Now lets us by B denote an arbitrary extensive property and by b denote the associated intensive
property that is interrelated with B as B = mb, where m is the mass of the material element of
interest. The arbitrary extensive property B might be a scalar, vector or tensor. In our context
the system should be considered as a material element. In the Eulerian description a CV and
corresponding CS that are both fixed in time are being considered. The Reynolds transport
theorem is then expressed as [29, Ch. 4]

DBsys(t)
Dt

=
∂

∂t

∫∫∫
CV

ρ(r′, t)b(r′, t) dV ′ +
∫∫
CS

ρ(r′, t)b(r′, t)u(r′, t) · dS′, (F.3.42)

where Bsys(t) =
∫∫∫

sys(r,t) ρ(r′, t)b(r′, t) dV ′ is the amount of the extensive property B that the
system13 possess at time t. The surface normal differential vector dS′ in turn is obtained as
dS′ = n̂ dS where n̂(r′) denotes the positive (outward drawn) surface normal unit vector at
position r′ and dS(r′) is the surface unit area at position r′.

The first term on the RHS of (F.3.42) represents the rate of change of B within the control
volume as the fluid flows through it and therefore represents unsteady effects associated with the
fact that the values of the parameters within the CV may change with time. The last term in
(F.3.42) represents the net flow rate of the parameter B across the entire the control surface and
therefore represents convective effects associated with the flow of the system across the fixed CS.

By comparing (F.3.40) and (F.3.42) it can be argued that the material derivative is essentially
the derivative equivalent of the integral Reynolds transport theorem.

A second expression and for our development more useful expression for the transport theorem
is provided without proof in [33, Ch. 1]

DBsys(t)
Dt

=
D
Dt

∫∫∫
V (r,t)

ρ(r′, t)b(r′, t) dV ′ =
∫∫∫
V (r,t)

ρ(r′, t)
Db(r′, t)

Dt
dV ′. (F.3.43)

The time-varying extent of the system is described by the time-varying volume integration limits
V (r, t). At first glance it might seem that a term involving the partial derivative of the mass
density ρ(r, t) with time is missing in (F.3.43). However, in (F.3.43) the time-derivative of
a volume integral with time-varying integration limits is being considered. It turns out that
upon bringing the time-derivative operator under the sign of integration terms that manifest
themselves as an expression of mass conservation can be removed.

A formal proof of (F.3.43) is provided in section F.B that utilizes the expression for the continuity
of mass flow to be provided in subsection F.3.5.

This second expression for the Reynolds transport theorem will be used repeatedly in the next
sections.

F.3.4 Dilatation Rate

Another important quantity encountered in fluid-dynamics is the dilatation rate Δ̇(r, t) that
measures the rate of volume strain, that is, the rate of increase in volume of an element of fluid,

13System, control mass and material element are all synonyms.



642 F. Acoustic, Electromagnetic and Elastic Field Theory

per unit current volume

Δ̇(r, t) ≡ ∇ ·u(r, t). (F.3.44)

F.3.5 Conservation of Fluid Mass

The first equation governing the fluid motion is the equation of continuity for mass flow, which
in a Lagrangian perspective is very simple in that any change in fluid mass equals the amount
of specific creation there14

D
Dt

∫∫∫
V (r,t)

ρ(r′, t) dV ′ =
∫∫∫
V (r,t)

q(r′, t) dV ′, (F.3.45)

where q(r, t) volume source of mass-flow. Introduction of new mass could for instance be due to
an explosion or a combustion process changing a solid or liquid into a gas. The nature of this
source term is discussed in more details in subsection F.3.11 on page 654. The dependence of
the position of the volume integration limits of the mass element V (r, t) with time has explicit
been stated in (F.3.45). We will need the following expression for the time-derivative of a volume
integral with time-varying integration limits [17, Ch. 5.15]

D
Dt

∫∫∫
V (r,t)

F (r′, t) dV ′ =
∫∫∫
V (r,t)

[
∂F (r′, t)

∂t
+∇ · (F (r′, t)u(r, t))

]
dV ′, (F.3.46)

where F (r, t) is an arbitrary scalar-valued, vector-valued or tensor-valued field quantity. Hence,
by insertion of (F.3.46) in (F.3.45) and applying (F.3.40) we obtain

∫∫∫
V (r,t)

Dρ(r′, t)
Dt

dV ′ +
∫∫∫
V (r,t)

ρ(r′, t)Δ̇(r′, t) dV ′ =
∫∫∫
V (r,t)

q(r′, t) dV ′, (F.3.47)

where Δ̇(r, t) is the dilatation rate defined in (F.3.44) on this page. Appreciating that the mass
element was arbitrarily chosen, requires that (F.3.45) must hold for the integrands themselves.
We therefore obtain the following differential form of continuity of fluid mass density

Dρ(r, t)
Dt

+ ρ(r, t)Δ̇(r, t) = q(r, t). (F.3.48)

The differential form of the Lagrangian view states that the rate of change in mass density equals
the amount of specific creation there subtracted the spatial rate of density change due to volume
expansion of the fluid element.

14It is well-known from relativity theory that mass and energy are related by E = mc2. However, the magnitude
of change in control mass accompanied with a change in total energy will be beyond the accuracy required in
essentially all engineering applications, that is, [34, Sec. 5.9].
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From a Eulerian perspective we could similarly argue that any increase in mass density at a
specific point in space must have been brought there by the fluid flow or else by specific creation
there

∂ρ(r, t)
∂t

+∇ · (ρ(r, t)u(r, t)) = q(r, t). (F.3.49)

The equivalence of (F.3.48) and (F.3.49) is easily confirmed under usage of (F.3.40) and (F.3.44).

The equation of continuity of mass flow (F.3.48) is a single equation but in 4 unknown variables
(ρ(r, t),u(r, t)). We therefore need more information before an expression for the pressure or
fluid velocity can be obtained.

F.3.6 Continuity in Fluid Moment Density

The second governing fluid equation expresses the continuity in fluid linear momentum density.
Based on Lagrangian reasonings it can be deduced that the rate of change in momentum density
of a fluid particle equals the combined effects of external forces acting on the fluid body element
and stresses acting on the fluid surface elements, that is,

D
Dt

∫∫∫
V (r,t)

ρ(r′, t)u(r′, t) dV ′ =
∫∫∫
V (r,t)

ρ(r′, t)f(r′, t) dV ′ +
∫∫

S(r,t)

P(r′, t) · dS′, (F.3.50)

where P(r, t) is the fluid stress-flux tensor that accounts for the net mechanical actions of
contiguous material on the surfaces of a volume element of the fluid. If the traction force is
negative, that is, directed inwards the fluid element it is a pressure. Similarly, a tension is a
positive traction force, that is, directed outwards the fluid element15. The time-varying extent
of the system is described by V (r, t) and the time-varying surface integration limits S(r, t) . We
will defer a more detailed description of the fluid stress-flux tensor P until section F.3.9. It suffice
here to say that P is a 2-tensor (second-rank) that componentwise is a symmetric 3× 3 matrix
consisting of stress terms bij and in order to prevent that the fluid stresses to cause rotation
of any part of the medium, but let moment of the source vector f(r, t) be equal to the rate of
change of angular moment density, P must accordingly be symmetric, that is, (bij = bji)16. The
dependence of the position of the surface integration limits of the mass element S(r, t) has been
made explicit in (F.3.50).

The source vector f(r, t) is the external body force per unit mass due to gravitational, electrical or
magnetic fields. Gravitational forces are normally only of interest in the study of internal waves
which propagation is supported by buoyancy effects due to a - as regards density - horizontally
stratified fluid for subsonic frequencies below the so-called buoyancy frequency. Another example
is acoustic-gravity wave that are subsonic waves on a planetary-scale in the Earth’s atmosphere.
For other applications the effects from gravity can be neglected. Electric and magnetic sources
are very important in the domain of plasma acoustics17 [28, Ch. 12]. Plasma acoustics can for

15In [28] the opposite sign convention is chosen for P.
16If the fluid possess spinning dof like vortices the symmetry assumption no longer holds.
17A plasma is a fourth state of matter in contrast to solids, liquids and gases. It is typically an ionized gas

which means that at least one electron has been dissociated from a proportion of the atoms or molecules. The
free electric charges make the plasma electrically conductive so that it responds strongly to electromagnetic fields.
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example explain the noise mechanism in electric glow discharge18 . For neutral gases (nonionized),
however, the coupling to electric fields is very weak, being due to electrostriction. The equivalent
phenomena of magnetostriction due to the presence of a magnetic field is probably not relevant
to fluids unless some contents of ferromagnetic material is present in the fluid.

A sink can be considered as a source with negative sign.

The external force density in turn is the negative gradient of the potential energy density Φ(r, t)

f(r, t) ≡ −∇Φ(r, t). (F.3.51)

Now by applying the Reynolds theorem (F.3.43) to (F.3.50) (with b(r, t)← u(r, t)) we obtain a
simpler integral expression

∫∫∫
V (r′,t)

ρ(r′, t) dV ′ Du(r, t)
Dt

=
∫∫∫
V (r,t)

ρ(r′, t)f(r′, t) dV ′ +
∫∫

S(r,t)

P(r′, t) · dS′. (F.3.52)

The surface integral in (F.3.52) can be converted to a volume integral by using the divergence
theorem using the argument that V (r′, t) in (F.3.52) has been arbitrarily chosen the expression
must also hold for the integrands and upon reduction we obtain

ρ(r, t)
Du(r, t)

Dt
= ρ(r, t)f(r, t) +∇ · P(r, t). (F.3.53)

Expression (F.3.53) is referred to as Cauchy’s first law of motion.

Before stating the corresponding CV integral interpretation of the continuity in moment density
system we will first introduce two dyads, namely the stress-momentum-flux tensor T(r, t) and
the fluid momentum-flux tensor J(r, t).

Componentwise the moment flux tensor J is a symmetric 3 × 3 matrix consisting of momen-
tum terms ρ(r, t)ui(r, t) times a velocity, e.g., uj(r, t). Hence, each column of J represent a
momentum flux in a particular direction

J(r, t) =

⎛⎝ρ(r, t)u1(r, t)u1(r, t) ρ(r, t)u1(r, t)u2(r, t) ρ(r, t)u1(r, t)u3(r, t)
ρ(r, t)u2(r, t)u1(r, t) ρ(r, t)u2(r, t)u2(r, t) ρ(r, t)u2(r, t)u3(r, t)
ρ(r, t)u3(r, t)u1(r, t) ρ(r, t)u3(r, t)u2(r, t) ρ(r, t)u3(r, t)u3(r, t)

⎞⎠ . (F.3.54)

The stress-momentum-flux tensor T is then obtained from subtracting the fluid stress-flux tensor
P from the fluid momentum-flux tensor J, that is,

T(r, t) = J(r, t) −P(r, t). (F.3.55)

In the anticipation that the fluid like a solid will exhibit different behavior to pure dilatation and
pure deformation we split the fluid stress-flux tensor P into two viscous stress tensors. Moreover,

18Electric glow discharge occurs in lighting (fluorescent lights), television (plasma-screen television), plasma
physics, and analytical chemistry.
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due to the importance of the hydrostatic pressure P in fluid mechanics it is treated separately.
Hence, we may decompose the fluid stress-flux tensor P according to

p(r, t) ≡ − 1
3 TraceP(r, t). (F.3.56)

In the Eulerian view the momentum density conservation, states that the time-rate of increase
in moment density inside a specific CV equals the combined effects of external forces acting on
the fluid body element and stresses acting on the fluid surface elements subtracted the amount
of moment efflux carried through CS by the fluid, that is,

∂

∂t

∫∫∫
CV

ρ(r′, t)u(r′, t) dV ′ =
∫∫∫
CV

ρ(r′, t)f(r′, t) dV ′ +
∫∫
CS

P(r′, t) · dS′ −
∫∫
CS

J(r′, t) · dS′.

(F.3.57)

Upon using the divergence theorem and using the argument that CV has been arbitrarily chosen,
then (F.3.57) can be expressed in terms of the integrands

∂

∂t

(
ρ(r, t)u(r, t)

)
= ρ(r, t)f(r, t) +∇ · P(r, t)−∇ · J(r, t). (F.3.58)

The CV interpretation (F.3.58) can readily be deduced from the system approach (F.3.53) as
follows: First (F.3.53) is expressed as

Dρ(r, t)u(r, t)
Dt

= ρ(r, t)f(r, t) +∇ ·P(r, t) + u(r, t)
Dρ(r, t)

Dt

applying (F.3.41) to obtain

∂

∂t

(
ρ(r, t)u(r, t)

)
= ρ(r, t)f(r, t) +∇ ·P(r, t) −∇ · J(r, t) + u(r, t)

Dρ(r, t)
Dt

+ ρ(r, t)u(r, t)∇ · u

finally, using the conservation of mass density equation (F.3.48) gives

∂

∂t

(
ρ(r, t)u(r, t)

)
= ρ(r, t)f(r, t) −∇ ·T(r, t).

(F.3.59)

The advantage of applying the control system approach in expressing a governing law and the
subsequently usage of the second form of the Reynolds transport theorem in (F.3.43) should be
clear by now.

Similar results could have been obtained from angular momentum density consideration instead
of the continuity in moment density approach conducted here.

Together, the equation continuity of mass flow (F.3.48), and continuity of momentum density
(F.3.53) constitute 4 equations but now in 10 unknown variables (ρ(r, t),u(r, t), P(r, t)). Ac-
cordingly, some additional information must become available in order to obtain a solution.
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F.3.7 Conservation of Energy

The third equation governing the fluid motion is a consequence of the first law of thermodynamics
and expresses the continuity in internal energy.

In a fluid the specific energy e(r, t) is constituted by the specific kinetic energy ekin(r, t), the spe-
cific potential kinetic energy epot(r, t) and the specific internal energy u(r, t) defined in (F.3.15)
on page 633, that is,

e(r, t) = ekin(r, t) + epot(r, t) + u(r, t). (F.3.60)

As discussed in section F.3.1 the internal energy U(r, t) includes compressional energy, thermal
energy, and energy associated with thermal bonds, but not kinetic energy due to bulk motion.

The time-derivative of the kinetic energy density, that is, ρ(r, t)ekin(r, t) is

D
Dt

∫∫∫
V (r,t)

ρ(r′, t)ekin(r′, t) dV ′ =
∫∫∫
V (r,t)

ρ(r′, t)
Dekin(r′, t)

Dt
dV ′

=
∫∫∫
V (r,t)

ρ(r′, t)u(r′, t) ·
Du(r′, t)

Dt
dV ′,

(F.3.61)

where the second equation in (F.3.61) was obtained from the second version of the Reynolds trans-
port theorem (F.3.43). The time-derivative of the potential energy density, that is, ρ(r, t)epot(r, t)
is

D
Dt

∫∫∫
V (r,t)

ρ(r′, t)epot(r′, t) dV ′ =
∫∫∫
V (r,t)

ρ(r′, t)
Depot(r′, t)

Dt
dV ′

=−
∫∫∫
V (r,t)

ρ(r′, t)
D
(
r(r′, t)− rpot

)
Dt

· f(r′, t) dV ′

−
∫∫∫
V (r,t)

ρ(r′, t)
(
r(r′, t)− rpot

)
·

Df(r′, t)
Dt

dV ′,

(F.3.62)

where rpot(t) denotes the reference position in space of zero potential. Normally the material
derivative of the body force can be ignored. Considering the static gravity force f = fg =
−gẑ the short-time derivation is identical 0. The other part of the material derivative i.e., the
second term on the RHS fo (F.3.62) that is related to transport of the fluid element to another
position in the gravity field can normally be ignored owing to the slow variation of gravity with
altitude. However, in plasma physics where the electric and magnetic body forces are time-
varying quantities the last term of (F.3.62) can no longer be ignored.

Conservation of energy implies that a change in energy of a material element is balanced by work
done by external body forces on the material element and work done by surface forces on the
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material element subtracted the amount of heat efflux. By taking the derivative the following
integral expression is obtained

D
Dt

∫∫∫
V (r,t)

(
ρ(r, t)e(r′, t)

)
dV ′ =

∫∫∫
V (r,t)

ρ(r′, t)f(r′, t) ·u(r′, t) dV ′

+
∫∫

S(r,t)

(
P(r′, t) ·u(r′, t)

)
· dS′ −

∫∫
S(r,t)

q(r′, t) · dS′,

(F.3.63)

where q(r, t) is the heat flux vector.

Now by applying the Reynolds theorem (F.3.43) to (F.3.63) and by converting surface integrals
to volume integrals by using the divergence theorem we obtain the following integral expression

∫∫∫
V (r,t)

ρ(r′, t)
De(r′, t)

Dt
dV ′ =

∫∫∫
V (r,t)

ρ(r′, t)f(r′, t) ·u(r′, t) dV ′

+
∫∫∫
V (r,t)

∇ ·
(
P(r′, t) ·u(r′, t)

)
dV ′ −

∫∫∫
V (r,t)

∇ ·q(r′, t) dV ′.

(F.3.64)

By using the tensor identity ∇ · (A ·B) = (∇ · A) ·B + |A · (∇B)| and by applying the argument
that the mass element has been arbitrarily chosen, we obtain the following expression in the
integrands

ρ(r, t)
De(r, t)

Dt
= ρ(r, t)f(r, t) · u(r, t) +

(
∇ · P(r, t)

)
·u(r, t)

+ |P(r, t) ·
(
∇u(r, t)

)
| − ∇ ·q(r, t).

(F.3.65)

This conservation law states that the change of internal energy U(r, t) equals the amount of
heat influx, added the amount of heat internally contributed by viscous friction forces added the
work done on the element by changing its volume [28, Ch. 6.4]. Taking the time derivative and
dividing by the mass density ρ we obtain

Du(r, t)
Dt

=
1

ρ(r, t)
dU(r, t)

dt
=

1
ρ

[
∇ ·q(r, t) + D(r, t) − P (r, t)Δ̇(r, t)

]
. (F.3.66)

In some presentations, e.g., [3, Ch. 2] and [16, ch. 1] the total energy is considered using the CV

approach.

Until now only deduction from simple principles has been made. By inspection of the equation
continuity of mass flow (F.3.48), the continuity of momentum density (F.3.53), and the continuity
in specific energy (F.3.66) we find 5 equations in 14 unknown variables (ρ(r, t),u(r, t), P(r, t),q(r, t), e(r, t)).
Accordingly, some additional information must become available in order to obtain a solution.
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F.3.8 Entropy Generation

The fourth equation governing the fluid motion is a consequence of the second law of thermo-
dynamics and expresses that the entropy of a closed system never decreases. This implies that
a change in entropy of a material element is balanced by irreversible entropy generation within
the material element subtracted the amount of heat efflux. By taking the time-derivative the
following integral expression is obtained

D
Dt

∫∫∫
V (r,t)

ρ(r′, t)s(r′, t) dV ′ =
D
Dt

∫∫∫
V (r,t)

ρ(r′, t)sgen(r′, t) dV ′ −
∫∫

S(r,t)

q(r′, t)
T (r′, t)

· dS′, (F.3.67)

where s(r, t) denotes the specific entropy, sgen(r, t) denotes the specific entropy generated during
irreversible processes and is subject to the constraints defined in (F.3.14) on page 632 and q(r, t)
is the heat flux vector.

Now by applying the Reynolds theorem (F.3.43) to (F.3.67) and by converting surface inte-
grals to volume integrals by using the divergence theorem and finally invoking the argument of
arbitrariness in the choice of the mass element we obtain the following differential expression

ρ(r, t)
Ds(r, t)

Dt
= ρ(r, t)

Dsgen(r, t)
Dt

−∇ ·
q(r, t)
T (r, t)

. (F.3.68)

F.3.9 Equation of State (Constitutive Relation)

In thermodynamics the state laws or constitutive equations establish a link between associated
state functions like pressure, temperature, specific volume, or internal energy and the state of
the matter (fluid).

In [3, Ch. 2] and [16, ch. 1] only polytropic system are considered. In this section we will augment
these results to the more general case of a heterogenous mixture of possible chemically reacting
fluids.

Constitutive Parameters

Fluid Mech. Field Theory Assump.# 4. Local thermodynamic equilibrium. During the
passage of a sound wave a three-fold change in internal energy U(r, t) and an associated per-
turbation of the fluid from its equilibrium. In practice, however, at medium frequencies well
below the reciprocal of the relaxation time of the medium and at medium excitation levels an
assumption on quasi-equilibrium or thermodynamic reversibility should hold. This allows us to
use the conventional thermodynamic identities. Hence, the equilibrium value of specific entropy
s(r, t) can be used.

Fluid Mech. Field Theory Assump.# 5. By assuming that the state of the fluid is com-
pletely determined from specific internal energy u(r, t) and two other state variables this simpli-
fies the analysis considerably. We will use the specific entropy s(r, t) and specific volume v(r, t)
as state variables. This choice of state variables, however, is arbitrary as the thermodynamic
properties are mutually interrelated.
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In section F.3.1 we found that for a thermodynamic system consisting of Nκ substances each
of which may be in one of Nφ phases, there is a total of NκNϕ + 2 unknowns. The number 2
stems from necessity also in the pure substance case to include two independent thermodynamic
properties among (P, v, T ). From the equations of phase equilibrium (F.3.25) a total of Nκ(Nϕ−
1) equations expressing equality of the chemical potential of the constituents is provided. In
addition Nϕ equations of the form

∑Nκ

κ=1 yκ = 1 exist. Accordingly, the equation variance Nf ,
which is the excess of variables over equations can be obtained from

Nf = Nκ −Nϕ + 2. (F.3.69)

For chemically reacting gases or liquids or heterogenous mixtures the total molar contents of
each specie can no longer be considered as constant. Chemical activities generally imply an
increase of the number of different substances and hence a similar increase in Nf . However,
from this amount we must subtract the number of independent reactions Nr and the number of
independent restricting equations Nz, that is,

Nf = Nκ −Nr −Nz −Nϕ + 2. (F.3.70)

In section F.3.1 the following thermodynamic properties were introduced: Pressure P , temper-
ature T , specific volume v, density ρ, mass m, specific internal energy u, specific enthalpy h,
specific entropy s, constant-pressure and constant-volume specific heats CV and CP , specific
Helmholtz function f and the specific Gibb’s function g. These thermodynamic properties serve
different purposes, but generally only two of them are independent. Next we will define some of
the constitutive parameters that are often used to establish a link between the thermodynamic
properties above. As independent properties an arbitrary choice of P and T is made. The depen-
dence on the parameter set (r, t, P, T ), however, will for notational convenience be suppressed in
the defining equations. Referring to the discussion in subsection F.2.4 on page 622 viz. (F.2.3)
these constitutive parameters are all of first-order.

The volume thermal expansivity α expresses the change in volume as temperature changes while
pressure remains constant, is defined by

α ≡ ρ

(
∂v

∂T

)
P

= −1
ρ

(
∂ρ

∂T

)
P

. (F.3.71)

The isothermal compressibility KT (r, t, P, T ) is defined by

KT ≡ −
1
v

(
∂v

∂P

)
T

=
1
ρ

(
∂ρ

∂P

)
T

(F.3.72)

similarly indicates the change in volume as pressure changes while temperature remains constant.
For isentropic processes we use the isentropic compressibility Ks(r, t, P, T ) defined by

Ks ≡ −
1
v

(
∂v

∂P

)
s

=
1
ρ

(
∂ρ

∂P

)
s

. (F.3.73)

In liquids that have high thermal conductivity KT should usually by used. Gases are by far the
poorest heat conductors and Ks should be used except in regions close to a boundary surface.
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The reciprocal of the compressibility is referred to as a bulk modulus

B =

{
Bs = −v

(
∂P
∂V

)
|s = ρ

(
∂P
∂ρ

)
|s, isentropic process,

BT = −v
(

∂P
∂V

)
|T = ρ

(
∂P
∂ρ

)
|T , isothermal process,

(F.3.74)

where the isentropic bulk modulus Bs(r, t, P, T ) and the isothermal bulk modulus BT (r, t, P, T )
have been introduced.

The speed of sound is determined from the specific volume and the bulk modulus and therefore
also attains slightly different values for isentropic and isothermal processes

c2 =

{
c2
s = −

(
∂P
∂ρ

)
|s = vBs, isentropic process,

c2
T = −

(
∂P
∂ρ

)
|T = vBT , isothermal process,

(F.3.75)

where the isentropic speed of sound cs(r, t, P, T ) and the isothermal speed of sound cT (r, t, P, T )
have been introduced. The specific heat capacities are constitutive parameters that describe the
amount of heat supply needed to increase the temperature by 1 K per unit mass of material
element.

The specific heat capacity at constant volume Cv(r, t, P, T ) and the specific heat capacity at
constant pressure CP (r, t, P, T ) are defined by

Cv ≡
(

∂u

∂T

)
v

(F.3.76a)

CP ≡
(

∂h

∂T

)
P

(F.3.76b)

respectively. Another useful parameter is the thermal pressure increase at constant volume
α̌(r, t, P, T ) that expresses the change in pressure as temperature changes at constant volume
and is defined by

α̌ ≡
(

∂P

∂T

)
V

=
α

KT
. (F.3.77)

Maxwell’s relations presented next provide relationships between measurable quantities and those
which either cannot be measured or are difficult to measure

(
∂T

∂v

)
s

= −
(

∂P

∂s

)
v

(F.3.78a)(
∂T

∂P

)
s

=
(

∂v

∂s

)
P

(F.3.78b)(
∂P

∂T

)
v

=
(

∂s

∂v

)
T

(F.3.78c)(
∂v

∂T

)
P

= −
(

∂s

∂P

)
T

. (F.3.78d)
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By using the so-called Tds-equations from thermodynamics [36, Ch. 11], we can express the rate
of entropy change in terms of thermodynamic properties and the dilatation rate

ρ(r, t)Cv(r, t)
DT (r, t)

Dt
+ ρ(r, t)Cv(r, t)(γ(r, t) − 1)Δ̇(r, t)/α(r, t) +∇ ·q(r, t)− φη(r, t) = 0.

(F.3.79)

The details are provided in section F.C19.

In [15] different versions of the energy equation (F.3.66) using the different thermodynamic
constitutional parameters and field variables, e.g., is provided

ρ(r, t)Cv(r, t)
DT (r, t)

Dt
+ ρ(r, t)Cv(r, t)(γ(r, t) − 1)Δ̇(r, t)/α(r, t) +∇ ·q(r, t)− φη(r, t) = 0,

(F.3.80)

Dissipative Parameters

In fluid dynamics dissipate effects are due to viscosity, thermal conduction, relaxation and bound-
ary layer losses. A force times a velocity represents a dissipative term. A thermoviscous fluid
is a fluid model that includes the effects of heat conduction and viscous stresses, but not other
diffusive of relaxation effects.

The thermal dissipation function φκ is defined by

φκ(r, t) ≡ −T−1(r, t)q(r, t) ·∇T (r, t). (F.3.81)

The viscous dissipation function φη is defined by

φη(r, t) ≡ −T−1(r, t)q(r, t) ·∇T (r, t). (F.3.82)

Dissipation due to Heat Transfer

Generally, three mechanisms by which thermal energy is transported exist:

1. Heat conduction refers to the transport of energy between two neighboring volume elements
by virtue of the temperature difference between them.

In the general case of a inhomogeneous anisotropic media the Fourier’s law of heat conduc-
tion states that heat energy flow has the following linear dependence on the temperature
gradient

qcon(r, t) = H(r, t)∇T (r, t), (F.3.83)

where qcon(r, t) is the heat flux vector due to conduction and H(r, t) denotes the thermal
conductivity tensor, which in turn componentwise is a symmetric 3× 3 matrix consisting
of thermal conductivity terms hij subject to (hij = hji).

19An error enters the similar expression [15, Eq. (22)].
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In the usual case of isotropic matter we may replace the thermal conductivity tensor by
the scalar, that is, thermal conductivity κ(r, t) .

qcon(r, t) = κ(r, t)∇T (r, t). (F.3.84)

2. Heat convection is a heat transfer involving a current of fluid that absorbs heat at one
place and then moves to another place, where it mixes with a cooler portion of the fluid
and rejects heat. Heat convection is described by Newton’s law of cooling

qcnv(r, t) = h(r, t)
(
T (r, t)− Tamb(r, t)

)
, (F.3.85)

where the heat flux vector due to convection qcnv(r, t) and where the quantity h(r, t) is
the thermalconvection coefficient that depends on a number of system factors [36, Ch. 4].
Heat convection is intentionally used in thermoacoustic refrigeration. Heat convection can
also take place by turbulence.

3. Thermal radiation is electromagnetic energy emitted by a hot solid, liquid and gas by virtue
of its temperature. Radiation is the only form of heat transfer that can occur in the absence
of any form of medium and as such is the only means of heat transfer through a vacuum.
Thermal radiation is a direct result of the movements of atoms and molecules in a material.
Since these atoms and molecules are composed of charged particles (protons and electrons),
their movements result in the emission of electromagnetic radiation, which carries energy
away from the surface. At the same time, the surface is constantly bombarded by radiation
from the surroundings, resulting in the transfer of energy to the surface. Since the amount
of emitted radiation increases with increasing temperature, a net transfer of energy from
higher temperatures to lower temperatures results. Thermal heat radiation between a
material element at temperature T and some material matter with temperature, say, Tamb,
is governed by Stefan-Boltzmann Law

qrad(r, t) = ε(r, t)σ
(
T 4

amb(r, t)− T 4(r, t)
)
, (F.3.86)

where qrad(r, t) denotes the heat flux vector due to radiation, ε is the emissivity and σ
denotes the Stefan-Boltzmann constant.

Accordingly we may express the total heat flux vector q(r, t) by

q(r, t) = qcon(r, t) + qconv(r, t) + qrad(r, t). (F.3.87)

Dissipation due to Viscosity

Dissipation due to Relaxation Processes

In acoustic the symbol μB is often used

P̆ (r, t) = P (r, t)− μB(r, t)Δ̇, (F.3.88)
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where P̆ (r, t) is the instantaneous pressure under relaxation (non-equilibrium). The fluid stress-
flux tensor P is composed of the fluid pressure tensor PI(r, t) and the fluid shear-stress-flux
(viscous-stress-flux) tensor D(r, t)

P(r, t) = −P (r, t)I + D(r, t). (F.3.89)

The pressure tensor PI is a diagonal tensor of pressure terms Pii and I is the unit dyadic called
the idemfactor I ≡ x̂x̂ + ŷŷ + ẑẑ.

The viscous-stress tensor D is a symmetric tensor

Dij(r, t) =

{
(η − 2

3μ)Δ̇(r, t) + 2μ∂ui(r,t)
∂xi

, i = j

μ∂ui(r,t)
∂xj

+ μ
∂uj(r,t)

∂xi
, i �= j.

(F.3.90)

The quantity λ is the coefficient of bulk viscosity or compressional resistance and μ is the
coefficient of viscosity. The coefficient k is defined as k = λ + 2

3μ and is referred to as the
second coefficient of viscosity20.

Fluid Mech. Field Theory Assump.# 6. Newtonian Fluids. Most common fluids, both
liquids and gases exhibit a linear relationship between shearing stress and the rate of shearing
strain and are designated Newtonian fluids [29, Ch. 1].

F.3.10 Attenuation of Sound Fields

Attenuation of sound in the air is dominated by relaxation process in the lower frequency range
and by viscosity at higher frequencies. For the estimation of attenuation of sound in the air
standards from both American National Standards Institute (ANSI) and Système International
d’Unités (SI) are available. In [3, App. B] empirical model attenuation curves for propagation in
air as a function of frequency, humidity and ambient pressure can be found. For a frequency of
1 kHz the attenuation is approximately 1.5mdB ·m−1 for dry air and approximately 15 mdB ·m−1

for an absolute humidity h of 10% (worst case).

Usually the attenuation of sound waves in the audio range for short distance propagation can be
ignored outside boundary layers. An exception from this, is found in the field of metrology which
deals with the realization of the measurement units including the Pa · In such applications a
few mdB might be of concern [10].

Dissipation due to Boundaries

In some applications field the viscous and thermal boundary are of pronounced importance. In
the vicinity of boundaries the acoustical modal field and the vorticity field and entropy modal
field jointly that perfectly matches the boundary condition including thermodynamics.

20In [26, Ch. 2.3] λ is defined as the coefficient of expansion friction and therefore with opposite sign. However,
the sign convention chosen here better lets us recognize the similarities between (F.3.97) on page 656 and (F.4.19)
on page 664.
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∇2

(
P1(r, t) +

ν′

c2

∂P1(r, t)
∂t

)
− 1

c2

∂P1(r, t)
∂t2

= 0 (F.3.91a)

∇2

(
P2(r, t) +

ν′

c2

∂P2(r, t)
∂t

)
− 1

c2

∂P1(r, t)
∂t2

= ∇ · J2 ·∇− Γ
ρ0c4

0

∂

∂t

(
∂P 2

1 (r, t)
∂t

+ ν′∇2P 2
1 (r, t)

)
.

(F.3.91b)

For example in [14] a numerical model for the propagation of sound waves in fluids with viscous
and thermal losses was considered. In particular for condenser microphones the viscous and
thermal damping in the thin layer of air between the membrane and the back electrode play an
important role for the performance. The theory was formulated such that a boundary element
method (BEM) could be established under relative mild conditions.

However, for most applications the dissipative effects due to thermal diffusion, viscosity can
usually be ignored except in the vicinity of boundaries.

F.3.11 Acoustical Sources

In subsection F.3.5 on page 642 and subsection F.3.6 on page 643 the volume source of mass-
flow and the external body force per unit mass respectively were introduced. In this subsection
another source to acoustical energy namely excitation from violent fluid motion [28, Ch. 7.1] will
be briefly presented.

It should, however, be remarked that if one wants to synthesize an arbitrary acoustic field by
introducing sources one could end up with solutions that although are mathematical correct may
be physical realizable. The existence and the uniqueness of a solution also become important.

Violent Fluid Motion

Violent fluid motion might for example be a consequence of fluid injection, heat energy, a change
in fluid composition. In such case the full including nonlinear terms must usually be consid-
ered. Fluid injection, fluid force and stress-momentum cause respective monopole, dipole, and
quadropole wave radiation.

In section F.3.9 on page 648 different constitutive first-order parameters were introduced includ-
ing the coefficient of volume expansion at constant pressure α, the isothermal compressibility
KT , the isentropic compressibility Ks, and corresponding the specific heat capacities at constant
volume CV respective at constant pressure CP .

As already discussed these first-order constitutive parameters are mutually interrelated and the
following discussion will address the isentropic compressibility Ks as it enters explicitly in the
wave equation (F.3.91) on the previous page. The isentropic compressibility Ks is generally a
function of the coordinates in space r and time t, but also viz. (F.3.73) on page 649 a function
of pressure P and density ρ, that is, Ks = Ks(r, t, P, ρ). However, as discussed in section F.3.1
on page 627 we may likewise use P and T as independent thermodynamic coordinates, that is,
Ks = Ks(r, t, P, T ).

Hence, when taking the time-derivative of Ks we have to take the explicit dependence on time
because the fluid composition at r may change with time, in addition to the implicit dependence
of Ks on t through the variation of P and T (or ρ) when the composition does not change.



F.3. Field Theory of Fluid Mechanics 655

By suppressing the dependence on the (r, t, P, T ) parameters we obtain the following expression
for the time-derivative of Ks.

∂Ks

∂t
=

(
∂Ks

∂t

)
P,T

+
(

∂Ks

∂P

)
t,T

∂P

∂t
+

(
∂Ks

∂T

)
t,P

∂T

∂t

applying the following mathematical relations [36, Ch. 2.7] (see (F.C.1a))

(
∂x

∂z

)
y

= −
(

∂x

∂y

)
z

(
∂y

∂z

)
x

in the last term with appropriate substitutions to obtain

∂Ks

∂t
=

(
∂Ks

∂t

)
P,T

+
(

∂Ks

∂P

)
t,T

∂P

∂t
−

(
∂Ks

∂P

)
t,T

(
∂P

∂T

)
t,V

∂T

∂t

=
(

∂Ks

∂t

)
P,T

+
(

∂Ks

∂P

)
t,T

(
∂P

∂t
−

(
∂P

∂T

)
t,V

∂T

∂t

)

finally by insertion of (F.3.77) to obtain

∂Ks

∂t
=

(
∂Ks

∂t

)
P,T

+
(

∂Ks

∂P

)
t,T

(
∂P

∂t
− α̌

∂T

∂t

)
.

(F.3.92)

Now following the procedure of obtaining the wave equation for the pressure from the equation
of continuity of mass flow (F.3.48), and continuity of momentum density (F.3.53) in [28, Ch. 7.1]
the following expression of the monopole source contribution by fluid injection, heat energy,
change in fluid composition and implicit dependence of Ks on P and T can be deduced

f(r, t) =
∂

∂t
q(r, t)︸ ︷︷ ︸

fluid injection

+
α̌(r, t)γ(r, t)ρ(r, t)Ks(r, t)

CP (r, t)
∂h(r, t)

∂t︸ ︷︷ ︸
heat energy

− ρ(r, t)
(

∂Ks

∂t

)
PT

(
∂P (r, t)

∂t
− α̌(r, t)γ(r, t)h(r, t)

CP (r, t)

)
︸ ︷︷ ︸

change of fluid composition

− ρ(r, t)
γ(r, t)

[
K2

s (r, t) +
(

∂Ks(r, t)
∂P (r, t)

)
T

](
∂P (r, t)

∂t
− α̌(r, t)γ(r, t)h(r, t)

CP (r, t)

)2

︸ ︷︷ ︸
Ks(P,T )

.

(F.3.93)

In (F.3.93) a description of each term contributing to the monopole source f(r, t) has been
made. By Ks(P, T ) we make reference to the implicit dependence of Ks on time through the
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time-variation of P and T . This later term represent nonlinearities due to amplitude-dependent
constitutive parameters as discussed in subsection F.2.4 on page 622. This term will always to
some extent be present, but can usually be ignored except for cases were very loud sound pressure
levels are involved.

Q(r, t) = ∇ · V(r, t) ·∇ (F.3.94a)

=
3∑

i=1

3∑
j=i

1
2ε|j−i|

∂2

∂xi∂xj

(
Tij(r, t) + Tji(r, t)

)
(F.3.94b)

≈
3∑

i=1

3∑
j=i

1
2ε|j−i|

∂2

∂xi∂xj
ρ(r, t)

(
ui(r, t)uj(r, t) + uj(r, t)ui(r, t)

)
. (F.3.94c)

where stress-momentum-flux tensor V(r, t) that is defined as fluid momentum-flux tensor J
defined in (F.3.54) on page 644 subtracted the viscous-stress tensor D defined in (F.3.90) on
page 653

V(r, t) = J(r, t)−D(r, t). (F.3.95)

Nonlinear Acoustics

In the general case of nonlinear acoustics it can be demonstrated that even in the absence of
ordinary sources in the solution wave equation for the second- or higher-order pressure involves
source terms that are products of first-order terms [28, Ch. 14.4]. If a solution to the first-order
wave equation for the pressure has been found those source terms can be regarded as known
and then at least in principle we may proceed and determine recursively the second-order and
higher-order wave equations by use of Green’s function appropriate for the problem at hand.

F.3.12 Acoustics

The primary choice of field variable used to describe acoustical wave motion is the acoustical
pressure p(r, t) and the acoustical velocity u(r, t) and are both field variables to first and higher
order. Following the terminology in [28] and using the notation introduced in subsection F.2.4
on page 622 we may write

p(r, t) ≡ P−0(r, t) (F.3.96a)
δ(r, t) ≡ ρ−0(r, t) (F.3.96b)
τ(r, t) ≡ T−0(r, t) (F.3.96c)
σ(r, t) ≡ S−0(r, t) (F.3.96d)
u(r, t) ≡ u−0(r, t). (F.3.96e)

By combining the terminology used in [26, Ch. 2.3] and [28, Ch. 6.2, 6.4] we get the following
variants for the Navier-Stokes Equation that expresses the continuity in moment density of a
viscous, compressible fluid possibly subject to external forces from gravity or electricity
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(
ρ + δ(r, t)

) Du(r, t)
Dt

≡
(
ρ + δ(r, t)

)(∂u(r, t)
∂t

+ u(r, t) ·∇u(r, t)
)

(F.3.97a)

= f(r, t) +∇ ·
(
−p(r, t)I + λ∇ · u(r, t)I + μ∇u(r, t) + μu(r, t)∇

)
(F.3.97b)

= −∇
(
Φ(r, t) + p(r, t)) + (λ + μ)∇∇ ·u(r, t) + μ∇2u(r, t) (F.3.97c)

= −∇
(
Φ(r, t) + p(r, t)

)
+ (λ + 2μ)∇∇ ·u(r, t)− μ∇×∇× u(r, t) (F.3.97d)

= −∇
(
Φ(r, t) + p(r, t)− (η + 4

3μ)∇ · u(r, t)
)
− μ∇×∇× u(r, t). (F.3.97e)

The Navier-Stokes equation does not include the effect of thermal conductivity, that is, the
thermal conductivity is assumed negligible (κ ≈ 0).

The Navier-Stokes equation (F.3.97) is on the left side first order in the term ρ∂u
∂t , second order

in δ ∂u
∂t and ρu ·∇u, and third order in δu ·∇u. On the right the first order terms are ∇p and

(η + 4
3μ)∇∇ · u and μ∇×∇×u. Moreover, it should be noticed that the Navier-Stokes equation

does not involve any of the constitutive parameters except for the dissipative parameter μ, λ, γ.

The equation of continuity of mass density provides one more equation. From [28, Ch. 6.2] we
get

∂δ(r, t)
∂t

= q(r, t)− ρT∇ ·u− u ·∇ρT (r, t) (F.3.98a)

= q(r, t)− (ρ + δ(r, t))∇ · u− u ·∇δ(r, t). (F.3.98b)

Hence, in order to obtain an equation for fluid wave motion we need to establish a relation
between the pressure and the state of compression of the fluid. The equation of state provides
such information. In particular the compressibility of the fluid defined in (F.3.72) on page 649
or (F.3.73) on page 649 is useful.

Now in order to proceed we will make the usual assumption of an isentropic compressibility Ks

being independent of the pressure

δ(r, t) =
1
ρ

(
∂ρ

∂P

)∣∣
S
p (F.3.99a)

≈ Ksp. (F.3.99b)

First we will make the usual but normally quite reasonable assumptions at ordinary sound
pressure levels and within the audible frequency range.

Fluid Mech. Field Theory Assump.# 7. Homogeneous medium. The ambient parameters,
which are, the ambient (or equilibrium) pressure P , ambient temperature T and the ambient
mass density ρ are independent of position in space. The same applies to the constituting pa-
rameters.

The analysis becomes considerable simpler by invoking the following assumption on small am-
plitude signals
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Fluid Mech. Field Theory Assump.# 8. Small amplitude i.e., the acoustic quantities p, τ ,
δ are much smaller than the equivalent quiescent quantities parameters P , T and ρ respectively.

As a consequence of the small amplitude assumption we generally thereby also invoke the fol-
lowing assumption.

Fluid Mech. Field Theory Assump.# 9. Linear medium. This means that the constituting
parameters K, γ, Ks, are independent of the acoustic quantities p, τ , δ and σ.

The assumptions 7 - 9 on pages 657–658 imply that we for an arbitrary constitutional parameter,
say, υa obey (F.2.1) on page 622.

Fluid Mech. Field Theory Assump.# 10. Nonviscous fluid i.e., μ = 0.

Fluid Mech. Field Theory Assump.# 11. Zero heat conductivity in fluid i.e., K = 0.

Fluid Mech. Field Theory Assump.# 12. No other diffusive or relaxation processes.

Fluid Mech. Field Theory Assump.# 13. Non-moving medium.

Assumptions 10 - 12 basically state that the fluid is dissipation free.

We will by Vf refer to the volume (space) of fluid satisfying these criterions. Similarly, Tp will
denote the permissable time frame.

We will introduce the linear sound field volume Vf̌ according to

Vf̌ ⊂ Vf \ (∪i∈NwVb,i ∪j∈Nsrc Vsrc,j), (F.3.100)

where ∪i∈NwV w
i is the union of wall boundary regions spanned by the Nb boundary regions

and ∪j∈NsrcV
src
j is the union of spherical near-field regions spanned by the Nsrc sources in the

system.

In practice (F.3.100) should be considered whenever conducting field measurements. The conti-
nuity in fluid mass and moment densities are governed by the differential equations [28, Ch. 6]

ρ∇ ·u(r, t) + ρK
∂

∂t
p(r, t) = q(r, t) (F.3.101)

and

∇p(r, t) + ρ
∂

∂t
u(r, t) = f(r, t), (F.3.102)

In order to prove more general uniqueness and existence theorems that can be applied to rapidly
varying fields, such as those of electromagnetic missiles [12, Ch. 5] we will present the integral
forms of (F.3.101) to (F.3.102). We will assume that the time-domain sources are switched off
for time t ≤ t0 or that the field quantities p and u are known at time t0. Then, the continuity
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for the fluid mass and moment density equations in integral form are given respectively, by [12,
Ch. 2]

ρ∇ ·
∫ t

t0

u(r, t′) dt′ + ρK(p(r, t)− p(r, t0)) =
∫ t

t0

s(r, t′) dt′ (F.3.103)

and

∇
∫ t

t0

p(r, t′) dt′ + ρ(u(r, t)− u(r, t0)) =
∫ t

t0

f(r, t′) dt′. (F.3.104)

It may be argued that the integral expressions (F.3.103) to (F.3.104) on this page are slightly
more general than the differential equations (F.3.101) to (F.3.102) on the preceding page in that
no requirement on the existence of time derivatives are made. This also allows formulation of
uniqueness and existence of a larger class of linear acoustic fields.

However, the acoustic velocity u represents a general vector field which is composed of a lamel-
lar21 field component, ul, and a solenoidal22 field component us [5], [27, Ch. 13]:

u = ul + us, (F.3.105)

where ∇× ul ≡ 0, ∇ ·ul �= 0, ∇ ·us ≡ 0 and ∇× us �= 0.

As the gradient points in the direction of greatest rate of change of the scalar potential while the
curl is transverse to this direction ul and us are also referred to as longitudinal and transverse
field components respectively. The fundamental problem in the investigation of any irrotational
field is the determination of the scalar potential φ(r).

∇× ω(r, t) =
∫ t

t0

∇× f(r, t′) dt′ + ω(r). (F.3.106)

F.3.13 Acoustic Energy Density

The acoustic energy density w(r, t) is composed of the acoustic potential energy density wpot(r, t)
and the acoustic kinetic energy density wkin(r, t)

w(r, t) = wpot(r, t) + wkin(r, t), (F.3.107)

where

wpot(r, t) = 1
2K(r, t)p2(r, t) (F.3.108)

and

wkin(r, t) = 1
2ρ(r, t)|u(r, t)|2. (F.3.109)

21Other names are irrotational, longitudinal and curlless field component.
22Other names are rotational, transverse and divergenceless field component.
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The time-averaged acoustic energy densities are obtained from (F.3.107) by using time-average
values 〈|u|〉 and 〈p〉 instead of |u| and p.

F.4 Solid Mechanics Field Theory

The subject of elasticity is concerned with the determination of the stresses and displacements
in a body as a result of applied mechanical or thermal loads, for those cases in which the body
reverts to its original state on the removal of the loads [1, Ch. 1]. The theory of elasticity is based
on Newton’s laws of motion, Euclidean geometry and Hooke’s law. In physics and mechanical
engineering, the theory of elasticity describes how a solid object moves and deforms in response
to external stress. When the deformation in response to stress become large the material might
not return to its original state, that is, it becomes plastic. A change of configuration may, or
may not, be accompanied by changes of temperature.

The theory of elasticity represent indeed an interesting scientific discipline itself which can be
attributed to the fact that elastic fields (as opposed to electromagnetic and acoustic wave prop-
agation) support both compressional and shear wave propagation types. This in turn, however,
generally complicates the analysis considerably.

In active control of sound and in particular in active control of vibration applications the analysis
of structure-borne sound plays a fundamental role. As is well known vibrational energy generated
somewhere in a system (, e.g., some machinery) might be structurally transmitted (generally in
a complicated manner) to other part of the system. If the vibrational energy eventually enters
a subsystem that posses a small effective radiation impedance sound radiation will take place.
The structure-borne sound arguably interconnects the theories of elasticity and acoustics. We
will briefly introduce the basics foundations of elasticity theory sufficient for our discussions. For
more advanced information refer to [20] and [21].

Solid Mech. Field Theory Assump.# 1. Macroscopic domain. The solid is regarded as a
continuous distribution.

A rigid body can be subject to translatoric and rotational movements as a whole. Elastic bodies,
however, can in addition change the relative positions of the internal parts. It will, however
be preferred to separate out rigid body movements such that the only displacements in the
internal parts is included in the displacement vector s(r, t) [26, Ch. 1.6] [20] and [6]. Then in
the unstrained state s = 0 while in the strained state s �= 0. In the theory of elasticity the
displacement vector plays a role as basis field quantity similarly to the acoustic velocity u(r, t)
in acoustics.

The displacement vector decomposed in ordinary Cartesian coordinates (x1, x2, x3) is written as

s(r, t) = sx1x̂1 + sx2x̂2 + sx3x̂3. (F.4.1)

It is, however, more convenient to work with the relative (differential) displacements. The
components of strain eij(r, t) are defined by

eij(r, t) = 1
2 ε|j−i|

(∂sxj

∂xi
+

∂sxi

∂xj

)
, (F.4.2)
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where εk =

{
1; k = 0
2; k > 0

; k ∈ N∗ denotes the Neumann number.

The three independent rotation components �xi(r, t) are defined by

�x1(r, t) =
1
2

(∂sx3

∂x2
− ∂sx2

∂x3

)
(F.4.3a)

�x2(r, t) =
1
2

(∂sx1

∂x3
− ∂sx3

∂x1

)
(F.4.3b)

�x3(r, t) =
1
2

(∂sx2

∂x1
− ∂sx1

∂x2

)
. (F.4.3c)

We therefore define a dimensionless strain dyadic D(r, t) that componentwise is a 3 × 3 matrix
of strain elements dij according to

D(r, t) = ∇s(r, t) (F.4.4a)
= S(r, t) + R(r, t) (F.4.4b)

≡
3∑

i=1

3∑
j=1

dij(r, t)x̂ix̂j . (F.4.4c)

In (F.4.4b) the strain deformation dyadic was divided in a pure strain dyadic S(r, t) and a
rotation (deformation) dyadic R(r, t). The symmetric pure strain dyadic S(r, t) in turn is
defined by [20, Art. 8], [26, Ch. 1.6]

S(r, t) = 1
2 (∇s(r, t) + s(r, t)∇) (F.4.5a)

≡
3∑

i=1

3∑
j=1

sij(r, t)x̂ix̂j (F.4.5b)

=
3∑

i=1

3∑
j=i

sij(r, t)(x̂ix̂j + x̂jx̂i), (F.4.5c)

where each component of pure strain sij of the dyadic is defined by sij(r, t) = 1
2ε|j−i|(eij(r, t) +

eji(r, t)).

The pure rotation antisymmetric dyadic R(r, t) is similarly defined by [20, Art. 8], [26, Ch. 1.6]

R(r, t) = − 1
2∇× s(r, t)× I (F.4.6a)

≡
3∑

i=1

3∑
j=1

rij(r, t)x̂ix̂j (F.4.6b)

= �x1(r, t)(x̂2x̂3 − x̂3x̂2) + �x2(r, t)(x̂3x̂1 − x̂1x̂3) + �x3(r, t)(x̂1x̂2 − x̂2x̂1). (F.4.6c)
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From Newton’s second law of motion it can easily be deduced that by application of forces to
a body necessitates the existence of stress within the body [20, Art. 54]. These stresses in turn
lead to internal acceleration of the body mass elements provided that the body is not held in
equilibrium. A stress dyadic T(r, t) that componentwise is a 3× 3 matrix of strain element Tij

provides a compact method to describe the stresses acting on an infinitesimal volume

T(r, t) =
3∑

i=1

3∑
j=1

Tij(r, t)x̂ix̂j (F.4.7a)

=
3∑

i=1

3∑
j=i

ε|j−i|Tij(r, t)(x̂ix̂j + x̂jx̂i). (F.4.7b)

In (F.4.7b) the symmetry property of the stress dyadic (T(r, t) = T∗(r, t)) has been utilized. The
symmetry in the stress terms is a consequence that any infinitesimally volume must be in static
rotational equilibrium. The stress dyadic therefore consists of only six independent components.

In his experimental work Robert Hooke was the first to confirm existence of a linear relationship
between stresses and strains listed in Equation F.4.7. Later work has revealed that this rule
applies generally to most hard solids other than cast metals and henceforth referred to as Hooke’s
law [20, Art. 64]. From the ordinary Hooke’s law the so-called Generalized Hooke’s Law of
proportionality of stress and strain can be induced [20, Art. 66-69].

Now in the Generalized Hooke’s law a elasticity tensor (4-tensor) C relating the six independent
strain components linearly to the six independent stress components is sought for

T(r, t) = C ·S(r, t). (F.4.8)

In principle, this elasticity tensor consist of 34 = 81 elements. However, due inherent symmetries
this number reduces to 36 possibly independent elasticity constants [20, Art. 66] [21, Ch. 4.3]. An
intermediate interconnection between stresses and strains is established through the differential
Tij(r, t) = ∂W (r,t)

∂eij(r,t) where W (r, t) is the stress energy function that represents the potential
energy per unit volume [20, Art. 62]. This elastic stored energy function is defined by

W (r, t) ≡ 1
2S(r, t) · C ·S(r, t). (F.4.9)

The stress dyadic and elasticity tensors are accordingly obtained from

T(r, t) =
∂W (r, t)
∂S(r, t)

(F.4.10)

and

C(r, t) =
∂2W (r, t)

∂S(r, t)∂S(r, t)
(F.4.11)

respectively. As proved in [20, Art. 62] the stress-energy function exists for adiabatic and isother-
mal excitations. From a practical view point small high-frequency vibrations are practically
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adiabatic whereas low-frequency excitations that are in continual equilibrium with surrounding
bodies will be practical isothermal. Some but small discrepancies in the elasticity constants has
been measured in the two cases. From the differential relation between stresses and strains it
turns out that the elasticity matrix must be symmetric which reduces the number of potential
independent constants from 36 to 21.

In the determination of the elasticity matrix in the general anisotropic case it is also utilized
that the strain dyadic components eij cannot be given arbitrarily as function in space but are
subject to some identities among the second-order spatial derivatives [20, Art. 17].

However, if the material is isotropic as regards elasticity the problem reduces considerably. By
using the fact that the stress-energy function W now is invariant to the specific choice of orthog-
onal coordinate system it then turns out that only two elasticity parameters λ and μ, called the
Lamé coefficients, suffice to establish the relation sought for

W (r, t) = μS(r, t) · S(r, t) +
λ

2
(TraceS(r, t))2. (F.4.12)

These parameters describe its resilience; there are two parameters because a solid will resist
compressional and shear forces to different degrees.

The governing equation relating stresses to strain in an isotropic media is obtained from insertion
of (F.4.12) in (F.4.10)

T(r, t) = λ|S(r, t)|I + 2μS(r, t), (F.4.13)

where |S| ≡ TraceS =
∑3

i=1 eii. A solid isotropic medium is therefore characterized by its
density, ρ, and two material parameters λ and μ called the Lamé coefficients, which describe its
resilience. Other elastic parameters found in the literature can be defined in terms of these two
constants. In Table F.1 the relationships between Young’s modulus, longitudinal stiffness and
Poisson’s ratio and the Lamé coefficients are tabulated in for convenience

Quantity Definition Relation
Lamé modulus μ (rigidity) see (F.4.12) μ = Eν

2(1+ν)

Lamé modulus λ see (F.4.12) λ = E
2(1+ν)(1−2ν)

Longitudinal stiffness D ≡ Tii

eii
|ekl=0,kl �=ii D = λ + 2μ

Young’s modulus E ≡ Tii

eii
|Tkl=0,kl �=ii E = μ(3λ+2μ)

λ+μ

Shear modulus (rigidity) G ≡ Tij

eij
|Tkl=0,kl �=ij,ji G = μ

Poisson’s ratio ν ≡ − ejj

eii
ν = λ

2(λ+μ)

Modulus of compression k ≡ 1
3Δ−1 TraceT k = λ + 2

3μ

Tab. F.1: Miscellaneous Elasticity Parameter Relations.

As already mentioned solids possess an important property which is the support of both compres-
sional (dilatoric) waves involving no rotation and shear (divergence-free) waves that are waves
of distortion involving rotation without dilatation. The compressional propagation velocity, cL,
is determined by the longitudinal stiffness, D and the mass density ρ, that is,
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cL =

√
D

ρ
(F.4.14)

=

√
E(1 − ν)

ρ(1 + ν)(1 − 2ν)
, (F.4.15)

where the quantity, E is Young’s modulus of elasticity and ν designate Poisson’s ratio, which is
the ratio of lateral shrink to longitudinal stretch.

Sometimes cL is referred to as the longitudinal, dilatoric or irrotational elastic wave velocity.

The shear wave propagation velocity, cT , is obtained from the shear modulus, G, which is the
ratio between deviatoric shearing stress and corresponding deviatoric shearing strain23 and the
mass density, that is,

cT =

√
G

ρ
(F.4.16)

=

√
E

2ρ(1 + ν)
. (F.4.17)

In some context cT is referred to as the transverse or equivoluminal elastic wave velocity.

The net force due to forces acting on all faces of an infinitesimal volume dV is ∇ · T dV . Then
from (F.4.13) and Newton’s second law we obtain the governing wave equation inside an elastic
matter supporting compressional as well as shear waves expressed in terms of the Lamé constants
[20, Ch. XIII] 24 or [26, Ch. 2]

ρ
∂2s(r, t)

∂t2
= f(r, t) + G

(
∇2s(r, t) +

∇∇ · s(r, t)
1− 2ν

)
. (F.4.18)

The vector quantity f(r, t). is the external force intensity

In other part of the literature the following wave equation expressed in terms of Poisson’s ratio
can be found [6, Ch. 2 Eq. (136d)]

ρ
∂2s(r, t)

∂t2
= ∇ ·

(
λI∇ · s(r, t) + μ∇s(r, t) + μs(r, t)∇

)
(F.4.19a)

= (λ + μ)∇∇ · s(r, t) + μ∇2s(r, t) (F.4.19b)
= (λ + 2μ)∇∇ · s(r, t)− μ∇×∇× s(r, t). (F.4.19c)

At first glance the two expressions (F.4.19) and (F.4.18) seem quite dissimilar. However, using
the relations between the elasticity constants provided in Table F.1 it can easily be demonstrated
that the two wave equations are indeed identical [7].

23Sometimes referred to as simple stress and simple shearing.
24The expression is in terms of the dilatation Δ(r, t) = ∇ · s(r, t).
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F.5 Electromagnetic Field Theory

Electromagnetic field theory, according to the standpoint adapted in this report, is the theory of
Maxwell’s equations. The sources of an electromagnetic field are a distribution of electric charge
density ρ(r, t) and a current density J(r, t). The time-domain Maxwell equations can be found
in every book on electromagnetics and for convenience listed here

∇×E(r, t) + μ(r)
∂

∂t
E(r, t) = 0 (F.5.1a)

∇×H(r, t)− ε(r)
∂

∂t
H(r, t) = J(r, t), (F.5.1b)

where E(r, t) and H(r, t) denote electric intensity and magnetic intensity respectively. Two
constitutive parameters are involved namely the ε(r) the permittivity (capacity) of the medium
and μ(r) permeability (inductivity). In vacuum these parameters take the values ε0 and μ0

respectively. The speed of light in vacuum c0 is accordingly

c0 =
1

√
ε0μ0

= 2.99790× 108 meter · s−1. (F.5.2)

The Maxwell equation (F.5.1a) finds support in the observations of Faraday on variable fields
and the Maxwell equation (F.5.1b) is a generalization of Ampere’s circuit law including the
displacement current density term ε ∂

∂tH(r, t).

From continuity arguments similar to those used in acoustics the conservation of charge25 leads
us to the following equation of continuity between charge density ρ(r, t) and current density
J(r, t)

∇ ·J(r, t) +
∂

∂t
ρ(r, t) = 0. (F.5.3)

Basically (F.5.3) states that mass or charge cannot be created or destroyed without sources From
Maxwell equation (F.5.1) and continuity relation (F.5.3) the following divergence equations can
easily be derived

∇ ·H(r, t) = 0 (F.5.4a)

∇ ·E(r, t) =
ρ(r, t)
ε(r)

. (F.5.4b)

The divergence theorems (F.5.4a) and (F.5.4b) are frequently included as part of Maxwell’s
system. However, they are derived from Maxwell equation (F.5.1) and continuity relation (F.5.3)
and are therefore not independent relations. With the help of Stoke’ theorem (F.5.1a) and
(F.5.1b) can be expressed in integral form. Similarly, the Maxwell equation (F.5.4a) and (F.5.4b)
can be expressed in an equivalent integral form with the help of the divergence theorem [35, Ch. 1].

25There is no experimental evidence to indicate that under ordinary conditions charge may be either created
or destroyed in macroscopic amounts.
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F.6 Discussion of Field Equations

In the preceding sections we have briefly presented three different branches of physics at a level
sufficiently detailed to formulate various types of partial differential equations which govern their
fields. These equations are far from being the only field equations encountered in physics, but
they actually represents a large fraction of field equations which are important in physics.

By making a few assumptions on the physical systems the underlying complicated behavior
could be brought aside and allowed us instead to use the mathematical framework founded
in field theory. Hence, we will consider a field as some convenient mathematical idealization
of a physical system. A macroscopic assumption was made for all the three physical systems
considered. Accordingly we could treat the physical system as a continuum. This meant that we
set aside the discontinuous, atomic structure and look into the smoothed-out continuum picture
of a fluid and a solid. This has a huge advantage in that we do not have to concern about
underlying distribution functions, but merely focus on gross average quantities. We will return
to this topic in section F.8 when we discuss existence theorems for acoustic and electromagnetic
fields. It suffice here to say that a solution of a partial differential equation is more smoothly
continuous over most space and time than is the corresponding physical situation. Likewise
for convenience in the mathematical framework discontinuities in space and time are normally
considered infinitely sharp - a condition that never holds perfectly in reality.

Electromagnetic waves possess the very interesting property of being able to propagate in the
absence of any media, that is, in vacuum. In comparison with electromagnetic waves that are
not relying on the existence of a medium, propagation of perturbations in fluids, e.g., sound
waves are indeed dependent on a medium and therefore also vulnerable to the properties of the
supporting media.

The Navier-Stokes equation (F.3.97) on page 656 and the classical equation of motion for an
elastic solid under the influence of its own elastic restoring forces (F.4.19) on page 664 was
found to be almost identical in form. The main difference is owing to the different choice of field
parameter used to describe the system. In the theory of elasticity the displacement s(r, t) is used
while the velocity u(r, t) is used in fluid dynamics. This difference in usage of field parameters is
due to the fact that fluids yield to a shearing stress while solids will resist change in shape. As a
consequence the governing fluid dynamic equation, that is, the Navier-Stokes equation involves
the material time derivative D

∂t while the equation for elastic wave motion only involves the
partial time derivative ∂

∂t . Moreover, another important difference is that a force proportional to
a displacement is a conservative force whereas a force proportional to a velocity is a dissipative
force.

Concerning the constitutive parameters we recognize that in fluid mechanics the second viscosity
coefficient λ and the coefficient of viscosity μ take a similar role to the Lamé moduli λ and shear
modulus μ from theory of elasticity viz. (F.4.19) on page 664 except that they operate on the
rate of the displacement instead of the displacement itself. For gases many of the constitutive
parameters are mutually interrelated and good models are available in particular for ideal gases.
Heat conductivity of fluids and in particular heat conductivity of solids are much complicated
functions of the media. Experimental evidence confirms that λ and μ are scalars. However, for
solids these quantities are usually tensors rendering the analysis much more complicated.

The main results are summarized in Table F.2
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Physical System Sources Fields I Fields II Constitutive Parm. Dissipative
Acoustics q, f p,u δ, σ, τ Ks, KT , K λ, μ, κ
Elasticity f s, S, T λ, μ
Electromagnetics ρ,J E,H D,B σ, ε, μ

Tab. F.2: Sources, Fields and Constitutive Parameters in Acoustics, Elasticity and Electromagnetics.

F.6.1 Continuity Equations

The three physical systems considered all involved continuity equations, viz. (F.3.45) on page 642,
(F.3.50) on page 643 and (F.5.3) on page 665.

For the two cases of continuum mechanics we saw that the wave speed is inversely proportional
to the square root of the compressibility/elasticity (inverse stiffness) times the mass density
viz. (F.3.75), (F.4.14) and (F.4.16). The electromagnetic wave speed in vacuum (F.5.2) is of
the order of 1 million times faster than the speed of sound under normal conditions. This
relationship can be explain from energy considerations. The total energy density consist of a
potential energy density part EP = 1

2Kp2 and a kinetic energy density part EK = 1
2ρ|u|2. The

two field energy density constituents are proportional to the elasticity and mass density, which
explains the aforementioned proportionality in wave speed.

In our investigations we made at an early stage an assumption of infinite medium corresponding
to homogeneous constitutive parameters. The results therefore pertain to the interior of such
infinite medium. However, surface waves types included in all three physical branches studied.
Therefore, our analysis hitherto do not include flexural wave motion although bending wave
indeed are important in the domain of active control of sound and vibration.

F.6.2 Field Equations

In the governing equations both first-order and second-order differential operators are encoun-
tered. In the subsequent text an interpretation of these operators will be made. In the equations
three first-order differential operators are involved. The gradient ∇ operates on a scalar field
ψ(r) and yields a vector. The magnitude of the vector is the value of maximum rate of increase
of ψ(r) and the direction of this vector is the corresponding direction of greatest rate of increase
of ψ(r). The divergence operator ∇ · and the curl operator ∇× both operates on a vector field
ψ(r). The divergence operator returns a scalar indicating the rate of increase of lines of flow.
The curl operator results in a vector that indicates the rate of twisting of the lines of flow. In
the governing differential equations we also recognize three second-order differential operators
namely the Laplacian operator ∇2, the grad div operator ∇∇ · and curl curl operator ∇×∇×.
The Laplace operator, operates on both scalar fields ψ(r) and vector fields ψ(r). In the scalar
case the Laplacian is a measure of lumpiness of ψ(r). Similarly in the vector case the result
is a vector that is a measure of lumpiness in both magnitude and direction of ψ(r). The grad
div operator operates on a vector field ψ(r) and is resulting vector is a measure of the change
in the divergence of ψ(r). Finally, the curl curl operator is a vector field operator that ex-
presses the difference between the grad div and Laplace operator according to the vector identity
∇×∇×ψ = ∇∇ · ψ −∇2ψ.

The governing time-domain equations (F.5.1) on page 665 can be written in a compact form as
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L(r, t)ψ(r, t) = F (r, t) (F.6.1a)
L(r, t)ψ(r, t) = F(r, t), (F.6.1b)

where (F.6.1a) and (F.6.1b) pertain to the scalar and vector case respectively. The unknown field
quantities ψ(r, t) and ψ(r, t) are scalar and vector functions of space and time respectively. The
”source” terms F (r, t) and F(r, t) will generally also be functions of space and time. Finally,
the operators L(r, t) and L(r, t) are each a combination of functions (operating on scalar and
vector elements respectively) of space and time, of the partial derivative with respect to space
and time. We can make the following observations concerning field equations in (F.6.1).

Field Prop.# 1. Linearity in ψ(r, t), that is, no ψk(r, t), k ≥ 2 or ψi(r, t)ψj(r, t), i �= j terms
are encountered.

Field Prop.# 2. Restricted to second-order in space and time, that is, no ∂k

∂xk or ∂k

∂tk with
k > 2 terms encountered26.

Field Prop.# 3. General (as opposed to ordinary) partial differential equation.

Generally, for the solution of field problem governed by partial differential equation and suitable
boundary condition we have two methods at our disposal, the integral solution and the separated
solution. The integral method involves a (free-space) Green’s function that for the inhomogeneous
part of the equation establish a link between each infinitesimal source element to a corresponding
field point. Another Green’s function that establish a link between each equivalent source element
on the boundaries to a specific field point.

A Green’s pertains to a specific wave equation and be scalar-valued, vector-valued and tensor-
valued. The free space Green’s functions are independent of the field equations. The boundary
Green’s function, however, depends on the particular governing equation.

Numerical evaluation of analytic integral Green’s function expression and employing the method
of moments (MOM) has successfully been used in various antenna design [8, 9, 31].

A problem with Field Property 3 is that the original equation generally needs to be separated
into a set of ordinary partial differential equations. An advantage of the integral method is that
it is invariant under coordinate transformation and can be generally be used where separation of
the original equation cannot be made. We may employ the method of expansion in eigenfunction
[26, Ch. 6]. Moreover, both methods are only efficient if the boundaries are such that we can
find a coordinate system, in which the given partial differential equation will separate.

As we will see the Green’s function is a closed function representation of the solution that provides
insight into the over-all behavior of the solution.

In our review of the physical system we encountered the scalar Helmholtz equation (F.2.9a) and
the vector Helmholtz equation (or variants hereof) in (F.2.9b) on page 624. However, in some
cases the solution to the vector Helmholtz equation might not be sufficient as some additional
constraints are to be satisfied. For example, the electromagnetics vector potential A(r) where
the gauge makes the scalar vector potential φ(r) = 0, which is applicable to situations where
there are no free charge ρ(r) = 0 must also be divergenceless, that is, ∇ ·A(r) = 0.

26An exception for this rule is found for the wave equation for bending waves [6, Ch. II.3].
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F.6.3 Curvilinear Coordinates

The choice of coordinate system is usually made (if possible) such that when erected on the
boundary such that the boundary surface is one of the coordinate surfaces ξi = C constant.
Moreover, in order to avoid complicated differential equation with cross differential terms a
separable coordinate system (ξ1, ξ2, ξ3) is sought for. Then the solutions are separated into
factors functions, each dependent on only one of the ξi coordinates, that is, ψ(ξ1, ξ2, ξ3) =
F1(ξ1)F2(ξ2)F3(ξ3). Such a coordinate system allow families of separated solutions of a given
linear partial differential equations from which all solutions of the equation can be built up.
The generalized set of curvilinear coordinates ξ1, ξ2, ξ3 constitute a framework to select ”natural
coordinates”. Oblique systems (as opposed to orthogonal systems) have interesting properties
but lead to difficulties in the mathematical analysis of the pertinent partial differential equations
rigoristic. Hence, an orthogonal curvilinear system defined by the unitary vectors ξ̂1, ξ̂2, ξ̂3

that by definition are mutually perpendicular is selected. The orthogonal curvilinear coordinate
system is completely characterized by three metric coefficients or scale factors, h1, h2, h3 that
relate the curvilinear coordinate (ξ1, ξ2, ξ3) to the Cartesian coordinates (x1, x2, x3) by

h2
i =

3∑
i=1

(∂xi

∂ξi

)2

=
[ 3∑

i=1

( ∂ξi

∂xi

)2
]−1

(F.6.2)

having the property that the length of an infinitesimal vector ds is

ds2 =
3∑

i=1

dx2
i =

3∑
1=1

dξ2
i . (F.6.3)

As discussed in subsection F.2.5 the Laplace equation (F.2.6) applies to static fields while the
wave equation governs dynamic fields. Independent of the partial differential equation that govern
the specific physical problem to find the solution involves the process of determining all possible
solutions and then to select those combinations which also satisfy the boundary condition of the
case under consideration.

For the wave equation (F.2.8) [26, Ch. 5] eleven separable coordinate systems exist in the three-
dimensional case. For the Laplace equation some additional coordinate systems allow separation
of the solutions.

In Table F.3 the aforementioned coordinate systems are listed with a √mark indication if the
coordinate system allow separation of variable for the Laplace and Helmholtz equations in both
scalar and vector case. For more detailed information refer to [26, Ch. 5] [27, Ch. 13].

The systems fall into four classes: Cylindrical coordinates (#1-#4), rotational coordinates (#5-
#9), a less symmetric class (#10-#11) and the cyclical coordinates (#12-#13). In all the
different physical systems a coordinate system that bear some simple relationship to the boundary
surface or to the distribution of singularities is sought for. This also applies to the theoretical
study of acoustical, elastics and electromagnetic waves introduced in section F.3, section F.4 and
section F.5.
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# Coordinate
System

Laplace Helmholtz
ψ ψ ψ ψ ξ1 w

1 Rectangular √ √ √ √ x, y, z 1
2 Circular Cylinder √ √ √ √ z27 1
3 Elliptic Cylinder √ √ √ √ z28 1
4 Parabolic Cylinder √ √ √ √ z29 1
5 Spherical √ √ √ √ r r
6 Conical √ √ √ √ r r
7 Parabolic √ √ √ -
8 Prolate Spheroidal √ √ √ -
9 Oblate Spheroidal √ √ √ -

10 Ellipsoidal √ √ √ -
11 Paraboloidal √ √ √ -
12 Bispherical √ √ - -
13 Toroidal √ √ - -

Tab. F.3: 3-D Coordinate Systems Separable to Laplace and Helmholtz Equations.

F.6.4 Boundary Conditions

Any physical problem must state not only the differential equation which is to be solved but also
the boundary conditions which the solution must satisfy. The solutions and boundary conditions
are somewhat different for each of the three physical systems considered.

F.6.5 Scalar and Vector Fields

From the physical domain governing equations (F.5.1), (F.3.103) to (F.3.101) and (F.4.19) we
see that electromagnetic field E,H, the velocity u of a fluid and the displacement s of an elastic
solid are all vector fields. Likewise there are several other manifestations of vector wave fields in
nature.

Although some vector fields, e.g., the acoustic velocity in viscous free fluid might be obtained
from the gradient of a scalar quantity (in this case the acoustic pressure). Another similar case
of physical interest is the static electric field that can be obtained as the negative gradient of the
electric scalar potential φ(r). Likewise, the Newtonian potential U(r) and Newtonian force F(r)
is obtained as F(r) = ∇U(r) [18]. We will carry out a detailed analysis of spatial-time-dependent
potential functions in section F.F. In general, however, vector fields cannot be derived from a
purely scalar function of space and time. As a consequence the analysis of electromagnetic fields
and fields in elastic solids are inherently more difficult than a similar analysis of ordinary linear
acoustic fields.

Moreover, the vector nature of the field poses additional problems when relating the solutions
of the governing differential equations to the prescribed boundary conditions. Intuitive direct
approaches to invoking the boundary conditions fail[27, Ch. 13]. Only if can express our solution
to the homogeneous governing vector field equation can be that bear a simple relationship to
the boundary surface is a simple three-fold uncoupled solution to be expected. For example, the
vector Helmholtz equation can be made to separate in three scalar Helmholtz equations where
no cross differential enters.



F.6. Discussion of Field Equations 671

A remedy to this problem is use Helmholtz’s theorem [26, Ch. 1.5] that states that any vector
field ψ(r) is uniquely separable into a divergenceless part, ψs(r) = ∇ × A(r), and a curlless
part, ψl(r) = ∇φ(r), provided that ψ(r) is finite, uniform and continuous and vanishes at
infinity. The function φ(r) is the scalar potential of ψ(r) and A(r) is its vector potential. Then
due to the uniqueness the solution should be obtained indirectly from separating the fields into
its lamellar and solenoidal components and through subsequent use of the scalar potential and
vector potential instead of working on the field components directly.

Therefore, the coordinate system should also but also to include vector fields and their equations.
The solution is obtained from breaking the solution into the field components L, M,N

The solution of the scalar Helmholtz equation in ϕ(r) i.e., the longitudinal part of the field is
obtainable provided that the boundary Now in addition to the requirement on the boundary
surface to coincide with one of the coordinate surfaces ξi = C constant the coordinate system
should also be such that we can chose the two scalar fields from which the two transverse field
components are derived, so that part of the field derived from one scalar would be tangential to
the surface ξi = C and the other would be normal to it. Out of the eleven separable coordinate
systems for the scalar Helmholtz equation (and scalar wave equation) only six of these are
amendable to the vector Helmholtz equation [27, Ch. 13]. These are the rectangular coordinates
in which no preference of ξi is made, circular-, elliptical and parabolic cylinder coordinates subject
to the requirement that ξi = z and finally spherical and conical coordinates subject to ξi = r.

The peculiar advantages of these coordinate systems are a consequence of the very simple char-
acter of their geometrical properties.

Moreover, it should be remarked that for other field equations the situation might be different.

F.6.6 Integral Expressions

The time-domain expression for the vector field F(r, t) can be

F(r, t) =
∫ t+

0

[ ∫∫∫
V

G(r, t, r′, t′) ·Q(r′, t′) dV ′
]
dt′

+
1
4π

∫ t+

t0

[∫∫
S

[
(∇′ ·F(r′, t′))(G(r, t, r′, t′) · n̂)− (∇′ · G(r, t, r′, t′))(F(r′, t′) · n̂)

−G(r, t, r′, t′) · (n̂×∇′ × F(r′, t′))− (∇′ ×G(r, t, r′, t′)) · (n̂× F(r′, t′))
]

dS′ dt′

]

− 1
c2

∫∫∫
V

[(
∂

∂t′
G(r, t, r′, t′)

)
·F(r′, t′)−G(r, t, r′, t′) ·

(
∂

∂t′
F(r′, t′)

)]
t′=t0

dV ′,

(F.6.4)

where the time-domain Green’s dyadic G(r, t, r′, t′) is determined from

G(r, t, r′, t′) =
I

R
δ(t− t′ −R/c) (F.6.5)
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that is a solution to inhomogeneous wave equation

∇2G(r, t, r′, t′)− ∂2

∂t2
G(r, t, r′, t′) = −4πδ(t− t′)δ(r− r′)I. (F.6.6)

F.7 Uniqueness

Uniqueness theorems establish conditions for a one-to-one correspondence of a field to its sources.
This allows us provided that the underlying assumption warranting uniqueness are satisfied un-
ambigiously to calculate the field from its sources. It should, however, be remarked in general the
more unusual reverse procedure to determine the sources from the field. Uniqueness theorems
have for many years attracted electromagnetic and acoustic field theorists who attempt to estab-
lish uniqueness theorems with as few as possible restrictions as possible. One such contribution
has recently be made by Hansen and Yaghjian [12] which also contains derivations, theorems and
expressions that are useful but probably yet not widely known especially within the acoustical
community. We will make some references to this work here. Thorough analysis of this book
reveals that many of the theorems make extensive use of the divergence theorem and Leibnitz’
rule of differentiation of integrals [17, Ch. 4.9]. This kind of field theory becomes particular
important if one attempts to synthesize rather advanced fields like the electromagnetic missiles
[12, Ch. 5].

In the time-domain uniqueness is proved by hypothetically assuming the existence of two fields
that both satisfy the governing equations. The law of conservation of energy or time-integrated
energy for the differential field, that is the field obtained from subtracting one field solution from
another field solution and that in virtue of the linearity of the field equations also is a solution,
applied to an entire bounded region of space reveals that the only possible solution is the trivial
solution of identical fields. In the frequency-domain uniqueness is similarly proved by invoking
the conservation of complex power for the differential fields applying to an entire region.

A proof of the reverse problem could most likely be conducted in an equivalent way by hypo-
thetically assuming the existence of two sources that both lead to the same field satisfing the
governing equations. However, we do know that we can use equivalent sources and thereby pro-
ducing the original fields, however, in a limitted space determined by the surface spanned by
those sources.

In an active control of sound context uniqueness in the sources to field correspondence is of
particular importance. For example if the same source contribution, including equivalent sources,
due to some other reasons could produce more than one possible field distribution within the
control volume it will be needless to state that there will no means to cancel the fields herein.
On the other hand if we had more than one secondary source distribution at our disposal that
will perfectly match the primary field - at least within a finite control volume, the problem would
indeed be more luxurious in that we had to choose the most optimal in some sense.

By invoking the reciprocity theorem30 the uniqueness from fields to sources is proved.

Fundamentally we are interested in determining equivalent sources that produce the same field
within a certain region of space. This allows us with some flexibility in that the fields in the
complementary volume of space can take different values. The analysis becomes considerably

30The reciprocity theorem states that the reaction of field A on source B equals the reaction of field B on
source A [13, Ch. 3].
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more simple if the coordinate system in which the scalar wave equation is separable. This also
applies to the scan surface.

Fluid Mech. Field Theory Assump.# 14. In the development it is assumed that curves,
surface and volumes are regular according to the Kellogg definition [18, Ch. 4]. This rather mild
assumption does not preclude a more general applicability of the results to be presented in the
rest of this chapter, but merely ensures that Riemann’s integration of piece-wise continuous can
be defined on these topologies.

From [12, Ch. 2] the following uniqueness statement is made:

Theorem 2. A solution for the acoustic pressure p(r, t) and the acoustic velocity u(r, t) that
rigorously satisfy the time-domain linear acoustic equations (F.3.103) to (F.3.104) on page 659, if
it exists, is unique provided that the fields p(r, t) and u(r, t) at all (r, t) satisfy the conditions31:

1. s(r, t) and f(r, t) are located within a bounded volume i.e., Vs ⊂ V∞,

2. strong causality which mean that the fields are zero beyond a distance c(t − t0) from a
source point that turns on at time t = t0. Hence, the speed of propagation must be finite
i.e., c <∞,

3. p(r, t) and u(r, t) are continuous functions of r and t32.

By V∞ we will denote all space R3 and by Vs denote space spanned by all sources. It should be
remarked that the conditions listed above are sufficient conditions that technically allow the use
of the divergence theorem33 and Leibnitz’s rule of differentiation of integrals34.

The two first conditions above are in principle similar in that they makes it possible to construct
a hypothetical surface beyond all sources for which no energy for sure has been radiated at time
t. In practice these two requirements will of course always be met.

If the conditions indeed are necessary is questionable. For uniqueness of time-domain differential
equations (F.3.101) to (F.3.102) on page 658 an additional requirement on the existence of the
time derivative of the fields shall be made.

So far no statements on uniqueness for generalized linear acoustic fields that are not everywhere
continuous with time and not at all time continuous in space have been made. Some remarks on
the finite extension of the source volume should also be made. In some 2-dimensional analysis
an assumption of field quantities being independent of the third coordinate. However, this

31The solenoidal part of u i.e., the vorticity is not uniquely determined. Two fields that are identical except
for a different time-integrated vorticity variation with range may both be a solution to (F.3.103) to (F.3.104) on
page 659 provided that the difference in us(r, t) varies continuously with r for each t.

32A function is continuous with r and t should be understood as it is continuous with all four variables t, x, y
and z. This continuity with respect to (r, t) is slightly stronger than continuity with respect to r for each t.

33Suppose V is a subset of V∞ which is compact and has a piecewise smooth boundary. If ψ is a continuously
differentiable vector field defined on a neighborhood of V , then we have

∫∫∫
V

∇ ·ψdV =
∫∫
∂V

ψ · dS, where ∂V is

the boundary of V oriented by outward-pointing normals, and dS is shorthand for n̂ dS, the outward pointing
normal of the boundary ∂V [4].

34The Leibnitz’s formula can be extended to definite integral for which the boundaries of integration are
variable [17, Ch. 4.9]. Let f(r, t) be continuous and have continuous derivative ∂f/∂t. In addition let φ1(t) and

φ2(t) be defined and have continuous derivatives for t1 ≤ t ≤ t2. Then for t1 ≤ t ≤ t2, d
dt

∫ φ2(t)
φ1(t)

f(r, t) dt =∫ φ2(t)
φ1(t)

∂f(r,t)
∂t

dt+ f(r, φ2)
dφ2
dx
− f(r, φ1) dφ1

dx
. The extension to the vector-valued functions is straight forward.
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assumption implicitly requires the sources also be of infinite extension along the third dimension
and independent of the position along the third axis. Then one has to resort to some limiting
consideration of finite yet many wavelength extension along the third dimension.

F.8 Existence

Sometimes one is also concerned as whether a solution exists at all. This become relevant in field
synthesis, but is of course not an aspect when dealing with measured quantities.

For the construction of a solution for the linear acoustic problem at hand it is useful to introduce
the velocity potential Φ(r, t) that is related to the acoustic pressure and acoustic velocity as
follows

p(r, t) = ρ
∂

∂t
Φ(r, t), (F.8.1)

Φ(r, t) =
1
ρ

∫ t

t0

p(r, t′) dt′, (F.8.2)

u(r, t) = −∇Φ(r, t) +
1
ρ

∫ t

t0

f(r, t′) dt′. (F.8.3)

In our analysis we are often dealing with expressions involving a scalar source function ψ(r′, t′−
|r− r′|/c) or vector source function ψ(r′, t′−|r− r′|/c) both of which takes two arguments. The
first argument is the source position r′ and the second argument is the retarded time t−|r−r′|/c.
In particular, in the time-domain analysis integration over the source region of such a scalar or
vector source function that is multiplied by the free-space (infinite domain) Green’s function
will be carried out. However, the integrand possess a singularity at positions where the field
and source point coincide. This results in an improper integral and the study presents some
difficulties that must be taking into account. Fortunately, a central theorem on improper volume
integrals ensures convergence of the integral in a large class of problems [32, Sec. 55].

Some of the development leading to requirements on the sources and fields for the existence is
provided in section F.F that also includes an arguable simpler proof of two central theorems.
The classical work by Kellogg [18] on potential functions for time-independent fields in general
is used.

From [12, Ch. 2] the following uniqueness statement is made:

Theorem 3. The acoustic pressure p(r, t) and acoustic velocity u(r, t) defined in (F.8.1) and
(F.8.3) through the velocity potential function φ(r, t) are the unique, causal, continuous acoustic
fields that rigorously satisfy the time-domain linear acoustic equations for the source functions
s(r, t) and f(r, t) (F.3.103)-(F.3.104) provided that s(r, t) and f(r, t) satisfy the conditions:

1. s(r, t) and f(r, t) are located within a bounded volume i.e., Vs ⊂ V∞,

2. s(r, t), ∂s(r, t)/∂t, f(r, t) and ∇ · f(r, t) are continuous functions of r and t, and
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3. s(r, t) and ∇ · f(r, t) are Hölder continuous35 functions in r for all t.

Remark. It should again be remarked that the conditions listed above are sufficient conditions
that technically allow the use of the divergence theorem and Leibnitz’s rule of differentiation of
integrals. We can therefore the extension of the proof to an even wider class of configuration
is left as an open research topic. In addition the theorems underlying the existence condition
above involve principal volume integration and source dyadic terms that are ill-defined within
the source region without sufficient conditions on the volume source of mass-flow and external
force density.

F.9 Pressure and Velocity Fields from Volume Integrals

For sources that first begin at t = t0 it is redundant to include s(r, t) as continuity of ∂s(r, t)/∂t
with respect to (r, t) implies continuity of s(r, t) with respect to (r, t) as well. The following
expressions for the acoustical pressure and the acoustical velocity can then be deduced (see
subsection F.E.3 on page 696)

p(r, t) =
1
4π

lim
δ→0

∫∫∫
V \Vδ

[
1
R

∂

∂t
s(r′, t −R/c)

+
(

1
c

∂

∂t
f(r′, t −R/c) +

f(r′, t −R/c)
R

)
·
R
R2

]
dV ′, r ∈ V̄x

(F.9.1)

and

u(r, t) =
1

4πρ
lim
δ→0

∫∫∫
V \Vδ

[(
1
c2

∂

∂t
f(r′, t −R/c)

)
·
RR
R3

+
(

1
c
f(r′, t −R/c) +

1
R

∫ t

t0

f(r′, t −R/c) dt′
)

1
R2

·
(

3RR
R2

− I

)
+
(

1
c

∂

∂t
s(r′, t −R/c) +

1
R

s(r′, t −R/c)
)

R
R2

]
dV ′

−1
ρ

(
L− I

)
·
∫ t

t0

f(r, t′) dt′, r ∈ V̄x,

(F.9.2)

where L is the source or polarization dyadic defined as

L ≡
∫

Sδ

n̂r̂
r2

dS (F.9.3)

35A real-valued function s(r, t) on a metric space (X, d) is Hölder continuous or satisfies a Hölder condition,
when there are nonnegative real constants A,α, such that, ∀r, r′ ∈ X, |s(r, t) − s(r′, t − R/c)| ≤ Ad(r, r′)α. The
Hölder condition is stronger than continuity for all positive α and weaker than differentiability if α < 1.
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and I is the unit dyad.

The volume integration takes place over the volume V excluding the principal volume Vδ in order
to take the singularity at r = r′ properly into account. In the limit δ → 0 the contribution from
the integral vanishes. Moreover, in [12, Ch. 2] it is proved that the value

∫
Vδ

dV ′ is independent
of the shape of Vδ and the position of the singularity within Vδ. However, when it comes to
two times spatial differentiation of an integral involving singularity both the shape of Vδ and
the position of the singularity within Vδ matters. Hence, the factor 3RR

R2 involving the dyadic
RR stems technically from the use of a spherical principal volume V s

δ in the integration. For
an otherwise shaped principal volume, this factor will change, but will be absorbed elsewhere on
the right-hand side of (F.9.2) so as to keep the combined value of terms on the right-hand side
of (F.9.2) equal to the unique value of the left-hand side of (F.9.2).

F.10 Pressure and Velocity Fields from Surface Integrals

The time-domain scalar wave equation in the first-order acoustic pressure is in general governed
by the following inhomogeneous first-order acoustical second-order differential wave equation of
acoustic motion [28, Ch. 6]:

∇2p(r, t) − 1
c2

∂2p(r, t)
∂t2

= −∂s(r, t)
∂t

+∇ · f(r, t), (F.10.1)

where c is the speed of sound (c =
√

1
Kρ ). Outside the source region the time-domain scalar wave

equation in the acoustic pressure is governed by the following homogeneous first-order acoustical
second-order differential wave equation of acoustic motion [28, Ch. 6]:

∇2p(r, t) =
1
c2

∂2p(r, t)
∂t2

, r /∈ Vs. (F.10.2)

By the notion r /∈ Vs we refer to field points exterior to the volume spanned by the sources.

It should be recalled at this stage that second-order acoustical terms neglected above may modify
the equation for simple wave motion (F.10.2), even when viscosity and thermal conductivity are
neglected.

Similarly, in the frequency-domain the acoustic field satisfies the inhomogeneous scalar Helmholtz
equation outside and within the source region

∇2pω(r) + k2pω(r) = ıωsω(r) +∇ · fω(r). (F.10.3)

The homogeneous scalar Helmholtz equation outside the source region Vs is therefore

∇2pω(r) + k2pω(r) = 0, r /∈ Vs. (F.10.4)

To proceed, we will introduce the free space (FS) (infinite medium) time-domain and frequency-
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domain Green’s functions G
(
r, r′, t, t′

)
and Gω(r, r′) that are defined by

G
(
r, r′, t, t′

)
=

1
4πR

δ
(
t− t′ − R

c

)
(F.10.5)

and

Gω(r, r′) =
eıkR

4πR
, (F.10.6)

respectively, where R is a vector from source point to field point. The scalar quantity R is the
distance from the source point to the field point

R = |R| = |r− r′| =
√

(x− x′)2 + (y − y′)2 + (z − z′)2. (F.10.7)

The Green’s function G
(
r, r′, t, t′

)
so defined spatial factor for a wave from a unit point impulsive

source at r′. From causality reasons G
(
r, r′, t, t′

)
must be zero for t < t′. The Green’s function

Gω(r, r′) so defined is the spatial factor for a wave from a unit, simple-harmonic, point source
at r′. The FS Green’s functions defined in constitute a Fourier transform pair. The Green’s
functions posses symmetry properties G

(
r, r′, t, t′

)
= G(r′, r,−t′,−t) and Gω(r, r′) = Gω(r′, r)

respectively.

The time-domain Green’s function is a solution to an inhomogeneous scalar wave equation [28,
Ch. 7.1]:

∇2G
(
r, r′, t, t′

)
− 1

c2

∂2

∂t2
G
(
r, r′, t, t′

)
= −δ(3)(r− r′)δ(t− t′), r /∈ Vs, (F.10.8)

where δ(3)(r − r′) and δ(t − t′) are the delta function in three dimensions and one dimension
respectively. Both delta functions are symmetric with their arguments i.e., δ(3)(r−r′) = δ(3)(r′−
r) and δ(t− t′) = δ(t′ − t).

The frequency-domain Green’s function is a solution to an inhomogeneous scalar Helmholtz
equation [28, Ch. 7.1]:

∇2Gω(r, r′) + k2Gω(r, r′) = −δ(3)(r− r′). (F.10.9)

In section F.D on page 687 Green’s second identity36 is used to derive the following expressions
for the time-domain acoustic pressure and acoustic velocity fields

p(r, t) =
1
4π

∫∫
∂V

n̂′ ·
[

R
R2

(
1
c

∂

∂t
p(r′, t −R/c) +

1
R

p(r′, t −R/c)
)

+
ρ

R

∂

∂t
u(r′, t −R/c)

]
dS′, r ∈ V̄x,

(F.10.10)

36Let ∂V be a closed surface bounding a region of volume V , dS an infinitesimal surface area times a normal
vector pointing outwards, then we have

∫
V (φ∇2ψ−ψ∇2φ) dV =

∫
∂V (φ∇ψ−ψ∇φ) · dS, where φ and ψ are scalar

functions.
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u(r, t) =
1
4π

∫∫
∂V

n̂′ ·
[

1
ρc2R

∂

∂t
p(r′, t −R/c)

RR
R2

+
1

ρR2

(
1
c
p(r′, t −R/c) +

1
R

∫ t

t0

p(r′, t′) dt′
)

·
(

3RR
R2

− I

)
+
(

1
c

∂

∂t
u(r′, t −R/c) +

1
R

u(r′, t −R/c)
)

R
R2

]
dS′, r ∈ V̄x.

(F.10.11)

Similary, by using Green’s second identity the following expressions for the frequency-domain
acoustic pressure and acoustic velocity fields can be obtained

pω(r) = − 1
4π

∫∫
∂V

n̂′ ·
[
R̂
R

(ıkR− 1)pω(r′) + ıωρuω(r′)
]
eıkR

R
dS′, r ∈ V̄x. (F.10.12)

uω(r) = − 1
4πρ

∫∫
∂V

n̂′ ·

{[
R̂R̂ıkR− (3R̂R̂− I)

(
1− 1

ıkR

)]
pω(r′)

c

+ρ(ıkR− 1)uω(r′)R̂

}
eıkR

R2
dS′, r ∈ V̄x.

(F.10.13)

In order to establish a link between the expression for the acoustic pressure and the acoustic
velocity in the (F.10.10) and (F.10.11) based on surface integrals with the corresponding volume
integral expressions (F.9.1) and (F.9.2) we need equivalent sources. Hence, we introduce the
mass velocity per unit surface area sS(r′, t′) and the force per unit area acting on the surface
fS(r′, t′)

sS(r, t) = ρn̂′ ·u(r, t) (F.10.14a)

fS(r, t) = n̂′p(r, t), r′ ∈ S. (F.10.14b)

The surface sources sS(r, t) and fS(r, t) are also commonly referred to as time-domain Huygens’
sources. Moreover, following the procedure in [30, Ch. 9] we may interpret sS(r, t) and fS(r, t)
as surface dipole and surface monopole sources respectively.

Equivalent frequency-domain sources can similarly be used to establish a link between the ex-
pression for the acoustic pressure and the acoustic velocity in the (F.10.12) and (F.10.13) based
on surface integrals with the corresponding volume integral expressions .

Following a procedure in [30, Ch. 9] we may express the frequency-domain pressure in terms of
surface monopole and dipole sources. Hence, we introduce the mass velocity per unit surface
area sS

ω(r′) and the force per unit area acting on the surface fS
ω (r′)
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sS
ω(r) = ρn̂′ ·uω(r) (F.10.15a)

fS
ω (r) = n̂′pω(r). (F.10.15b)

We are interested in canceling the field inside Vx Although we do no know the actual noise
sources, equivalent sources on Sx will serve as well.

If we had perfect knowledge to the acoustic pressure and velocity at Sx we could in principle set
up a perfectly absorbing boundary, a hard boundary or a soft boundary [13].

Recognizing the opposite use of Vx and the eıωt notion herein we can reexpress (F.10.12)

pω(r) = − 1
4π

∫∫
∂V

[
Gω(r, r′)ıωsS

ω(r′)− fS
ω (r′) ·∇′Gω(r, r′)

]
dS′, r ∈ V̄x. (F.10.16)

Description sS,s
ω (r′) fS,s

ω (r′)
Absorption −sS

ω(r′) −fs
ω(r)

Soft Boundary −sS
ω(r′) 0

Hard Boundary 0 −fS
ω (r′)

Tab. F.4: Surface sources.

The Sommerfeld radiation condition [35, Ch. 9.1], [16]

lim
r→∞

[
r
(∂p(r, t)

∂r
+

1
c

∂p(r, t)
∂t

)]
= 0, |rpω(r)| < C, (F.10.17)

lim
r→∞

[
r
(∂pω(r)

∂r
− ıkpω(r)

)]
= 0, |rpω(r)| < C, (F.10.18)

lim
r→∞

[
r
(∂pω(r)

∂r
− ıkpω(r)

)]
= 0, |rpω(r)| < C, (F.10.19)

where C is a positive constant. From (F.D.5) and (F.D.6) we then observed that the surface
integrals vanish in the limit of infinite r →∞.

The outgoing wave condition (F.10.19) is weaker than the Sommerfeld radiation conditions
(F.10.18) because pomr can satisfy (F.10.19), and yet both pω(r) and ∂pω(r)/∂r can decay
slower than 1/r as r → ∞. Hence, we do not intend to integrate over the volume spanned by
the primary sources. Instead, the effect from the sources, however, are fully taking into account
from the second term in (F.D.7).

F.11 Vector Helmholtz Equation (L,M,N) Vector Eigenfunction
Decomposition

Following the very general discussion of acoustical and electromagnetic field theory in the previous
sections we now establish the very close relationship there exist between the two domains when
we consider spherical wave decomposition.
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In acoustics or electromagnetic field theory one needs to construct vector eigenfunctions for the
following vector Helmholtz equation and vector wave equation:

(∇2 + λψ)ψ(r) = 0 (F.11.1a)
(∇×∇×−λψ)ψ(r) = 0 (F.11.1b)

and the scalar Helmholtz equation

(∇2 + λψ)ψ(r) = 0, (F.11.2)

where ψ is a vector-valued eigenfunction and λψ is the eigenvalue parameter37.

In electromagnetic field theory ψ(r) could be a substitute for the electric field Eω(r) or the
magnetic field Hω(r).

In acoustic field theory ψ(r) could be a surrogate for the acoustic pressure pω(r) and ψ(r)
could be a surrogate for the acoustic velocity in a viscous fluid uω(r). However, as already
discussed in section F.7 for non viscous fluid the acoustic velocity is directly obtainable as the
gradient of the acoustic pressure viz. (F.8.3) on page 674. Therefore, for nonviscous fluids it is
basically not needed to consider the vector Helmholtz equation. However, as will turn out during
our development scalar problems might benefit from the solutions that have been developed for
vector problems.

The vector eigenfunctions represented by ψ(r) can be separated into a lamellar or irrotational
field component, ψl(r), and a solenoidal field component ψs(r) [5]:

ψ(r) = ψl(r) + ψs(r), (F.11.3)

where ∇×ψl(r) ≡ 0, ∇ · ψl(r) �= 0, ∇ ·ψs(r) ≡ 0 and ∇×ψs(r) �= 0.

In the literature the irrotational part of the vector eigenfunction is denoted as a L function. The
solenoidal part is in turn composed of two orthogonal functions referred to as M and N functions
respectively.

In order to proceed we have to chose coordinate system for the specific physical problem. More-
over, as discussed in subsection F.6.3 in the vector Helmholtz equation case the number of coor-
dinate systems amendable to the (L,M,N) procedure described above is very limited. In SNFAT

the longitudinal component L is not used [11].

F.11.1 Vector Eigenfunction (L,M,N) Separable Coordinates

Three scalar fields ψL, ψM and ψN , all solutions of the scalar Helmholtz equation will constitute
the basis for the most general solution vector Helmholtz equation. The vector field solutions,
that is, L,M and N are then obtained from [27, Ch. 13]

37We prefer to preserve the symbol λ to represent wave-length.
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L(r) = ∇ψL(r) (F.11.4a)

M(r) = ∇× (wψM (r)ξ̂1) = ∇(wψM (r))× ξ̂1 (F.11.4b)

N(r) =
1
k
∇×∇× (wψN (r)ξ̂1) = kwψN (r)ξ̂1 +

1
k
∇
(

∂(wψN (r))
∂ξ1

)
. (F.11.4c)

In the unrestricted free-space case scalar fields ψL, ψM and ψN , will coincide. Otherwise, these
scalar fields must be in a form suitable for the application of boundary conditions. In waveguide
and cavity problems where booundary conditions exist the scalar functions ψL, ψM and ψN used
to generate the (L,M,N) functions will generally be mutually different and also be different
from the free-space function.

We may now proceed and use Table F.3 and obtain specific expressions for the vector eigenfunc-
tion (L,M,N). It should be remarked that the longitudinal part of the vector eigenfunction does
not involve ξ1 or w and will therefore have the same expression irrespective of the coordinate
system.

In circular, elliptical, parabolic and rectangular cylindrical coordinates we obtain

L(r) = ∇ψL(r) (F.11.5a)
M(r) = ∇× ψM (r)ẑ = ∇(ψM (r)) × ẑ (F.11.5b)

N(r) =
1
k
∇×∇× ψl(r)ẑ = kψN (r)ẑ +

1
k
∇
(

∂(ψN (r))
∂z

)
. (F.11.5c)

Slightly different expressions for the M and N vector eigenfunctions are obtained in conical and
spherical coordinates [5, Ch. 2].

L(r) = ∇ψL(r) (F.11.6a)
M(r) = ∇× (rψM (r)r̂) = ∇(rψM (r))× r̂ (F.11.6b)

N(r) =
1
k
∇×∇× (rψN (r)r̂) = krψN (r)r̂ +

1
k
∇
(

∂(rψN (r))
∂r

)
, (F.11.6c)

where ẑ as usual denotes the unit vector in the along the direction of the cylinder (in the sense
used in [26, Ch. 5]. As seen in Table F.3 for rectangular cylindrical coordinates ẑ may be replaced
by x̂ or ŷ.

In Appendix G use of (F.11.6) will be made in the derivation of the SNFAT expressions for
electromagnetic and acoustical waves that is based on spherical coordinates.

F.12 Spherical Time-Domain Expansions

The results obtained so far are very general and may be specialized to any closed reference
surface. In particular we will obtain expressions for the time-domain acoustic pressure from
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the source distribution and the contribution contained in the surface integral over the reference
surface. Now we will specialize to a spherical reference surface.

The normal derivative then coincide with the radial derivative. From (F.10.5) and (F.10.6) we
readily obtain

∂

∂r
G
(
r, r′, t, t′

)
=

1
4πR2

[ ık

R
− 1

R2

]
r̂ ·R (F.12.1)

∂

∂r
Gω(r, r′) =

eıkR

4πR

[ ık

R
− 1

R2

]
eR ·R, (F.12.2)

where eR is a unit vector along R. By applying the inverse Fourier transform (F.2.10b) and
using the shift property we obtain

p(r, t) =
1
4π

∫
ro=rx

1
R

[{ 1
cR

∂p

∂t
(r′, t− R

c
)

+
1

R2
p(r′, t− R

c
)
}
r′ ·R

− ∂p

∂ro
(r′, t− R

c
)
]

dS′, r ∈ V̄x.

(F.12.3)

Hence, the field inside the control volume including the boundaries can be expressed in the time-
domain in terms of the pressure and its time and normal derivatives everywhere on the reference
surface. All the quantities taking at the retarded time t− R

c .
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F.A Material Derivative Utility

In this section we provide an expression for the material derivative D
Dt applied to the product of

a scalar field quantity, say ψ(r, t), and a vector field quantity, say B(r, t), in terms of tensorial
notation. The underlying velocity vector is denoted by u(r, t). This expression was used to obtain
a compact expression for the continuity of the momentum density in the fluid viz. (F.3.59) on
page 645.

In the development we will need first need an expression for the gradient of a tensor, say, A(r, t)
that in turn is obtained as the tensor product ⊗ of the vectors ψ(r, t)B(r, t) and u(r, t), that is,
A(r, t) = (ψ(r, t)B(r, t)) ⊗ u(r, t). For notational convenience the space-time parameters (r, t)
will be suppressed in the following derivation.

Proof. From [26, Ch. 1] we obtain

∇ · A ≡ ∇ · ((ψB)⊗ u)

=
∂((ψB)⊗ u)x

∂x
+

∂((ψB)⊗ u)y

∂y
+

∂((ψB)⊗ u)z

∂z

=
∂((ψB)ux)

∂x
+

∂((ψB)uy)
∂y

+
∂((ψB)uz)

∂z

=
∂(ψB)

∂x
ux + (ψB)

∂ux

∂x
+

∂(ψB)
∂y

uy + (ψB)
∂uy

∂y
+

∂(ψB)
∂z

uz + (ψB)
∂uz

∂z

= (u ·∇)(ψB) + (ψB)∇ ·u

= (u ·∇)(ψB) + (ψB)Δ̇.

(F.A.1)
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The material derivative is then expressed as

D(ψB)
Dt

≡ ∂(ψB)
∂t

+ (u ·∇)(ψB)

now applying (F.A.1) to obtain

D(ψB)
Dt

=
∂(ψB)

∂t
+∇ · A− ψBΔ̇,

(F.A.2)

where A(r, t) = (ψ(r, t)B(r, t)) ⊗ u(r, t).

F.B Reynolds Transport Theorem Derivation

In this section we provide a proof of the second version of the Reynolds transport theorem
(F.3.43) introduced in subsection F.3.3 on page 640. For notational convenience the space-time
parameters (r′, t) will be suppressed in the following derivation.

Proof. We will need the following expression for the time-derivative of a volume integral with
time-varying integration limits [17, Ch. 5.15]

D
Dt

∫∫∫
V (r,t)

F (r′, t) dV ′ =
∫∫∫
V (r,t)

[
∂F (r′, t)

∂t
+∇ ·

(
F (r′, t)u(r′, t)

)]
dV ′, (F.B.1)

where u(r, t) is the fluid velocity vector responsible for the time-varying integration limits. Now
in the present case F (r, t) is the product of the mass density function ρ(r, t) and an arbitrary
intensive property b(r, t), that in turn might be a scalar, vector or tensor. The material derivative
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of the extensive property Bsys(t) introduced in (F.3.42) on page 641 is obtained from

DBsys

Dt
=

D
Dt

∫∫∫
V (r,t)

ρb dV ′

using (F.B.1) to obtain

DBsys

Dt
=

∫∫∫
V (r,t)

[
∂ρb

∂t
+∇ ·

(
ρbu

)]
dV ′

=
∫∫∫
V (r,t)

[
b
∂ρ

∂t
+ ρ

∂b

∂t
+ ρb∇ ·u + u ·∇(ρb)

]
dV ′

=
∫∫∫
V (r,t)

[
b
∂ρ

∂t
+ ρ

∂b

∂t
+ ρb∇ ·u + bu ·∇ρ + ρu ·∇b

]
dV ′

insertion of the material derivative (F.3.40) yields

DBsys

Dt
=

∫∫∫
V (r,t)

[
ρ

Db

Dt
+ b

(
Dρ

Dt
+ ρ∇ ·u

)]
dV ′

finally, applying the conservation of mass expression (F.3.48) we arrive at

DBsys

Dt
=

∫∫∫
V (r,t)

ρ
Db

Dt
+ q dV ′,

which is the expression sought augmented by the source term q(r′, t).

(F.B.2)

F.C Specific Entropy Rate of Change Derivation

We will use the following thermodynamic relations [36, Ch. 2.7]
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(
∂P

∂T

)
V

= −
(

∂P

∂V

)
T

(
∂V

∂T

)
P

(F.C.1a)

dP =
α

KT
dT − 1

KT V
dV, (F.C.1b)

where the volume thermal expansivity α(r, t) and the isothermal compressibility KT are defined
in (F.3.71) on page 649 and (F.3.72) on page 649 respectively.

From [36, Ch. 11] the following Tds-equations can be found

Tds = Cv dT + T

(
∂P

∂T

)
V

dv (F.C.2a)

Tds = CP dT − T

(
∂V

∂T

)
P

dP. (F.C.2b)

For notational convenience the space-time parameters (r, t) will be suppressed in the following
derivation

ρ(r, t)Cv(r, t)
DT (r, t)

Dt
+ ρ(r, t)Cv(r, t)(γ(r, t) − 1)Δ̇(r, t)/α(r, t) +∇ ·q(r, t)− φη(r, t) = 0,

(F.C.3)

F.D Pressure and Velocity Fields from Surface Integrals; Derivation

The derivations to be carried out in this section are limitted to field points exterior to the source
region. It should be recalled that outside the sources the fields are governed by the homogeneous
wave equation in the time-domain and by the homogeneous Helmholtz equation in the frequency-
domain.

F.D.1 Pressure Field from Surface Integrals; Derivation

In order to apply the Green’s second identity we first multiply the homogeneous wave equations
for the acoustic pressure i.e., (F.10.2) and the homogeneous Helmholtz equation (F.10.4) by
G
(
r, r′, t, t′

)
and Gω(r, r′) respectively. Next we multiply the inhomogeneous wave equation for

the time-domain Green’s function i.e., (F.10.8) and inhomogeneous Helmholtz equation for the
frequency-domain Green’s function (F.10.9) by p(r, t) and pω(r) respectively and subtracts these
results from the previous results obtaining

G
(
r, r′, t, t′

)
∇2p(r, t) − p(r, t)∇2G

(
r, r′, t, t′

)
=p(r, t)δ(3)(r− r′)δ(t− t′)−G

(
r, r′, t, t′

)
f(r, t), r ∈ Vf , t ∈ Tp,

(F.D.1)

Gω(r, r′)∇2pω(r)− pω(r)∇2Gω(r, r′)

=pω(r)δ(3)(r− r′)−Gω(r, r′)fω(r), r ∈ V .
(F.D.2)
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With the objective of obtaining expression where the time-domain source f(r, t) is a function
source coordinates r′ and t′ and the frequency-domain source fω(r) is a function source coordinate
r′ we simply interchange r and r′ in (F.D.1) and (F.D.2) and interchange t and t′ in (F.D.1).
Next we use the reciprocity property of the Green’s function and the symmetry property of the
delta functions and integrate over V obtaining

∫∫∫
V

[
G
(
r, r′, t, t′

)
∇2p(r′, t′)− p(r′, t′)∇2G

(
r, r′, t, t′

)]
dV ′

=
∫∫∫

V

[
p(r′, t′)δ(3)(r− r′)δ(t− t′)−G

(
r, r′, t, t′

)
f(r′, t′)

]
dV ′, r ∈ Vf , t ∈ Tp,

(F.D.3)

and

∫∫∫
V

[
Gω(r, r′)∇2pω(r′)− pω(r′)∇2Gω(r, r′)

]
dV ′

=
∫∫∫

V

[
pω(r′)δ(3)(r− r′)−Gω(r, r′)fω(r′)

]
dV ′, r ∈ V .

(F.D.4)

Finally, assuming that the scan surface S is regular and also continuously curved (smoothed)
surface in order to ensure that the normal n̂ to the surface is a continuous function on S we
arrive at the following integral expression relating the pressure at field point r inside the closed
boundary V̄x as a summation of the fields from all the elementary sources fω dV ′ plus the waves
reflected by the boundaries within finite distance of the source fω:

p(r, t) =
∫∫∫

V

f(r′, t′)G
(
r, r′, t, t′

)
dV ′

+
∫∫
∂V

[
G
(
r, r′, t, t′

) ∂

∂n′ p(r′, t′)− p(r′, t′)
∂

∂n′G
(
r, r′, t, t′

)]
dS′, r ∈ V̄x, t ∈ Tp

(F.D.5)

pω(r) =
∫∫∫

V

fω(r′)Gω(r, r′) dV ′

+
∫∫
∂V

[
Gω(r, r′)

∂

∂n′ pω(r′)− pω(r′)
∂

∂n′Gω(r, r′)
]
dS′, r ∈ V̄x.

(F.D.6)

The frequency-domain expression (F.D.6) coincides with a similar expression in [1, Ch. 7]. If we
further make the assumption that all primary sources fps

ω are found at positions exterior to V̄x

i.e.,
fps

ω (r) ≡ 0, ∀r ∈ V̄x (F.D.7)
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then (F.D.7) applies with fω(r) substituted by fss
ω (r). It should be recalled that contributions

for the primary sources then are implicitly and entirely included in the surface integral as there
is no evidence to whether the contributing terms stem form a source or are due to boundary
reflections.

F.D.2 Velocity Field from Surface Integrals; Derivation
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F.E Miscellaneous Identities

F.E.1 Introduction

In the analysis of vector field certain quantities occur which have the same mathematical form
whatever field is considered. In this appendix some commonly used vector identities in acoustic
and electromagnetic field theory will be derived. As usual r′r = x′x̂+y′ŷ+z′ẑ and r = xx̂+yŷ+zẑ
denote source and field (observer) position respectively, R = r − r′ denotes the source point to
field point vector of length R = |r − r′| =

√
(x− x′)2 + (y − y′)2 + (z − z′)2. Moreover, we will

let xi be equal to x, y, or z for i = 1, 2, or 3, respectively; i.e., r = x1x̂ + x2ŷ + x3ẑ.

In our analysis we are often dealing with expressions involving a scalar function ψ(r′, t′−|r−r′|/c)
or vector function ψ(r′, t′− |r− r′|/c) both of which takes two arguments. The first argument is
the source position r′ and the second argument is the retarded time t− |r − r′|/c. Moreover, in
the analysis we have to invoke first-order spatial derivatives ∂/∂xi, divergence ∇ · and gradient
operators ∇. The first order spatial derivatives will be represented by a generalized operator �.
However, for functions of two arguments some cautions must be exercised.

Hence, curly brackets on {�′ψ}(1) and {�′ψ}(2) will be used to indicate differentiation with
respect to r′ in the first and second argument in ψ(r′, t− |r − r′|/c) respectively; that is,

�′ψ(r′, t′ − |r − r′|/c) = {�′ψ}(1)(r′, t′ − |r − r′|/c) + {�′ψ}(2)(r′, t′ − |r − r′|/c), (F.E.1)

where

{�′ψ}(1)(r′, t′ − |r − r′|/c) = �′ψ(r′, t)|(,t=t′−|r−r′|/c) (F.E.2a)
= �ψ(r, t)|(r=r′,t=t′−|r−r′|/c) (F.E.2b)

and

{�′ψ}(2)(r′, t′ − |r − r′|/c) = �′ψ(r, t′ − |r − r′|/c)|(r=r′,) (F.E.3a)
= −�ψ(r′, t′ − |r − r′|/c), (F.E.3b)
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where the notion |(,t=t′−|r−r′|/c) indicates that the second argument is fixed at time t = t′− |r−
r′|/c while differentiation takes place on the first argument. Likewise |(r=r′,) indicates that the
first argument is fixed at position r = r′ while differentiation takes place on the second argument.

Similar convention applies to the gradient operator ∇′ applied to ψ and the curl operator ∇′×
applied to ψ.

As the first parameter of ψ and ψ is r′ (as opposed to r) we obtain the following useful expression

�ψ(r′, t −R/c) = {�ψ}(1)(r′, t −R/c) + {�ψ}(2)(r′, t −R/c) (F.E.4a)

= {�ψ}(2)(r′, t −R/c) (F.E.4b)

= −{�′ψ}(2)(r′, t −R/c) (F.E.4c)

= {�′ψ}(1)(r′, t −R/c)−�′ψ(r, t). (F.E.4d)

where we have replaced |r − r′| by R for notational compactness.

For higher order differentiation, e.g., ∂2/∂x′
i∂x′

j , grad div ∇′∇′ · and curl curl ∇′×∇′× applied
to ψ. We will use the generalized double differential operator �′�′ as a surrogate for such
operations. Moreover, curly brackets including a superscript on {�′ψ}(l,m), l, m = 1, 2 will
be used to indicate that the first differentiation is with respect to r′ in the l’th argument in
ψ(r′, t− |r − r′|/c) and that second differentiation is with respect to the m’th argument in the
result hereof; that is,

�′�′ψ(r′, t′ − |r − r′|/c) =

{�′�′ψ}(1,1)(r′, t′ − |r − r′|/c) + {�′�′ψ}(2,1)(r′, t′ − |r − r′|/c)+

{�′�′ψ}(1,2)(r′, t′ − |r − r′|/c) + {�′�′ψ}(2,2)(r′, t′ − |r − r′|/c),

(F.E.5)

where

{�′�′ψ}(1,1)(r′, t′ − |r − r′|/c) = �′�′ψ(r′, t)|(,t=t′−|r−r′|/c) (F.E.6a)
= ��ψ(r, t)|(r=r′,t=t′−|r−r′|/c), (F.E.6b)

{�′�′ψ}(2,1)(r′, t′ − |r − r′|/c) = ∇′{∇′ · ψ(r′, t)|(r=r′,)}|(,t=t′−|r−r′|/c) (F.E.7a)
= −∇{∇ ·ψ(r, t)|(r=r′,)}|(,t=t′−|r−r′|/c), (F.E.7b)

{�′�′ψ}(1,2)(r′, t′ − |r − r′|/c) = ∇′{∇′ · ψ(r′, t)|(,t=t′−|r−r′|/c)}|(r=r′,) (F.E.8a)
= −∇{∇ ·ψ(r, t)|(,t=t′−|r−r′|/c)}|(r=r′,) (F.E.8b)

and

{�′�′ψ}(2,2)(r′, t′ − |r − r′|/c) = �′�′ψ(r, t′ − |r − r′|/c)|(r=r′,) (F.E.9a)
= ��ψ(r′, t′ − |r − r′|/c). (F.E.9b)
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Moreover, the order of differentiation is immaterial provided that all derivatives concerned are
continuous in the domain considered [2, Sec. 2.15], that is

{�′�′ψ}(2,1)(r′, t′ − |r − r′|/c) = {�′�′ψ}(1,2)(r′, t′ − |r − r′|/c). (F.E.10)

F.E.2 Functions of Retarded Time

It will be useful to introduce two auxiliary functions that take only the retarded time t−|r−r′|/c

as argument, F(t− |r−r′|
c ) and G(t− |r−r′|

c ) = F(t− |r−r′|
c )

|r−r′| .

Static Green’s Function Derivatives

The static Green’s function i.e., frac1R enters in many expression. In the subsequent text some
useful derivatives related to the Green’s function will be provided.

Taking the partial derivative of R, R−1, R−2 and R−3 with respect to xi gives

∂R

∂xi
=

∂|r − r′|
∂xi

=
xi − x′

i

R
(F.E.11a)

∂R−1

∂xi
=

∂|r − r′|−1

∂xi
= − xi − x′

i

R3
(F.E.11b)

∂R−2

∂xi
=

∂|r − r′|−2

∂xi
= −2

xi − x′
i

R4
(F.E.11c)

∂R−3

∂xi
=

∂|r − r′|−3

∂xi
= −3

xi − x′
i

R5
(F.E.11d)

and by recurrence

∂R−n

∂xi
=

∂|r − r′|−n

∂xi
= −n

xi − x′
i

Rn+2
. (F.E.11e)

Accordingly the following gradient relations are readily obtained

∇R = ∇|r − r′| =
R
R

= R̂ (F.E.12a)

∇R−1 = ∇|r − r′|−1 = − R
R3

= − R̂
R2

(F.E.12b)

∇R−2 = ∇|r − r′|−2 = −2
R
R4

= −2
R̂
R3

(F.E.12c)

∇R−3 = ∇|r − r′|−3 = −3
R
R5

= −3
R̂
R4

(F.E.12d)
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and by recurrence or directly from (F.E.11e)

∇R−n = ∇|r − r′|−n = −n
R

Rn+2
= −n

R̂
Rn+1

. (F.E.12e)

From (F.E.11) the second-order partial derivative of R, R−1 and R−2 with respect to xi, xj are
obtained

∂2R

∂xi∂xj
=

∂2|r − r′|
∂xi∂xj

=
1
R

δij −
(xi − x′

i)(xj − x′
j)

R3
(F.E.13a)

∂2R−1

∂xi∂xj
=

∂2|r − r′|−1

∂xi∂xj
= − 1

R3
δij + 3

(xi − x′
i)(xj − x′

j)
R5

(F.E.13b)

∂2R−2

∂xi∂xj
=

∂2|r − r′|−2

∂xi∂xj
= −2

1
R4

δij + 8
(xi − x′

i)(xj − x′
j)

R6
(F.E.13c)

∂2R−3

∂xi∂xj
=

∂2|r − r′|−3

∂xi∂xj
= −3

1
R5

δij + 15
(xi − x′

i)(xj − x′
j)

R7
(F.E.13d)

and by recurrence or directly from (F.E.11)

∂2R−n

∂xi∂xj
=

∂2|r − r′|−n

∂xi∂xj
= −n

1
Rn+2

δij + n(n + 2)
(xi − x′

i)(xj − x′
j)

Rn+4
. (F.E.13e)

Moreover, the following divergence relations may be derived from the relation ∇ · (UA) =
(∇U) ·A + U(∇ ·A)

∇ ·R = ∇ · |r − r′|R = 3 (F.E.14a)

∇ · R−1R = ∇ · |r − r′|−1R =
2
R

(F.E.14b)

∇ · R−2R = ∇ · |r − r′|−2R =
1

R2
(F.E.14c)

∇ · R−3R = ∇ · |r − r′|−3R = 0. (F.E.14d)

Assuming the evaluation of F and G to takes place at the retarded time t = t′ − |r − r′|/c we
derive the following identities

∂F
∂xi

=
∂F
∂R

∂R

∂xi

= −1
c

∂F
∂t

xi − x′
i

R
. (F.E.15)
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From (F.E.15) we can easily deduce the following divergence relation

∇ ·F = − R
cR

·
∂F
∂t

. (F.E.16)

Combining (F.E.11b) and (F.E.15) yields

∂G
∂xi

=
∂F
∂xi

1
R

+ F
∂R−1

∂xi

= − 1
cR

∂F
∂t

xi − x′
i

R
− F

xi − x′
i

R3

= −
(1

c

∂F
∂t

+
F
R

)xi − x′
i

R2
, r �= r′. (F.E.17)

From (F.E.17) we can easily deduce the following divergence and curl relations

∇ ·G = −
(1

c

∂F
∂t

+
F
R

)
·
R
R2

, r �= r′ (F.E.18a)

∇×G =
(1

c

∂F
∂t

+
F
R

)
× R

R2
, r �= r′. (F.E.18b)
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∂2G
∂x2

i

= −
∂
(

1
c

∂F
∂t + F

R

)
∂xi

xi − x′
i

R2
−

(1
c

∂F
∂t

+
F
R

)∂
xi−x′

i

R2

∂xi

inserting (F.E.15), (F.E.17) and (F.E.11c)

= −
(
− 1

c2

∂2F
∂t2

xi − x′
i

R
−

(1
c

∂F
∂t

+
F
R

)xi − x′
i

R2

)
xi − x′

i

R2
−

(1
c

∂F
∂t

+
F
R

)( 1
R2
− 2(xi − x′

i)
xi − x′

i

R4

)
=

1
c2R

∂2F
∂t2

(xi − x′
i

R

)2

+
(1

c

∂F
∂t

+
F
R

) 1
R2

(
3
(xi − x′

i

R

)2

− 1
)

, r �= r′. (F.E.19)

The Laplacian of G is therefore

∇2G =
1

c2R

∂2F
∂t2

, r �= r′. (F.E.20)

Combining (F.E.11b), (F.E.11c) and (F.E.18a) yields

∂∇ ·G
∂xi

=−
∂
(

1
c

∂F
∂t + F

R

)
∂xi

·
R
R2
−

(1
c

∂F
∂t

+
F
R

)
·
∂ R

R2

∂xi

=−
(
− 1

c2

∂2F
∂t2

xi − x′
i

R
−

(1
c

∂F
∂t

+
F
R

)xi − x′
i

R2

)
·
R
R2

−
(1

c

∂F
∂t

+
F
R

)
·
( x̂i

R2
− 2R

xi − x′
i

R4

)
=

1
c2

∂2F
∂t2

xi − x′
i

R
·
R
R2

+
1

R2

((1
c

∂F
∂t

+
F
R

)
(xi − x′

i)
)

·
3R
R2
− 1

R2

(1
c

∂F
∂t

+
F
R

)
· x̂i, r �= r′.

(F.E.21)
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Similarly, by combining (F.E.11b), (F.E.11c) and (F.E.18b) we obtain

∂∇×G
∂xi

=
∂
(

1
c

∂F
∂t + F

R

)
∂xi

× R
R2

(1
c

∂F
∂t

+
F
R

)
×

∂ R
R2

∂xi

=
(
− 1

c2

∂2F
∂t2

xi − x′
i

R
−

(1
c

∂F
∂t

+
F
R

)xi − x′
i

R2

)
× R

R2
+

(1
c

∂F
∂t

+
F
R

)
×

( x̂i

R2
− 2R

xi − x′
i

R4

)
=− 1

c2

∂2F
∂t2

xi − x′
i

R
× R

R2
− 1

R2

((1
c

∂F
∂t

+
F
R

)
(xi − x′

i)
)
× 3R

R2
+

1
R2

(1
c

∂F
∂t

+
F
R

)
× x̂i, r �= r′.

(F.E.22)

From (F.E.21) we readily obtain the following expression for grad div G

∇∇ ·G =
1

c2R

∂2F
∂t2

·
RR
R2

+
1

R2

(1
c

∂F
∂t

+
F
R

)
·
(3RR

R2
− Ī

)
, r �= r′. (F.E.23)

From (F.E.23) and (F.E.20)

∇×∇×G = ∇∇ ·G−∇2G

=
1

c2R

∂2F
∂t2

·
RR
R2

+
1

R2

(1
c

∂F
∂t

+
F
R

)
·
(3RR

R2
− Ī

)
− 1

c2R

∂2F
∂t2

=
1

c2R

∂2F
∂t2

·
(RR

R2
− Ī

)
+

1
R2

(1
c

∂F
∂t

+
F
R

)
·
(3RR

R2
− Ī

)
, r �= r′.

(F.E.24)
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In the subsequent we will applied the identities developed so far and provide a rather simple
derivation of the [1, Eq. (2.59)-(2.69) on pp. 21-23] Let Ψ(r′, t′− |r − r′|/c) = 1

|r−r′|
∫ t

t0
J(r′, t′−

|r − r′|/c) dt′, then by defining ψ(r′, t′ − |r − r′|/c) =
∫ t

t0
J(r′, t′ − |r − r′|/c) dt′, we obtain

∇ ·Ψ(r′, t′ − |r − r′|/c) =
(
∇ ·

1
|r − r′|

)
ψ(r′, t′ − |r − r′|/c) +

1
|r − r′|∇ · ψ(r′, t′ − |r − r′|/c)

using the divergence theorem38 in the first term leads to

∇ ·Ψ(r′, t′ − |r − r′|/c) =
1

|r − r′|∇
′ ·ψ(r′, t′ − |r − r′|/c) +

1
|r − r′|∇ ·ψ(r′, t′ − |r − r′|/c)

now applying (F.F.14) and (F.E.4c) gives

∇ ·Ψ(r′, t′ − |r − r′|/c) =
1
R
{∇′ · ψ}(1)(r′, t′ − |r − r′|/c)

=
1
R

∫ t

t0

{∇′ · }(1)J(r′, t′ − |r − r′|/c) dt′.

(F.E.25)

Similarly, from (F.E.20) we obtain

∇2Ψ(r′, t′ − |r − r′|/c) =
1
c2

∂2Ψ(r′, t′ − |r − r′|/c)
∂t2

=
1

c2R

∂J(r′, t′ − |r − r′|/c)
∂t

, r �= r′. (F.E.26)

F.E.3 Pressure and Velocity Fields from Volume Integrals; Derivation

We are now in a position to derive an explicit expression for the acoustic pressure and the acoustic
velocity in terms of volume sources.
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u(r, t) = − 1
4π
∇ lim

δ→0

∫∫∫
V \Vδ

j(r′, t −R/c)
R

dV ′ +
1
ρ

∫ t

t0

f(r, t′) dt′

= − 1
4πρ

∇ lim
δ→0

∫∫∫
V \Vδ

s(r′, t −R/c)
R

−
∇ ·

∫ t

t0
f(r′, t −R/c) dt′

R
dV ′ +

1
ρ

∫ t

t0

f(r, t′) dt′

by using [1, Thm. 2-I,II] with an arbritary principal volume Vδ to get

= − 1
4πρ

lim
δ→0

∫∫∫
V \Vδ

∇s(r′, t −R/c)
R

−
∇∇ ·

∫ t

t0
f(r′, t −R/c) dt′

R
dV ′ +

2
3ρ

∫ t

t0

f(r, t′) dt′

from using (F.E.4b) we obtain

= − 1
4πρ

lim
δ→0

∫∫∫
V \Vδ

{∇}(2)s(r′, t −R/c)
R

−
{∇∇ · }(2)

∫ t

t0
f(r′, t −R/c) dt′

R
dV ′ +

2
3ρ

∫ t

t0

f(r, t′) dt′

finally, from (F.E.18a) and (F.E.23)

=
1

4πρ
lim
δ→0

∫∫∫
V \Vδ

[(
1
c2

∂

∂t
f(r′, t −R/c)

)
·
RR
R3

+
(

1
c
f(r′, t −R/c) +

1
R

∫ t

t0

f(r′, t −R/c) dt′
)

1
R2

·
(

3RR
R2

− Ī
)

+
(

1
c

∂

∂t
s(r′, t −R/c) +

1
R

s(r′, t −R/c)
)

R
R2

]
dV ′ − 1

ρ

(
L̄− Ī

)
·
∫ t

t0

f(r, t′) dt′, r ∈ V∞.

(F.E.27)
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If a spherical principal volume V S
δ was used instead then the dyadic

(
L̄ − Ī

)
entering the last

term should be replaced by − 2
3 .
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F.F Time-Dependent Potential Functions

F.F.1 Introduction

The problem relates to the determination of the time-independent and time-dependent fields and
their first- and second-order spatial derivatives within the source region. Thorough analysis of
the proofs of [1, Thm. 2-I,II] reveals that the two theorems in turn use theorems on the potentials
of volume distributions [3, Ch. VI.3]. The requirement on boundness of s(r, t), f(r, t) is implicitly
invoked in [3, Ch. VI.3] and included here for the sake of rigorism.

The development presented will rely on the classical work by Kellogg [3] on the potentials of
volume distributions for time-independent fields. Although Kellogg’s book primarily considered
Newtonian potentials the result are directly applicable to other parts of physics dealing with
static fields. Hence, first we present the pertinent results on potential function for static fields
and potential functions. However, no examination of the second-order cross partial derivatives
i.e., ∂xi/∂xj, i �= j has been made. A remedy for this will therefore be made.

As usual r′ = x′x̂ + y′ŷ + z′ẑ and r = xx̂ + yŷ + zẑ denote source and field (observer) position
respectively, R = r − r′ denotes the source point to field point vector of length R = |r − r′| =√

(x− x′)2 + (y − y′)2 + (z − z′)2. Moreover, we will let xi be equal to x, y, or z for i = 1, 2, or
3, respectively; i.e., r = x1x̂ + x2ŷ + x3ẑ.

Important for our purpose is to note that upon bringing the grad div operator ∇∇ · under the
sign of integration the Kronecker delta counts once for each xi. The curl curl operator ∇×∇×,
however, counts twice for each xi. Moreover, it should be noticed that it is the unprimed
differential operator referring to field coordinates (as opposed to the primed differential operator
referring to source coordinates) that is brought inside the sign of integration.

F.F.2 Kellogg’s Theorem

We will let the volume mass density ρ(r′) represents a volume distribution. Likewise we will
let the Newtonian potential U(r) and the Newtonian force F(r) be representatives of general
potential functions and forces. From potential theory [3] the following interrelation among these
quantities is well known
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U(r) =
∫∫∫

V

ρ(r′)
|r − r′| dV ′ (F.F.1a)

F(r) = ∇U(r). (F.F.1b)

Equation (F.F.1a) exposes the problem we are addressing. When the field and source points coin-
cide the integrand becomes unbounded leading to an improper integral. Moreover, when we want
to determine the Newtonian force F(r) the question arises to whether differential operation can
be brought inside the sign of integration. The usual criterion for the possibility of differentiating
under the sign of integration, that is, Leibnitz’s rule of integration39 [2, Ch. 4.9], does not apply to
improper integrals. However, in our development the integrand, that is, f(r′, r) = ρ(r′)/|r−r′| is
infinitely differentiable outside the singularities. Hence, the use of Leibnitz’s rule of integrations
is warranted over the principal volume of integration V \ Vδ.

In the development we will need the well known result that the attraction of a homogeneous
sphere with radius a and constant mass density ρ(r′) = ρ at an interior point (r < a) is toward
the center, and varies as the distance from the center [3, Ch. 1,p. 19]. When evaluated at the
origin this relationship can be expressed by

U(r) = −2
3
πρ

{
r2, r < a,

−a3

r , r ≥ a,
(F.F.2a)

F(r) = −4
3
πρ

{
rr, r < a,
a3

r2 r, r ≥ a,
(F.F.2b)

∂2

∂xi∂xj
U(r) = −4

3
πρ

{
δij , r < a,

−2a3

r3 δij , r ≥ a,
(F.F.2c)

∇ ·F(r) = −4
3
πρ

{
1 r < a,

−2a3

r3 δij , r ≥ a,
(F.F.2d)

∇× F(r) = 0. (F.F.2e)

These expressions may also readily be deduced from (F.F.1). What is required is knowledge of
the variation of F(r) with r for an inhomogeneous source (mass) distribution.

The development will use the following central theorem on improper volume integrals40 [4,
Sec. 55].

39In our extended use of the Leibnitz’s formula we consider differentiation of a proper definite volume integral
where the source coordinates r′ are the integration variables and the field position coordinates r are integration
parameters [2, Ch. 4.9]. Let the integrand f(r′, r) be continuous with r and have continuous partial derivatives
∂f/∂xi for r′ ∈ V \ Vδ and r ∈ Vf where V \Vδ is the principle volume of integration excluding every singularity

in the integrand. Then for r ∈ Vf , ∂
∂xi

∫∫∫
V \V

δ

f(r′, r) dV ′ =
∫∫∫
V \V

δ

∂f(r′,r)

∂xi
dV ′. If in addition the second-order partial

derivative ∂2f(r′, r)/∂xi∂xj is continuous with r then ∂
∂xi∂xj

∫∫∫
V \V

δ

f(r′, r) dV ′ =
∫∫∫
V \V

δ

∂f(r′,r)

∂xi∂xj
dV ′. The extension

to vector-valued functions is straight forward.
40If the Riemann integral41 fails to exist, one may still be able to obtain a value by treating the integral as an

improper integral. In particular we are dealing with a point discontinuity at r = r′.
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Theorem 4. Let V be a finite region and R = |r− r′| the distance between the (source) element
of volume dV ′ at r′ and a fixed (field) point P at r inside or on the boundary of V . The integral∫

V

1
|r − r′|β dV ′ (F.F.3)

is convergent if β is a positive constant less than 3.

Remark. This theorem ensures convergence of the integral in a large class of problems encountered
in physics. If P is outside V the integral is convergent for all β > 0. Hence, the problem addressed
is only of concern when evaluating fields inside the source region. Also recalling that R−1, R−2

and R−3 enter in the expression for Ψ, ∂Ψ/∂xi and ∂2Ψ/∂x2
i respectively explains why special

considerations prevails in the second order differentiation case.

From [1, Ch. 2] the following theorems are involved:

Theorem 5. If Ψ(r, t) and its time derivative ∂Ψ(r, t)/∂t are continuous and bounded functions
of r and t, then

∂

∂xi
lim
δ→0

∫
V \V

δ

Ψ(r′, t− |r−r′|
c )

|r − r′| dV ′

= lim
δ→0

∫
V \Vδ

∂

∂xi

[Ψ(r′, t− |r−r′|
c )

|r − r′|
]
dV ′.

(F.F.4)

Theorem 6. If Ψ(r, t) and its first and second order time derivative ∂Ψ(r, t)/∂t, ∂2Ψ(r, t)/∂t2

are continuous and bounded functions of r and t, and Ψ(r, t) is Hölder continuous in r and for
all t, then

∂2

∂xi∂xj
lim
δ→0

∫
V \V

δ

Ψ(r′, t− |r−r′|
c )

|r − r′| dV ′

= lim
δ→0

∫
V \Vδ

∂2

∂xi∂xj

[Ψ(r′, t− |r−r′|
c )

|r − r′|
]
dV ′ − 4

3
πΨ(r, t)δij .

(F.F.5)

The results of Theorem 5 - 6 will be used for the calculation of the volume integral expression
for the electric and magnetic field and the pressure and velocity fields.

An arguable simpler proof of Theorem 5 - 6 is provided. The classical work by Kellogg [3] The
extension to the vector function case is straight forward provided that the assumptions above
holds component wise.

F.F.3 First-order Derivatives of Spacial Potential Functions

The source volume is divided into three non overlapping regions V = V \ V S
Σ ∪ V S

Σ ∪ V S
δ where

V S
Σ is a sphere about P0 lying in V and circumscribing the smaller sphere V S

δ . V \ V S
Σ is the

remaining part of the V . The superscript S on V S
Σ and V S

δ signifies the spherical structure of
these volumes.

From the principle of superposition we have

U(r) = UV \V S
Σ

(r) + UV S
Σ

(r) + UV S
δ

(r), (F.F.6)
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where the subscript signifies the contribution region.

The proof of the theorem will be conducted in the following steps [3, Ch. VI.3], [2, Ch. 6.26]:

➀ Create the following integral quantities

I(Δxi) = IΔ(Δxi)− I∂(Δxi) (F.F.7a)

where

IΔ(Δxi) =
U(r)|r=r0+ΔxjΔx̂j

− U(r0)|r=r0

Δxj
(F.F.7b)

and

I∂(Δxi) =
∫∫∫

V

(
∂

∂xi

ρ(r′)
|r − r′|

)∣∣∣∣
r=r0

dV ′. (F.F.7c)

Hence, I is the difference between the difference coefficient IΔ and the differential operator
brought inside the sign of integration I∂ both evaluated at P0 at position r0.
Check if the integral I(Δxi) is convergent.

➁ If convergence is assured proceed in the next step item ➂ else construct a new source
distribution function ρ(r′) � ρ(r′)− ρ(r′0) and go back to Equation ➀.

➂ Verify for consistency that I(0) = 0.

➃ Prove that I(Δxi) is a continuous function of Δxi. This is accomplished by breaking the
region of integration i.e., the source region into two, such that in the first region V \Vδ, the
integrand is a bounded density times a continuous function of all field coordinates r, and
that the integral over the second region Vδ with center in P0 that also confines P vanishes
with the maximum chord of the region. The integral over V \ Vδ is therefore continuous
in r, thus restricted. It should then be proved that the integral over the sphere can be
made arbitrary small be restricting the radius of the sphere δ, uniformly as to r. Then
the existence of the partial derivative of the volume integral has been made. Moreover, its
value equals I∂ .
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The first-order partial derivative of (F.F.7b) with respect to xi, if it exists, is defined as

IΔ(Δxi) = lim
Δxi→0

U(r)|r=r0+ΔxiΔx̂i
− U(r0)|r=r0

Δxi

= lim
Δxi→0

(∫∫∫
V S

δ

ρ(r′)
|r−r′| dV ′

)∣∣∣∣
r=r0+ΔxiΔx̂i

−
(∫∫∫

V S
δ

ρ(r′)
|r−r′| dV ′

)∣∣∣∣
r=r0

Δxi

as the integration variables are the source coordinates Δxi can be brought inside the sign of
integration yielding

IΔ(Δxi) = lim
Δxi→0

∫∫∫
V S

δ

[
1

Δxi

(
ρ(r′)

|r0 + ΔxiΔx̂i|
− ρ(r′)
|r0 − r′|

)]
dV ′.

(F.F.8)

Actually, piece-wise continuity in ρ(r′) is sufficient.

F.F.4 Second-order Derivatives of Spacial Potential Functions

The proof of the theorem will be conducted in the following steps [3, Ch. VI.3], [2, Ch. 6.26]:

➀ Create the following integral quantities

I(Δxj) = IΔ(Δxj)− I∂(Δxj) (F.F.9a)

where

IΔ(Δxj) =
∂

∂xi
U(r)|r=r0+ΔxjΔx̂j

− ∂
∂xi

U(r0)|r=r0

Δxj
(F.F.9b)

and

I∂(Δxj) =
∫∫∫
V S
Σ

(
∂2

∂xi∂xj

ρ(r′)
|r − r′|

)∣∣∣∣
r=r0

dV ′. (F.F.9c)

Hence, I is the difference between the difference coefficient IΔ and the differential operator
brought inside the sign of integration I∂ both evaluated at P0 at position r0.
Check if the integral I(Δxj) is convergent.

➁ If convergence is assured proceed in the next step item ➂ else construct a new source
distribution function ρ(r′) � ρ(r′)− ρ(r′0) and go back to Equation ➀.

➂ Verify for consistency that I(0) = 0.
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➃ Prove that I(Δxj) is a continuous function of Δxj . This is accomplished by breaking the
region of integration i.e., the source region into two, such that in the first region V \Vδ, the
integrand is a bounded density times a continuous function of all field coordinates r, and
that the integral over the second region Vδ with center in P0 that also confines P vanishes
with the maximum chord of the region. The integral over V \ Vδ is therefore continuous
in r, thus restricted. It should then be proved that the integral over the sphere can be
made arbitrary small be restricting the radius of the sphere δ, uniformly as to r. Then
the existence of the partial derivative of the volume integral has been made. Moreover, its
value equals I∂ .

The second-order partial derivative of (F.F.9b) with respect to xi and xj , if it exists, is defined
as

IΔ(Δxi) = lim
Δxj→0

∂
∂xi

U(r)|r=r0+ΔxjΔx̂j
− ∂

∂xi
U(r0)|r=r0

Δxj

= lim
Δxj→0

∂
∂xi

(∫∫∫
V S
Σ

ρ2(r′)
|r−r′| dV ′

)∣∣∣∣
r=r0+ΔxjΔx̂j

− ∂
∂xi

(∫∫∫
V S
Σ

ρ2(r′)
|r−r′| dV ′

)∣∣∣∣
r=r0

Δxj

due to Leibnitz’s rule of integration the first-order partial differentiation can be brought inside the
sign of integration. The same applies to Δxj as integration variables are the source coordinates
yielding

= lim
Δxj→0

∫∫∫
V S
Σ

[(
1

Δxj

∂

∂xi

ρ2(r′)
|r − r′|

)∣∣∣∣
r=r0+ΔxjΔx̂j

− ∂

∂xi

( ρ2(r′)
|r − r′|

)∣∣∣∣
r=r0

]
dV ′

insertion of (F.E.11b) yields

= lim
Δxj→0

∫∫∫
V S
Σ

[
1

Δxj
ρ2(r′)

(
− xi − x′

i

|r − r′|3
∣∣∣
r=r0+ΔxjΔx̂j

+
xi − x′

i

|r − r′|3
∣∣∣
r=r0

)]
dV ′

by variable substitution r′Σ = r′ − r0 we obtain

= lim
Δxj→0

∫∫∫
V S
Σ

[
1

Δxj
ρ2(r′Σ)

( x′
Σi
−Δxjδij

|r′Σ + ΔxjΔx̂j|3
−

x′
Σi

(r′Σ)3
)]

dV ′
Σ.

(F.F.10)
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Now |r′Σ +ΔxjΔx̂j|3 = ((r′Σ)2 +Δx2
j −2r′ΣΔxj cosϕ)3/2 where ϕ is the direction angle from Δx̂j

to r′Σ

= lim
Δxj→0

∫∫∫
V S
Σ

[
1

Δxj
ρ2(r′Σ)

( (x′
Σi
−Δxjδij)

(
(r′Σ)2 + Δx2

j − 2r′ΣΔxj cosϕ
)−3/2 − x′

Σi

(r′Σ)3
)]

dV ′
Σ

from Binomial series expansion we obtain

= lim
Δxj→0

∫∫∫
V S
Σ

[
1

Δxj
ρ2(r′Σ)

( (x′
Σi
−Δxjδij)

(
1 + 3Δxj

r′
Σ

cosϕ− 3
2

(Δxj

r′
Σ

)2
)
− x′

Σi

(r′Σ)3
)]

dV ′
Σ

= lim
Δxj→0

∫∫∫
V S
Σ

[
1

Δxj
ρ2(r′Σ)

(
−Δxjδij

(r′Σ)3
+

3x′
Σi

Δxj cosϕ

(r′Σ)4
−

3Δx2
j cosϕ

(r′Σ)4
−

3
2x′

Σi
Δx2

j

(r′Σ)5
−

3
2x′

Σi
Δx2

j

(r′Σ)5
)]

dV ′
Σ

= lim
Δxj→0

∫∫∫
V S
Σ

[
ρ2(r′Σ)

(
− δij

(r′Σ)3
+

3x′
Σi

cosϕ

(r′Σ)4
− 3Δxj cosϕ

(r′Σ)4
−

3
2x′

Σi
Δxj

(r′Σ)5
+

3
2Δx2

j

(r′Σ)5
)]

dV ′
Σ

finally, from using x′
Σj

= r′Σ cosϕ we get

=
∫∫∫
V S
Σ

[
ρ2(r′Σ)

(
− δij

(r′Σ)3
+

3x′
Σi

x′
Σj

(r′Σ)5
)]

dV ′
Σ

(F.F.11)

I∂(Δxi) =
∫∫∫
V S
Σ

∂2

∂xi∂xj

(
ρ2(r′)
|r − r′| dV ′

)∣∣∣∣
r=r0

=
∫∫∫
V S
Σ

[
ρ2(r′)

(
− 1
|r0 − r′|3 δij + 3

(x0i − x′
i)(x0j − x′

j)
|r0 − r′|5

)]
dV ′

by variable substitution r′Σ = r′ − r0 we obtain

=
∫∫∫
V S
Σ

[
ρ2(r′Σ)

(
− 1

(r′Σ)3
δij + 3

x′
Σi

x′
Σj

(r′Σ)5
)]

dV ′
Σ

Then from (F.F.7a), (F.F.11) and (F.F.12) we see that I(0) = 0. Moreover, the integral I(Δxi)
is convergent as both the integral IΔ(Δxi) and I∂(Δxi) are convergent. Hence, IΔ(Δxi) tends
to I∂(Δxi) with Δxj . It remains to prove that I(Δxj) is continuous in P (r) at P (r0).
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The is derived in somewhat different ways in [3, Ch. VI.3] and [4, Sec. 55]. Direct application of
(F.F.1a) and using (F.E.13a) we obtain

∂2

∂xi∂xj
U(r)|r=r0 =

∂2

∂xi∂xj

∫∫∫
V

ρ(r′)
|r − r′| dV ′

=
∫∫∫

V

∂2

∂xi∂xj

ρ(r′)
|r − r′| dV ′

=
∫∫∫

V

[
ρ(r′)

(
− 1
|r − r′|3 δij + 3

(xi − x′
i)(xj − x′

j)
|r − r′|5

)]
dV ′

(F.F.12)

This integral, however, according to Theorem 4 is in general not defined as the nominator in the
first term of the integrand is non vanishing while the denominator varies with |r − r′|−3. The
second term in the integrand varies slower with r in the limit r → 0. The remedy to this is to
force the nominator i.e., ρ(r′) to zero. This can be accomplished by separating the mass density
into two components and using the principle of superposition. Moreover, it will prove useful to
divide the source space V into three parts.

One seeks a value of the integral by a limit process limδ→0

∫∫∫
Vδ

dV ′ = limδ→0

∫ r

δ

∫ π

0

∫ 2π

0
dr′ dθ′ dφ′.

[2, Ch. 4.8] A small inner sphere σ with radius δ is circumscribing the source point r0. A
larger sphere Σ also with center in r0 is Hence, ρ(r′) = ρd(r′) + ρa(r′) where ρd(r′) = ρd =
ρ(r′0), ρd(r) = ρ(r′) − ρ(r′0). As ρd is homogeneous all over the sphere we readily see from
(F.F.2a) that ∂2

∂xi∂xj
Ud(r) = − 4

3πρδij . Moreover, we see that in order to evaluate the integral
with the vanishing mass distribution at position r0 it is not sufficient. We must also ensure that
the source distribution does not increase to rapidly with r in the neighborhood of r0. This can
be accomplished by assuming that the source distribution satisfy the Hölder condition.

Definition F.2. A real-valued function ρ(r1) in a metric space (ΩH , d) of coordinates r1 is said
to satisfy a Hölder continuous or satisfies a Hölder condition at points P0(r0) inside ΩH , when
there are positive real constants A, α, rH , such that, ∀r1, r0 ∈ ΩH , |ρ(r1)− ρ(r0)| ≤ Ad(r1, r0)α.

Remark. The usual Euclidean distance measure is used as metric distance, that is, | · | is applied
here. The Hölder condition is stronger than continuity for all positive α and weaker than differ-
entiability if α < 1. Here rH denotes the boundary for the Hölder condition, that is, the distance
to the closest point on P0 where the Hölder condition no longer is satisfied.

From Theorem 4 and Definition F.2 we can now formulate the following Lemma that suits our
development

Lemma 1. Let V, r, r′ and dV ′, P be defined as in Theorem 4 and let f(r′) be a function. Then
the integral ∫

V

f(r′)
|r − r′|β dV ′ (F.F.13)

is convergent if γ = β − α is a positive constant less than 3.
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F.F.5 First-order Derivatives of Space-Time Potential Functions

Now invoking the requirement on Hölder continuity we recognize that

∂

∂x′
i

ψ(r′, t′−|r−r′|/c) =
{ ∂

∂x′
i

ψ
}(1)(r′, t′−|r−r′|/c)+

{ ∂

∂x′
i

ψ
}(2)(r′, t′−|r−r′|/c), (F.F.14)

where

{ ∂

∂x′
i

ψ
}(1)(r′, t′ − |r − r′|/c) =

∂

∂x′
i

ψ(r′, t)|(,t=t′−|r−r′|/c) (F.F.15a)

=
∂

∂xi
ψ(r, t)|(r=r′,t=t′−|r−r′|/c) (F.F.15b)

and

{ ∂

∂x′
i

ψ
}(2)(r′, t′ − |r − r′|/c) =

∂

∂x′
i

ψ(r, t′ − |r − r′|/c)|(r=r′,) (F.F.16a)

= − ∂

∂xi
ψ(r′, t′ − |r − r′|/c), (F.F.16b)

where the notion |(,t=t′−|r−r′|/c) indicates that the second argument is fixed at time t = t′ −
|r − r′|/c while differentiation takes place on the first argument. Likewise |(r=r′,) indicates that
the first argument is fixed at position r = r′ while differentiation takes place on the second
argument. Hence, as the time is fixed in (F.F.15a) this effectively corresponds to the static case
and is governed by Kellogg’ theorems.

The technique employed is to break up the region of integration into two, such that the integral
over the first, say

∫
Vδ

, vanishes with the maximum chord of the region uniformly as to P , and
that in the second region, say

∫
V \Vδ

, the integrand is a bounded density times a continuous
function for all the coordinates of P and Q. The procedure in the proof is as follows. First the
difference in second-order differential between a varying field point and a fixed fields point that
coincide with the center of the sphere is established merely be assuming that the differentiation
actually can be carried out. Next it is demonstrated that this difference vanishes for Δr = 0.
Then it is shown that the difference exhibits continuity for field points P uniformly approaching
the origin at P0.
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G. SPHERICAL NEAR-FIELD TESTING

G.1 Introduction

In the antenna community near-field scanning techniques have been used extensively over the
past 30 years with the aim of accurately determining the radiation characteristic of an antenna
or radar cross section pattern of a scatter. In the acoustical community near-field scanning has
primarily been exploited to measure noise source and musical instrument characteristics [29].

In both the electrical and the acoustical domain the field that is measured in the near-field1 of
the antenna, noise source or scatter is transformed to field positions exterior to the scan surface.
In particular far-field radiation pattern has been obtained in spherical near-field testing (SNFT)
facilities [7]. Most of the theoretical framework has been established in the frequency domain
where one frequency index is analyzed at the time. With the aim of more efficiently to deal with
broad band radar system near-field scanning techniques were formulated for planar scanning
[10], [11], [12] and for spherical near-field scanning for electromagnetic fields in the time domain
[9]. In acoustics SNFT is relevant for measurement of directional patterns of electroacoustic
transducers, e.g., loudspeakers and microphones, but also for the determination of the acoustical
scattering properties of various objects. In acoustics the signals are notoriously broad band and
noise spikes are often encountered. An advantage of time-domain near-field measurements over
frequency-domain near-field measurements is a reduction of the measurement time required for
pulsed radiators as wide-band and out of band frequency response can be obtained from a single
scan in the time-domain near-field. Moreover, as reported in [12, Ch. 8] measurements errors due
to finite size of the scan plane can be removed by time-gating with time-domain measurements.

In the related scientific field of acoustic holography the use of a finite size scan plan in frequency-
domain measurements of a broad-beam noise source may lead to large errors at large angle
from broadside [14]. The effects of scan plane truncation is completely absent with the SNFT

as the measurement surface (sphere) is completely confining the source. The SNFT employs
the fact that the antenna radiation may always be expressed in terms of a truncated expansion
in electromagnetic spherical waves satisfying Maxwell’s equations cf. section F.5 on page 665.
Similar considerations apply to acoustical noise emission where the spherical wave expansion
is governed by fundamental laws of linear acoustics, that is, the continuity in fluid mass and
moment densities cf. section F.3 on page 625. Thus, in this respect, time-domain near-field
spherical scanning is advantageous over time-domain planar near-field scanning. However, the
time-domain spherical near-field formulas are much more complicated than the corresponding
planar formulas and thus much more difficult to implement.

There has therefore within the acoustic community also been interests to extend spherical near-
field scanning to the time-domain [8]. The implementation of time-domain near-field measure-

1For highly specialized antennas the scan surface is in the near-field of the antenna. However, the techniques
apply also to scan surfaces outside the near-field.
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ments in the laboratory has been hindered in the past by the need for rigorous probe-corrected
formulation in the time-domain. In a particular application which of the frequency-domain and
time-domain methods are in favor depends on the bandwidth of the system. Owing to the avail-
ability of mathematical models planar-, circular-cylindrical and spherical surfaces have hitherto
almost exclusively been used as scan surface near-field measurements.

In this chapter it will be demonstrated that the software developed for electromagnetic measure-
ments with some effort can be adapted to the acoustical domain.

The following references provide supplementary information relevant for this chapter: [22, Ch. 12],
[2, 4–6, 15].

G.2 Spherical Scanning

In Figure G.1 three Cartesian coordinate systems, (xS , yS, zS), (xA, yA, zA) and (xP , yP , zP ), for
space, the unit under test (UUT) and the probe respectively.

The unit (antenna) coordinate system is aligned with the xA−, yA− and zA-axis pointing in
upwards-, port- and aft directions respectively

In spherical antenna measurements the E-Plane is defined as the φ = 0 plane and H-Plane is
similarly defined as φ = π/2 plane. Referring to Figure G.1 the E-Plane scan corresponds to a
θA cut (great circle cut) with φA = 0. Similarly, the H-Plane scan corresponds to a θA cut (great
circle cut) with φA = π/2. In Figure G.1 the scan angles, ψ1 and ψ2, that refer to E-Plane and
H-Plane angles respectively.

ψ1 =

{
θA, φA = 0,

θA − π, φA = π
, (G.2.1a)

ψ2 =

{
θA, φA = π/2,

θA − π, φA = 3π/2.
(G.2.1b)

The scan angles will be bounded by ψ1, ψ2 ∈ [−π; π].

G.3 Scalar Homogeneous Helmholtz Equation in Spherical Coordinates

Acoustical and electromagnetic fields may be expanded into spherical waves in source-free re-
gions of space limited by spherical surfaces centered at the origin of a spherical coordinate system
(r, ϑ, ϕ). The series representations are particular attractive when the directional density func-
tion may be adequately represented by a relatively small number of harmonics so that the series
terminate after a correspondingly small number of terms.

The scalar homogeneous Helmholtz equation (F.10.2) on page 676 in the scalar field ψ(r, ϑ, ϕ)
is written in spherical coordinates (applicable to any of the spherical coordinate systems in
Figure G.1) as

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sinϑ

1
∂ϑ

(
sin ϑ

∂ψ

∂ϑ

)
+

1
r2 sin2 ϑ

∂2ψ

∂2ϕ
+ k2ψ = 0, (G.3.1)
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where r =
√

x2 + y2 + z2, ϑ = tan−1(1/z)
√

x2 + y2, ϕ = tan−1(y/x).

The scalar homogeneous Helmholtz equation (G.3.1) separates as follows: ψ(r, ϑ, ϕ) = Ξ(r)Θ(ϑ)Φ(ϕ),

1
r2

∂

∂r

(
r2 ∂Ξ

∂r

)
−

[
k2 − n(n + 1)

r2

]
Ξ = 0 (G.3.2a)

1
sin ϑ

1
∂ϑ

(
sinϑ

∂Θ
∂ϑ

)
+

[
n(n + 1)− m2

sin2 ϑ

]
Θ = 0 (G.3.2b)

∂2Φ
∂2ϕ

+ m2Φ = 0, (G.3.2c)

where Ξ(r) is the amplitude function of the radius, Θ(ϑ) denotes the polar function, Φ(ϕ)
represents the azimthal function respectively.

In the subsequent subsections we will provide more details concerning these separate functions.

G.3.1 Scalar Homogeneous Helmholtz Equation Radial Function

The solution to the radial factor Ξ(r) in (G.3.2a) on the current page is constituted by spherical
Bessel functions of the first, second, third and fourth kind all of order n [21, Ch. 7.2]. Other
names for these functions exist in the literature. The preferred name in this report is found in
(G.3.3) on this page.

Following the procedure in [7] we will for the ease of the expressions to come use a common radial
function Ξ(c)

n (r) where the upper index (c) specify the kind of the spherical Bessel function. In
(G.3.3) the spherical Bessel functions of order n, that is, jn(ζ), nn(ζ), h

(1)
n (ζ), h

(2)
n (ζ) are listed

Ξ(1)
n (ζ) = j(

nζ), spherical Bessel function, (G.3.3a)

Ξ(2)
n (ζ) = n(

nζ), spherical Neumann function, (G.3.3b)

Ξ(3)
n (ζ) = h(1)

n (ζ) = jn(ζ) + ınn(ζ), spherical Hankel function of first kind, (G.3.3c)

Ξ(4)
n (ζ) = h(2)

n (ζ) = jn(ζ)− ınn(ζ), spherical Hankel function of second kind. (G.3.3d)

Hence, the four spherical Bessel functions listed in (G.3.3) are constituted by the spherical Bessel
and Neumann functions. Thus, the spherical Hankel functions are constructed from the spherical
Bessel and Neumann functions. It is important to note that the upper index (c) for c = 1 and
c = 2 indicates standing waves, while c = 3 and c = 4 represent an outward traveling wave and
an inward traveling wave respectively.

The spherical Bessel function jn(ζ) and spherical Neumann function nn(ζ) in turn are directly
derived from the (ordinary) Bessel function J

n+
1
2
(ζ) and from the (ordinary) Neumann function

N
n+

1
2
(ζ) both of order n + 1

2 , that is,
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jn(ζ) =
√

π

2ζ
J

n+
1
2
(ζ), (G.3.4a)

nn(ζ) =
√

π

2ζ
N

n+
1
2
(ζ). (G.3.4b)

G.3.2 Scalar Homogeneous Helmholtz Equation Polar Function

Now turning to the second partial differential equation (G.3.2b) in the polar function Θ(ϑ) for
which the solutions are the associated Legendre functions P m̆

n (z)2 [20, Sec. 10.3]:

P m̆
n (cosϑ) = sinm̆ ϑT m̆

n−m̆(cos ϑ), (G.3.5)

where T β
α (z) represents Gegenbauer polynomials of real parameters α, β. The Legendre functions

are finite over the range 0 ≤ ϑ ≤ π only if the order n is an integer that is equal to or greater
than m̆. Requirements from the solution to the azimuthal function discussed in subsection G.3.3
on the current page necessitates m to take integer values only. Legendre polynomials are closely
associated with physical phenomena for which spherical geometry is important. For our purpose,
however, both parameters α, β will be zero or take integer values.

The spherical Bessel functions and the associated Legendre functions belong to the class of
so-called special functions [17] [19, Ch. 6]. Generating functions and recurrence formulas for
the Gegenbauer polynomials and the associated Legendre functions can be found, e.g., in [19,
Ch. 6]. Generating functions and asymptotic expressions for spherical Bessel functions in the
small argument limit (ζ → 0) or large argument limit (ζ → ∞) are tabulated in, e.g., [20,
Sec. 10.3].

Nowadays, however, C, FORTRAN or MATLAB® based software packages including such special
functions are freely available on the World Wide Web (WWW).

D(ϑ, ϕ)Y m̆
n (ϑ, ϕ) = P m̆

n (cosϑ)e−ım̆ϕ. (G.3.6)

The functions P m̆
n are associated Legendre functions and for where n ∈ N.

G.3.3 Scalar Homogeneous Helmholtz Equation Azimuthal Function

Finally, the solutions of the third partial differential equation (G.3.2c) in the Φ(ϕ) angle function
is readily obtainable as cos(m̆ϕ) and sin(m̆ϕ). If no boundaries are along the planes ϕ = constant,
requirement of continuity and periodicity of Φ require that m̆ ∈ N∗ where N∗ is the set of 0 and
all natural numbers N. In addition as discussed above the Legendre functions Pm

n (cos ϑ) are
only finite over the range ϕ ∈ [0, π] when m̆ ≤ n. Hence, the upper index m̆ takes the values
m̆ ∈ [0, 1, . . . , n− 1, n].

The corresponding scalar Laplace’s equation is the special case of (G.3.1) where k = 0. In this
case the radial functions rn and r−n−1 replace the spherical Bessel functions in the solution to
Ξ(r) and then no upper limit on m̆ exists, that is, m̆ ∈ N∗.

2m̆ will be used here as m is reserved for a slightly different definition later (G.3.7)
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The ϕ-variation of a mode depends on the azimuthal index m̆ which indicates the number of
oscillations in the interval ϕ ∈ [0, 2π). For m �= 0 the field of a mode rotates around the z-axis
in the positive sense (right-hand) for m > 0 and negative sense for m̆ < 0. The ϑ-variation of
a mode depends on both on the polar index n and m̆. It has the form of a standing wave with
zeros spaced non-equidistantly in the interval ϑ ∈ [0, π]. The zeros are more closely spaced in
the neighborhood of the equatorial plane (ϑ ≈ π/2) than around the poles (ϑ→ 0+, ϑ→ π−).

We will also use the exponential form eımϕ form instead of the double-index e-mode for cosmϕ
and o for sinmϕ used in [21, Ch. 7]. The exponential form is more convenient in connection
with the rotation of spherical waves and the exponential form is more easily adapted to the fast
spherical Fourier transform (FSFT). Moreover, expressions using the cos, sin formulas are related
to the exponential form through the Euler equation

Y m̆
n (ϑ, ϕ) = Yemn(ϑ, ϕ) + ıYomn(ϑ, ϕ) = eımϕPm

n (cosϑ), (G.3.7)

where the upper (azimuthal) index m takes the values m ∈ [−n,−n + 1, . . . , 0, . . . , n− 1, n].

G.3.4 Scalar Homogeneous Helmholtz Equation Summary

In summary the generating functions (omitting the longitudinal subscript l) can expressed either
in cos( · ), sin( · ) form or in exponential form as

ψ
(c)
e
om̆n

(r, ϑ, ϕ) = Ξ(c)
n (kr)P m̆

n (cos ϑ)cossinm̆ϕ (G.3.8a)

ψ(c)
mn(r, ϑ, ϕ) = Ξ(c)

n (kr)P |m|
n (cosϑ)eımϕ. (G.3.8b)

The spherical Hankel functions of the first kind, or any linear combination of them, do not satisfy
the homogeneous Helmholtz equation (G.3.1) at r = 0, unless their coefficients are zero and thus
ψ(r) = 0. As any field can be decomposed into the sparable spherical-wave solutions that satisfy
the Helmholtz equation outside the source region and the outgoing wave condition (F.10.18) have
a radial dependence given by spherical Hankel functions of the first kind. This also explains why
the uniqueness theorem for the scalar Helmholtz equation.

G.4 Vector Homogeneous Helmholtz Equation in Spherical Coordinates

The eigenfunction solution for the vector Helmholtz equation is obtained from the corresponding
scalar equation as discussed in subsection F.11.1. It would prove useful to introduce yet another
index s that indicates the (L,M,N)-type of the vector eigenfunction. We will let s take the
value s = 0, 1 and 2 in the L, M and N cases respectively. Then by insertion in (G.3.8) we get

ψ
(c)
e
om̆n

(r, ϑ, ϕ) = Ξ(c)
n (kr)P m̆

n (cosϑ)cossinm̆ϕ (G.4.1a)

ψmn(c)(r, ϑ, ϕ) = Ξ(c)
n (kr)P |m|

n (cos ϑ)eımϕ. (G.4.1b)
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G.4.1 Field Decomposition

The individual components in turn can be found from (G.3.8a) on the facing page for the cos
sinmϕ

which is also provided in [27, Sec. 7.11]. However, we will proceed with the eımϕ form.

From subsection F.11.1 the scalar fields ψL, ψM and ψN coincide and are identical to the free-
space solution ψ(r). We will need the gradient operator expressed in spherical coordinates

∇ψ(r) = r̂
∂ψ(r)

∂r
+

ϑ̂

r

∂ψ(r)
∂ϑ

+
ϑ̂

r sin ϕ

∂ψ(r)
∂ϕ

. (G.4.2)

Then be applying (F.11.6) on page 681 to (G.3.8b) using (G.4.2) we readily obtain

l(c)mn(r, ϑ, ϕ) = ∇ψ(r)

=
d
dr

Ξ(c)
n (kr)P |m|

n (cosϑ)eımϕr̂

+
1
r
Ξ(c)

n (kr)
d
dϑ

P |m|
n (cosϑ)eımϕϑ̂

+
ım

r sin ϑ
Ξ(c)

n (kr)P |m|
n (cos ϑ)eımϕϕ̂,

(G.4.3)

m(c)
mn(r, ϑ, ϕ) = ∇× (rψM (r)r̂)

= ∇(rψM (r)) × r̂

=
ım

sin ϑ
Ξ(c)

n (kr)P |m|
n (cosϑ)eımϕϑ̂

−Ξ(c)
n (kr)

d
dϑ

P |m|
n (cos ϑ)eımϕϕ̂,

(G.4.4)

and

n(c)
mn(r, ϑ, ϕ) =

1
k
∇×∇× (rψN (r)r̂)

= krψN (r)r̂ +
1
k
∇
(

∂(rψN (r))
∂r

)
=

n(n + 1)
kr

Ξ(c)
n (kr)P |m|

n (cosϑ)eımϕr̂

+
1
kr

d
d(kr)

(
krΞ(c)

n (kr)
) dP

|m|
n (cos ϑ)

dϑ
eımϕϑ̂

+
1
kr

d
d(kr)

(
krΞ(c)

n (kr)
) ımP

|m|
n (cosϑ)
sin ϑ

eımϕϕ̂.

(G.4.5)

Then the electrical field is obtained as the sum over the fourfold set of spherical generating
functions

E(r, ϑ, ϕ) =
4∑

c=3

2∑
s=1

∞∑
n=1

n∑
m=−n

Q(c)
smnF(c)

smn(r, ϑ, ϕ). (G.4.6)



714 G. Spherical Near-Field Testing

where the fourfold set of excitation coefficients owing to mutual orthogonality can be found by
integration over the sphere

Y m
n (ϑ, ϕ) =

√
2n + 1

4π

(n−m)!
(n + m)!

Pm
n (cosϑ)e−ımϕ (G.4.7)

Cm
nω

=
∫ 2π

0

∫ π

0

pω(ar̂)(Y m
n )∗(ϑ, ϕ) sin ϑ dϑ dϕ. (G.4.8)

Since the series of (G.4.6) has an infinite number of nonzero terms, the spatial harmonic expansion
is not a very efficient way of representing a single plane wave.

In [7] the following empirical formula for the number of spherical harmonics required in the
expansion is provided.

N = �ka&+ n1, (G.4.9)

where the quantity n1 depends on the application. However, as both the electromagnetic and
acoustical domain shares concepts such as orthogonal modes, cut-off, propagation, evanescent-,
Fresnel- and Fraunhofer regions, it then seems not unreasonable to expect the truncation constant
N defined in (G.4.9) also to be representative in acoustic SNFT measurements. Moreover, as
stated in [7, Ch. 2] the spherical wave expansions of different source distributions show similar
behavior. In SNFT measurements a is the radius of the minimum sphere. In the case of the
confined feedforward (CFF) topology a represents the radius of the confining sphere. The ”floor”
operator �( · )& takes the largest integer smaller than or equal to its argument.

G.4.2 Transmission

In SNFT the main problem is to determine receiving and transmitting coefficients for an antenna
from measurements in its near-field. In SNFT measurement errors due to various imperfections
such as non-perfect polarization of the probes, finite mechanical alignment accuracy, receiver
nonlinearity and drift must be assessed. In particular the influence of omitting probe correction
should be considered. Another question is then to what extent such error sources will influence
the performance of an active control system?

The following transmission formula is obtained

w(A, χ, θ, φ) =
∑
smn

μ=±1

vTsmneımφdn
μm(θ)eıμχPsμn(kA), (G.4.10)

where we for notational convenience have replaced
∑4

c=3

∑2
s=1

∑∞
n=1

∑n
m=−n by

∑
smn

μ=±1
and

where the accumulated index J in turn is defined by

J = 2N(N + 2) (G.4.11)

The quantities Psμn(kA) where Jθ where Jφ
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In the subsequent text we will describe the operation involved in determining the field F(ce)
semene(re, θe, φe)

on a spherical surface that we will refer to as a performance sphere denoted by Sp from the field
F(cx)

sxmxnx(rx, θx, φx) at the positions of the reference sensors.

Note, that an arbitrary sphere Sa with coordinates (ra, θa, φa) can be projected into another
arbitrary sphere Sb from with coordinates (rb, θb, φb) by succession of three operations: rotation,
translation and expansion/compression. The translation operation in general involve translation
along all three axis.

G.4.3 Translation of Spherical Waves

From [7, App. A.3] a spherical wave vector function F
(c1)
s1m1n1(r1, θ1, φ1) upon translation along

the z-axis can be expressed in the new rectangular coordinates (r2, θ2, φ2) as the sum of a s2 = 1
mode and a s2 = 2 mode

F(c2)
s2m2n2

(r2, θ2, φ2) =
s1=2∑
s1=1

∞∑
n1=|m1|

n1 �=0

Cs2n2(c)
s1m1n1

(kA)F(c1)
s1m1n1

(r1, θ1, φ1). (G.4.12)

From [7, App. A.3] we have find the following expression for the translation coefficients with
positive arguments

Cs2m2n2(c)
s1m1n1

(kA) =

√
(2n2 + 1)(2n1 + 1)

n2(n2 + 1)n1(n1 + 1)

√
(n1 + m1)!(n2 −m1)!
(n1 −m1)!(n2 + m1)!

(−1)m1 1
2 ın2−n1

n2+n1∑
p=|n2−n1|

[
ı−p

(
δs1s2

(
n2(n2 + 1) + n1(n1 + 1)− p(p + 1)

)
+ δ3−s2,s1(2ım1kA)

)
,

a(m1, n2,−m1, n1, p)z(c)
p (kA)

]
(G.4.13)

where the spherical Bessel function orders c̆F and c̆C warrant finite solution in the (r1, θ1, φ1)
and (r2, θ2, φ2) rectangular coordinates respectively. These spherical Bessel function orders are
in turn defined by

c̆F =

{
1, r1 < |A|
c, r1 > |A|

(G.4.14)

and

c̆C =

{
c, r1 < |A|
1, r1 > |A|

(G.4.15)

respectively. The linearization coefficient a(m1, n2,−m1, n1, p) in (G.4.13) is determined from

a(m1, n2,−m1, n1, p) = (2p + 1)

√
(n2 + m1)!(n1 −m1)!
(n2 −m1)!(n1 + m1)!

(
n2 n1 p
0 0 0

)(
n2 n1 p
m1 −m1 0

)
.

(G.4.16)
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For negative translation (kA < 0) we can use the following formula

Cs2m2n2(c)
s1m1n1

(−kA) = C
s2m2n2(c)
s2,−m1,n2

(kA). (G.4.17)

However, it should also remarked that arbitrary translations may be accomplished by successive
rotation, axial translation, and inverse rotation.

G.5 Fast Spherical Fourier Transform Techniques

In recent years some mathematical development in field of spherical harmonics and in particular
an exploitation of the processing capabilities provided by the FSFT has been made [1, 13, 16, 18,
28]. Practical applications include spherical microphone arrays [3, 23–26].
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[2] S. J. Elliott and J. Garćıa-Bonito. Active cancellation of pressure and pressure gradient in
a diffuse sound field. Journal of Sound and Vibration, 186(4):696–704, 1995.

[3] N. Epain and E. Friot. Active control of sound inside a sphere via control of the acoustic
pressure at the boundary surface. Journal of Sound and Vibration, 299:587–604, 2007.
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H. APPLIED ACTIVE CONTROL OF FIELDS

H.1 Introduction

The study of the underlying physics of a system subject to active control (AC) is indeed important.
Since, no matter the sophistication of the control hardware employed and the amount of control
software written pure physical considerations based on field theory might reveal that the desired
solution will be deemed to be unsuccessful.

In the design of an AC system it is therefore important at an early stage in design cycle to assess
the physical environment involved. Hence, the analysis should provide a clear picture of whether
we are reasonable in our expectations to the capabilities of the control system or if we are acting
to much against the laws of physics.

In AC two sets of sources are considered. The primary sources represent the unwanted distur-
bances that in general are out of control by the system designer. The primary noise sources are
assumed to be entirely confined to positions exterior to the control volume VC . The secondary
sources, however, provides the designer with a ”hook” to excite secondary fields. Then by an ap-
propriate choice of distribution and excitation of the secondary sources a superposition of equal
amplitude but inverse phase signals a finite zone of quiet is established.

The design of an active noise control system involves several design steps. One of the more
important steps is to determine the number of reference sensors required and to find the best
location of these with respect to the spatial distribution of the primary sources and their spectra
and the position and size of the zones of quite. For example, in AC of sound insufficient spatial
sampling will preclude successful operation of the system at higher frequencies [32], which is also
evident from chapter 2 - 3. For the actuators the number must not be to costly prohibitive and
their excitation within their linear dynamic range.

Moreover, in practical active noise reduction (ANR) systems the control volumes might be subject
to translational movements as well as angular rotations, that is, in roll, pitch and jaw. In addition
some of the primary sources might change position. Hence, the system should be capable of
operating in a space-time-varying environment where the relative positions of primary sources
and control volumes vary with time. Moreover, the control volumes may or may not change
positions relative to the secondary sources. These considerations of course will be application
dependent.

For some time feedforward AC has been applied for the duct case where only two directions
of propagation exist. Accordingly, a reference sensor can be positioned upstream and thereby
provide time-advance information concerning the direct (as opposed to reflected) field. In the
general case, however, the noise sources are uniformly distributed at least in the horizontal plane.
As a consequence no open and shut feedforward reference sensor position exists. With the or-
dinary feedforward multi-channel topology some of the reference sensors will therefore provide
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time-advance information for some of the noise sources while providing time-delayed informa-
tion regarding other noise sources. When applying the confined feedforward (CFF) topology a
sufficient amount of reference sensors shall be used and positioned such that time-advance in-
formation independently of the spatial distribution of the noise sources is provided. In addition
the number of reference sensors required is determined by the level of spatial aliasing that can
be tolerated. Or stated in other words the multiple coherence function (MCOF) must exceed a
value determined by the requirement on ANR performance cf. chapter 2 and Appendix A.

A practical example where the considerations made above are of profound importance is in ANR

active headrest applications. A headrest with active noise control (ANC) can supposedly be build
into the headrest of passenger seat in an aircraft or train thereby leading to improved convenience.
Numerous investigations of the acoustical field properties in active headrest applications have
been made [13, 20, 21, 36].

An important performance figure is the zone of quiet which is the physical volume where the
ANR system yields an attenuation of the sound pressure above a certain specified level. It is to
a first-order approximation found that the spatial extent of zone of quite in pure-tone diffuse
sound field dQZ

10 dB for a single secondary source is approximate of ten’th of a wavelength where
the field points are assumed to follow an arc with center at the position of the secondary source.
Rafaely [35] by means of simulations found that dQZ

10 dB ≈ 0.088λ.

This chapter addresses the problem of causal prediction of sound fields in a control volume from
sampled field point on a surface entirely covering the volume. Expressions in both the time
domain and the frequency domain will be provided. In particular, existing spherical near-field
techniques from Appendix G are adapted to cases where the sources are positioned outside the
spherical scan surface and time-domain field for which the interior field inside the sphere can be
determined. One of the advantage of spherical expansion is that it can be applied to any primary
field.

H.1.1 Chapter Outline

In section H.2 the reference test unit (RTU) that supposedly constitute a framework for the test
and evaluation of methods and techniques developed for active control of sound and vibration
(ACSV) systems will be developed. Then in section H.3 the problem related to AC of whether
either primary, secondary sources or control volumes are subject to dynamic movements is con-
sidered.

H.2 Reference Test Unit

The aim of the RTU is to provide a highly accurately modeled framework with which reliable
and accurate tests and evaluations of the developed theories and methods can take place. For
the development of a RTU for AC purposes an acoustical transparent sphere and an acoustical
semi-transparent-semi-opaque hollow sphere are considered. In Figure H.2 a prototype RTU that
is an acoustical semi-transparent-semi-opaque hollow sphere is shown.

This RTU will be exposed to high sound pressure levels. Most of the energy incident on the sphere
is reflected. A fraction of the incident energy, however, excites the spherical shell into vibrations
which in turn leads to excitation of a sound field that is being radiated into the interior of the
sphere. A number of reference sensors positioned at the inner surface of the shell sense that part
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Fig. H.1: RTU in Noise Chamber Facility.
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of the primary field that is leaked into the interior of the sphere. To a first order this hollow
sphere can be considered as a spherical waveguide which was rigorously described in Appendix G.

It is well known in local AC applications that the near-field characteristics of the secondary source
are very important in determining the zone of quiet. For mathematical ease a monopole or a
piston in an infinite baffle are often used as sound source models. For the RTU design a monopole
that can be place arbitrarily within the sphere will be used as secondary source.

Accordingly we have a system where both the primary (leakage) field and the secondary field
and therefore also the total field can rigourously be determined.

A few error sensors will be installed thereby making provision for performance feedback for use
in an AC system test like for instance the hybrid MIMO confined-feedforward-feedback system
(HMIMOCFFFBS). One or two performance sensors positioned within an interior volume that will
be considered as a zone of quite act to evaluate and verify the achieved performance.

H.3 Non-stationary Primary, Secondary Source and Control Volume Positions
in Space

H.3.1 Moving Primary Noise Sources

This subject has previously been analyzed by Martin [28]. In this work an AC screen composed
of groups (masts) of secondary sources is investigated. The purpose of the system is to obtain
attenuation of noise originating from airplanes landing or taking off, trains and cars etc. within
a control volume in the vicinity of the screen. As is well known ANR performance is sensitive
to secondary source position relative to the primary source. This study confirmed that some of
the masts yield better attenuation than others depending on the relative position of the noise
source. Basically, the mast which viewed from the center of the control area is the most aligned in
azimuth with the noise source can provide the highest attenuation. For the individual secondary
sources within the group it is more difficult to draw any conclusions as lobing effects occur due
to the presence of both incident and reflected waves. The adaptive processing scheme involved
adaptation of each mast. In each group of secondary sources the adaptive filtered signal is feed
to each of the members of the group. Only numerical experiments under rather ideal conditions
i.e., no scattering objects constant velocity target moving on a straight line were made. In might
be possible to track the primary noise source and choose and appropriate control strategy.

H.3.2 Moving Control Volumes

The control volume might be subject to both translatoric movements as well as time-variant
angular coordinates, that is, roll, pitch and yaw movements.

H.3.3 Moving Secondary Noise Sources

The following papers are considered relevant for the completion of this design:

[23] [4] [2] [31] [32] [15] [12] [16] [14] [19] [29] [37] [34] [26] [27] [30] [1] [24] [10] [22] [17] [33] [9]
[8] [5] [7] [3] [6] [25] [10] [22] [18] [11] [38].



H.3. Non-stationary Primary, Secondary Source and Control Volume Positions in Space 723

Fig. H.2: RTU in Noise Chamber Facility. Measurement of transmission loss.
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I. ADAPTIVE FILTER TOPOLOGY

I.1 Introduction

In chapter 7 on page 291 a detailed discussion of the topology of multi-channel adaptive control
system was conducted. The specific adaptive filtering schemes were introduced in chapter 8. In
this chapter we will proceed with a discussion of the topology of the candidate adaptive filters
involved. In the signal processing literature numerous adaptive filter topologies can be found.
The topologies encompass a large range of adaptive filters of varying complexity, performance
and varying degree of implementation ease. Some topologies have been developed with a specific
application in mind others are more general purpose filters.

In general two different main categories of adaptation schemes referred to as open-loop and
closed-loop adaptation respectively exist [18, Ch. 1]. In this report all adaptive filtering imple-
mentation will be based on the close-loop category. This choice has been made because in all
of the four applications modes of adaptive filters presented on page 373, performance cannot
be deduced analytically exclusive from input data. Therefore, the output is feedback to the
adaptation process. This approach is also referred to as performance feedback. However, the
closed-loop adaptation in general can be an uncertain process related to performance functions
that do not have unique optima. Moreover, a close-loop configuration could be associated with
instability problems. The uniqueness problem can often be solved by formulating an appropriate
performance function associated with the chosen filter topology. By confining poles to the unit
disc and by constraining the adaptation rate of the filter potential problems of instability can be
avoided.

In the present chapter we exclusively focus on causal linear discrete-time filters. The requirement
on causality stems from requirement on real-time operation.

The choice of linear filters as opposed to non-linear filters is, however, not always optimal. System
imperfections imply that some inherent non-linearities will prevail and limit maximum achievable
performance from the use of a pure linear adaptive filter. In active control non-linearities are
typically experienced for an actuator, e.g., an earphone transducer driven at high control output
levels at low frequencies. The field of active non-linear control, however, is considered outside
the scope of the report. It suffice here to state the nonlinear adaptive filtering and control lead
to severe complication of the theory.

For all four applications modes of adaptive filters listed on page 373 the primary choice of filter
topology in the literature has been a finite-duration impulse response (FIR) filter. This choice
also pertains to the active control community as regards the controller, but also as regards the
model of the secondary paths and feedback paths as discussed in chapter 6. The choice of a
FIR filter can be attributed to its simplicity and stability. An other important point is that a
linear system can unambiguously be described in terms of its impulse response or equivalently its
frequency transfer function [12]. However, we will also investigate other adaptive filter topologies
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for active control applications.

The main advantage of a FIR filter as compared with an infinite-duration impulse response (IIR)
filter is that the latter suffers from potential instability problems associated with the inherent
feedback structure. Moreover, requirements on adaptivity further increases the potential of
instability of an IIR filter. From computational considerations, however, the IIR filter is less
demanding. In recent years attention has been made to the class of so-called orthonormal filters
that are a subset of the full-blown IIR filter structure. The orthonormal filters retain most
of general modeling capability provided by the full-blown IIR filter structure while preserving
stability during filter adaptation. This is achieved by using fixed poles and adapting the zeros.

For each of the adaptive filters different realization methods are available. Among such realiza-
tions we find the direct form (as opposed to indirect form), parallel, cascade and lattice forms
The parallel, cascade and lattice forms have been developed aimed at ensuring less sensitivity to
finite-precision effects. Moreover, for the IIR filter they offer a simple way of stability monitoring.

Usually, a design is based on a direct form of the filter to be adapted. However, the indirect
form offer many advantages over the direct form in terms of numerical stability and is much less
prone to stability problems during the adaptation phases. In Appendix J we will address such
more elaborate filter topologies. Of particular interest is the lattice-like structure used in the
implementation of the so-called fast array recursive least-squares (FARLS). The lack of spread of
lattice filters can probably be attributed to the mathematical sophistication involved.

The tapped state normalized lattice filter has many desirable properties for fixed coefficient
digital filtering [13, Ch. 2].

For each of the adaptive filter topology types the performance can be assessed with respect to rate
of convergence, misadjustment, robustness, tracking capabilities and computational efficiency.

I.1.1 Chapter Outline

Following this introduction section I.2 discusses the adaptive finite-impulse response filter. Next
the adaptive infinite-impulse response filter is presented in section I.3. The class of so-called
orthonormal filters will be considered separately in Appendix K.

I.2 Adaptive Finite-Duration Impulse Response Filters

The topology of the adaptive finite-duration impulse response filter acting in interference can-
celation mode is depicted in Figure I.1 on the next page. It comprises a tapped delay line,
variable weights, whose input signals are the signals at the delay-line taps, a summer to add the
weighted signals. For each of the adaptive filters an adaptation process intentionally seeks an
optimal impulse response by adjusting the weights. The filter topology is also referred to as a
tapped-delay-line filter.

The number of adaptive tap-weights amounts to M . The operator, z−1, designates unit delay.
The filter configuration attains its name since there is no feedback (except for the tap-weight
adaptation) and the filter therefore exhibits a finite-duration impulse response. Moreover, due to
the lack of feedback the filter with frozen tap-weights will also be stable. However, most of the
adaptive processing schemes employ a performance feedback of the filter weights. Hence, stability
is by no means guarantied during adaptation. Therefore, some precautions shall be made in the
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Fig. I.1: Adaptive Finite-Duration Impulse Response Filter.

rate of filter weight adaptation.

The filter weights w ∈ CM×112 that are also referred to as tap-weights are organized as

w =

⎡⎢⎢⎢⎣
w(0)
w(1)

...
w(M − 1)

⎤⎥⎥⎥⎦ . (I.2.1)

By ui ∈ C1×M we will designate the filter input vector, that is, a 1×M row vector 3

ui = [u(i) u(i− 1) . . . u(i−M + 1)]. (I.2.2)

Hence, it is only necessary to store the present and the previous M − 1 input samples. The
integer i denotes the iteration time index. In some context ui is also referred to as observations,
reference signal and also as regressor. The regressor ui coincide with either of the quantities
ůw

i or x̊w
i used in chapter 6. In the discussion of adaptive filters it is customary to use ui to

designate the reference signal and it is implicit understood that it is associated with tap weights.

In Figure I.1 we identify the so-called a priori output estimation error e(i) as the difference
between (or the sum of) the desired signal d(i) and the estimated value d̂(i |Ui−1 ) based on the
tap-weights wi−1 provided the multidimensional space denoted by Ui−1 that is spanned by the
input samples u(i− 1),u(i− 2), . . . ,u(i−M)

1Notice that the choice in many textbooks on adaptive filtering, e.g., [8] the complex conjugate of each
tap-weight is used. However, we will adopt the notation in [14] and use unconjugated tap-weights.

2Formally, the tap-weight vector is an estimate of the optimal tap-weight vector pertinent for a specified cost
function. Hence, as in [8] we arguably ought to apply an accent caret to w. However, in order to reduce the
notational burden and also be compatible with, e.g., [14] we will suppress the caret and let the estimation process
be implicitly understood.

3We adopt the notation in [14] and organize ui as a row vector in contradiction to the choice in, e.g., [8]
where ui is a column vector. The implications of this subtle difference in choice of u and usage of w is addressed
in Appendix 8.B.1.
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e(i) � e(i|i− 1)

= d(i)∓ d̂(i |Ui−1 )
= d(i)∓ uiwiB−1. (I.2.3)

The block time index iB attached to the tap-weight signifies the time where the tap-weight
vector was updated and not when it is actually used. This block time index facilitates the use of
a block-update scheme (refer to chapter 8).

The signal d(i) is sometimes referred to as a pilot signal [18] and commonly as a disturbance
signal in active noise control applications. It could therefore be argued that d(i) is a undesired
signal. In the electrical domain it is customary to subtract the filter response from the desired
signal. However, in the domain of active noise control in sound or vibration applications we
actually superpose two physical signals that intentionally should be in anti-phase. In order to
reuse the mathematical expression and derived software we will preserve the ∓ notation where
the upper − indicates subtraction of a control output signal from the disturbance signal and the
lower + signifies superposition of two physical signals.

It should be noticed that when the filter operates in system identification mode, electrical (as
opposed to acoustical) interference cancelation mode and adaptive inverse control, it is the a
priori output estimation error e(i) that is observed or sensed cf. section 5.3.

I.3 Adaptive Infinite-Duration Impulse Response Filters

In the active control (AC) community IIR filters have been proposed as a computational efficient
substitute to the FIR filters most commonly employed in practical applications owing to the
inherent stability [4] [3], [11, Ch. 3.6], [1, Ch. 2.9] and [7, Sec. 6.12].

The recursive method is an especially efficient scheme for either generating sequences of data
or for filtering of data. For such purposes adaptive IIR filters can be employed. The topology
of the adaptive IIR filter is depicted in Figure I.2 on the facing page. It comprises the same
components as the FIR filter in Figure I.1 on the previous page. By Ma we denote the number
of adaptive direct (feedforward) coefficients. In addition, the IIR filter contains Mb adaptive
recursive (feedback) coefficients. Hence, the IIR filter comprises in total M = Ma + Mb adaptive
tap-weights.

An overview of IIR filters is provided in [15]. By comparison of an adaptive IIR filter with an
adaptive FIR filter the main following pros and cons can be claimed [6].

IIR filter pros 1. The main benefit of using IIR filter instead of FIR filter is that the same
response in many cases can be obtained with a IIR filter using fewer tap-weights.

IIR filter pros 2. As a recursive filter, with poles as well as zeros offer the advantages of
resonance, sharp cut-off etc.

IIR filter pros 3. In AC applications it is useful to take feedback into account [2] and to use a
IIR filter to model resonant or lightly damped systems [15].

IIR filter cons 1. The performance surfaces are generally nonquadratic and local minima may
exist which in practice might lead to the tap-weight vector being stuck at a non globally optimal
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Fig. I.2: Adaptive Infinite-Duration Impulse Response Filter.

position. The remedy against this problem is instead of using the output error method instead
to apply the method devised by Steiglitz-McBride [16] and detailed in [13, Ch. 8].

IIR filter cons 2. Susceptible to instability problems even with frozen tap-weights.

IIR filter cons 3. Stability is by no means guarantied during adaptation. Instability can occur
if a particular application requires that the poles are close to the unit circle. The adaptation will
usually be subject to some adaptation noise. Accordingly, an else stable IIR filter might become
unstable if one or more of the poles accidently are moved outside the unit circle during filter
adaptation. Hence, as compared with FIR filters even more precautions shall be made in the rate
of filter weight adaptation.

IIR filter cons 4. Slow initial convergence as compared with a FIR filter for the same number of
adaptive tap-weights. However, due to the more efficient modeling capabilities provided by the
IIR filter fewer tap-weights might be needed which in turn compensates for this slower adaptation
mechanism.

IIR filter cons 5. Reduced tracking capabilities. The same remarks made above applies here.

The IIR filter is normally formulated using either the equation error method or the output error
method [1, 9, 13, 15]. The equation error method, however, is a nonlinear regression that can
cause convergence of the filter to a local minimum of the error-performance surface. Therefore, IIR

filters are more often based on the output error method although it leads to a biased estimate. In
many cases, however, the bias is at an acceptable level. Moreover, both formulations are subject
to potential instability problems.

The tap-weights are organized in a (Ma + Mb)× 1 column vector formed by the direct adaptive
tap-weight vector wa ∈ CMa×1 and the recursive adaptive tap-weight vector wb ∈ CMb×1 as

w =
[
w�

a w�
b

]�
(I.3.1)
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where

wa =

⎡⎢⎢⎢⎣
wa(0)
wa(1)

...
wa(Ma − 1)

⎤⎥⎥⎥⎦ , wb =

⎡⎢⎢⎢⎣
wb(0)
wb(1)

...
wb(Mb − 1)

⎤⎥⎥⎥⎦ . (I.3.2)

The recursive LMS (RLMS) proposed in [5, 10, 17] is based on the output error method and is the
direct extension of the ordinary least-mean-squares (LMS) to the use of IIR filter topology [18,
Ch. 8]. However, for this algorithm the gradient estimate of the cost function involves derivatives
with respect to direct tap weights, but also derivatives with respect to the recursive tap-weights.
Accordingly, the gradient with respect to the weights includes terms representing the input as
well as derivatives of the past outputs with respect to the weights and derivatives of the direct-
and recursive weights with respect to each other.
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J. ADAPTIVE FILTERING FAST ALGORITHMS LINEAR TIME-VARIANT
SYSTEMS

J.1 Motivation

In chapter 8 the advantages of recursive least-squares (RLS) over least-mean-squares (LMS) were
explained. However, the computational burden of the order of O(M2) of the recursive least-
squares precludes practical implementations in a real-time environment. Demands on computa-
tional efficient algorithms, i.e., O(M) have lead to the development of a suite of different fast
recursive least-squares (Fast RLS) algorithms.

In order to speed up the calculations at least three possibilities exist.

1. Orthonormal Filters. In Appendix I we demonstrate that by substituting a simple pulse
function by more elaborate orthonormal models, e.g., Laguerre and Kautz models we can
reduce the model order significantly.

2. Algorithm Efficiency. By exploiting some underlying structure in the data and by confining
the weighting and initial parameters an algorithm of the order O(M) per update cycle can
be obtained.

3. Sparse Adaptation. In [1, 3] a brief discussion of sparse adaptation techniques for active
control (AC) can be found. However, as the convergence and misadjustment properties
of these methods have not yet been established and as the methods are prone to aliasing
problems we will not further investigate these sparse adaptation techniques.

The development of the fast recursive least-squares can be attributed to the classical paper
by Sayed and Kailath [9] that for the first time established a link between adaptive recursive
least-squares and state space models.

The efficient recursive least-squares algorithms broadly fall into three categories. In the first
category we find the array algorithms. The second class covers the so-called fixed-order algorithms
including the extended fast transverse filter (eFTF), the extended fast a priori error sequential
technique (eFAEST) and the extended fast Kalman filter (eFKF). Finally, the third class of fast
algorithm is constituted by the so-called order-recursive algorithms.

The bottleneck in the recursive least-squares is the calculation of the regularized inverse of the
time-averaged correlation matrix P . The key point in the development of the fast algorithm
is to exploit the possible data structure. Accordingly, two consecutive calculations of the time-
averaged correlation matrix will have many terms in common. This can be accomplished if the
data possess shift structure. The shift structure of the regressor can be expressed by

[
ui u(i−M)

]
=

[
u(i) ui−1

]
. (J.1.1)
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A more general class of data structure is governed by

[
u(i, 0) ui−1

]
=

[
ui u(i− 1, M − 1)

]
Ψ, (J.1.2)

where Ψ is an arbitrary vector.

The route to the development is to some extent a little tricky. However, in recent years this
approach has gradually been streamlined [5–8] and basically involves the following steps:

1. Order-Update.

2. Time-Update. Inner product time-update.

In the course of fast recursive least-squares development the following premises are invoked:

➀ Pre-windowed data. In pre-windowing, the data {u(i), d(i)} are assumed to be zero prior
to filter operation, i.e., u(i) = d(i) = 0 for i < 0. The expressions can rather easily be
reformulated to the covariance-, autocorrelation- and post-windowing, methods defined in
[4, Ch. 11].

➁ Specific choice of regularization matrix Π. Requirement on efficient calculation of ΔPi−1

implies that the regularization matrix Π to be chosen in an appropriate manner

Π−1 = η · diag{λ2, λ3, . . . , λM+1}. (J.1.3)

As long as the algorithm provide regularization this restriction on the regularization matrix
will probably not be of concern.

Actually, there is a freedom in the scaling of Π−1. We could omit the regularization term, but
then the we could experience the problems discussed along the objective in on page 384 and
follow up on page 390.

When H has full column rank we define the projection matrix PH by

PH � H(H∗H)−1H∗. (J.1.4)

By multiplying a vector, say y by the projection matrix amounts to projecting y onto the column
span of H . Formally, then the residual part of y, that is, ỹ � P⊥

Hy, where the projection operator
P⊥

H is defined by

P⊥
H � I − PH . (J.1.5)

J.2 General Order-Update Relations

Order-update addresses the case where the model order is increased by 1 say from M to M + 1.
Regularized weighted least-squares solutions can be order-updated in a rather elegant fashion by
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exploiting certain properties in the data structure. Order-update relations will lead to compu-
tational efficient algorithms. Considering the recursive least-squares algorithm an expression for
the inverse of the coefficient matrix P is required at each iteration step. However, this requires
of the order of O(M2) operations. However, as will be derived in this sequel a lot of redundant
operations take place in this calculations. Therefore, the aim of the order update is to obtain a
fast algorithm O(M).

The linear weighted regularized least-squares problem is formulated as

min
w

[
(w − w̄)∗Π(w − w̄) + (y −Hw)∗W (y −Hw)

]
, (J.2.1)

where w̄ denotes the initial condition (usually zero). Accordingly, the least-squares criterion seek
the vector ŷ that is closest to a vector y in the column span of the data matrix H in a weighted
regularized manner.

The detailed derivation can be found in subsection J.A.1.

w−→ = P−→H−→
∗Wy (J.2.2)

w←− = P←−H←−
∗Wy. (J.2.3)

Lattice filters are not concerned with the weight vectors themselves, but rather with the cor-
responding estimated observation vectors (projections) {ŷM,i, ŷM,i+1}. The name lattice filter
stems from the way the propagation of the output estimation errors is carried out. In fact as
it will turn out the weight vectors wM,i need neither to be evaluated nor updated. Instead the
various versions of the lattice filter relies on the propagation of a priori output estimation error
and a priori estimation error or posteriori output estimation error and posteriori estimation
error. Although the different versions of lattice filters are theoretically equivalent, the perfor-
mance will differ under finite precision conditions. Moreover, as listed in [10, Table 15.3] the
different implementations vary in computational efficiency from {O×(16M),O+(8M),O/(8M)}
to {O×(27M),O+(8M),O/(4M),O√ · (2M)}.
In [10, Ch. 15] it is demonstrated in an example of channel system identification that the array
version is the most robust lattice filter under finite-precision conditions.

In the route of algorithm derivation follow different courses for the array algorithms. The deriva-
tion of the fast algorithm ultimately leading to Laguerre filter is rather long and quite involved.
Many auxiliary variables are introduced. Moreover, the following mathematical techniques are
invoking

Fast RLS Algorithm Components 1. J-unitary transformations. The array algorithms
employ the so-called J-unitary transformations, in order to annihilate certain entities in a pre-
array of numbers

ΘJΘ∗ = Θ∗JΘ = J. (J.2.4)

A signature matrix is a diagonal matrix which elements. Due to geometric arguments the J-
unitary transformations is also referred to as hyperbolic transformations.

However, despite the rather involved derivation the fast recursive least-squares themselves turn
out to be quite simple.
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J.3 Fast RLS array algorithm

The recursive fast recursive least-squares array introduces the following the signature matrices
S and J defined as

S =
[
1 0
0 1

]
, J =

[
1

S

]
. (J.3.1)

Moreover, key point to the operation is the propagation of the auxiliary quantities ḡ and γ̄
defined by

ḡi = giγ
−1/2(i) (J.3.2a)

γ̄(i) = γ−1/2(i) (J.3.2b)

respectively. Time-update of ḡ and γ̄ is related to the time-update of the gain vector g and the
conversion factor γ.

The algorithm is initialized by

w−1 = w̄, (J.3.3a)
γ̄−1 = 1, (J.3.3b)
g−1 = 0 (J.3.3c)

and

L̄−1 =
√

ηλ ·

⎡⎢⎢⎢⎢⎢⎣
1 0
0 0
...

...
0 0
0 λM/2

⎤⎥⎥⎥⎥⎥⎦ (J.3.4)

and
AΘi = B, (J.3.5)

where the block matrix quantities A and B designates pre-array and post-array respectively and
defined by

A =

⎡⎣ γ̄(i− 1)
[
ui u(i− 1, M − 1)

]
L̄i−1

Ψ
[

0
ḡi−1

]
L̄i−1

⎤⎦ (J.3.6a)

B =

⎡⎣ γ̄(i)
[
0 0

][
ḡi

0

] √
λL̄i

⎤⎦ (J.3.6b)

contain the information necessary for the tap-weight update and can be read from the post-array
B

wi = wi−1 + ḡiγ̄
−1(i)

[
d(i)− uiwi−1

]
(J.3.7)
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min
w

[
λN+1(w − w̄)∗Π(w − w̄) +

N∑
j=0

|d(j)− ujw|2
]

(J.3.8)

for some time-invariant regularization matrix Π defined by

Π−1 = η · diag{λ2, λ3, . . . , λM+1}, η > 0. (J.3.9)

It should be remarked that neither the cost function viz. (J.3.8) nor the regularization matrix
viz. (J.3.9) are actually determined.

In [2] the superiority of the RLS over LMS, fast transversal filter (FTF) and fast affine projection
(FAP) in terms of convergence speed and size of quiet zone is demonstrated for a practical multi-
channel system (Nx = 1, Ny = 2, Ne = 2). However, in some cases the (ordinary) RLS algorithm
was exhibiting instablity. This problem, however, might be due to the use of the ordinary
filtered-x (Fx) instead of modified-filtered-x (mFx) (refer to chapter 6).
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J.A Efficient RLS Algorithm Derivation

In this appendix we will present a streamlined derivation of the various Laguerre based fast
recursive least-squares based on the textbook by Sayed [10, Ch. 11-16]. Moreover, in the present
derivation is further generalized by allowing a non-vanishing initial condition w̄ and a regular-
ization matrix Π that not necessarily is a diagonal matrix.

J.A.1 Order Update

Recalling from (J.A.3) repeated here for convenience that the linear weighted regularized least-
squares problem can be formulated as

min
w

[
(w − w̄)∗Π(w − w̄) + (y −Hw)∗W (y −Hw)

]
, (J.A.1)

where w̄ denotes the initial condition. Accordingly, the least-squares criterion seek the vector ŷ
that is closest to a vector y in the column span of the data matrix H in a weighted regularized
manner. The data matrix H is modified by adding a column to its left or to its right.

H−→ =
[
H h

]
(J.A.2a)

H←− =
[
h H

]
(J.A.2b)

H←→ =
[
HL h HR

]
. (J.A.2c)

In (J.A.2a) and (J.A.2b) h denotes the N×1 column vector added. In practice one could consider
the case where data from M + 1 instead of M sensors are used in the estimation of y.

The original least-squares problem (J.A.1) has been transformed into extended least-squares
estimation problems

min
w−→

[(w−→− w̄−→)∗ Π−→(w−→− w̄−→) + (y − H−→w−→)∗W (y − H−→w−→)] (J.A.3a)

min
w←−

[(w←−− w̄←−)∗ Π←−(w←−− w̄←−) + (y − H←−w←−)∗W (y − H←−w←−)] (J.A.3b)

min
w←→

[( w←→− w̄←→)∗ Π←→( w←→− w̄←→) + (y − H←→ w←→)∗W (y − H←→ w←→)], (J.A.3c)

where w−→ and w←− denote the backward- and forward extended tap-weight vector respectively.

The optimal solution to the extended estimation problems (J.A.3a) and (J.A.3b) are

w−→
o = w̄−→+ P−→H−→

∗W (y − H−→ w̄−→) (J.A.4a)

w←−
o = w̄←−+ P←−H←−

∗W (y − H←− w̄←−) (J.A.4b)

w←→
o = w̄←→+ P←→H←→

∗W (y − H←→ w̄←→), (J.A.4c)
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where w−→
o and w←−

o pertain to the backward- and forward estimation problems respectively.

The quantities w̄←− and w̄←− refer to the backward and forward order-updated regularization tap-
weight vector respectively. The matrix quantities Π−→ and Π←− refer to the backward and forward
order-updated inverse coefficient matrices respectively.

P−→ = (Π−→+ H−→
∗W H−→)−1 (J.A.5a)

P←− = (Π←− + H←−
∗W H←−)−1 (J.A.5b)

P←→ = ( Π←→+ H←→
∗W H←→)−1. (J.A.5c)

In order to facilitate the order-update (J.A.5a) and (J.A.5b) the regularization matrix Π shall
be expanded according to

Π−→ =
[
Π �
�∗ �,

]
(J.A.6)

Π←− =
[
� �
�∗ Π,

]
(J.A.7)

Π =
[
ΠUL ΠUR

ΠLL ΠLR,

]
(J.A.8)

� =
[
�U

�L

]
(J.A.9)

and

Π←→ =

⎡⎣ΠUL �U ΠUR

�∗U � �∗L
ΠLL �L ΠLR,

⎤⎦ (J.A.10)

where � is a 1 ×M column vector and � is a positive scalar. The format of the order-update
of the regularization matrix (J.A.6) and (J.A.7) ensures that the order-updated regularization
matrices are positive definite i.e. they satisfy Π−→ > 0 ∧ Π←− > 0.

The residual vector ỹ−→ and ỹ←− pertaining to the backward- and forward extended cases respec-
tively are

ỹ−→ = y − H−→ ŵ−→ (J.A.11a)

ỹ←− = y − H←− ŵ←− (J.A.11b)

ỹ←→ = y − H←→ ŵ←→. (J.A.11c)

The corresponding minimum cost is (ref to recursive least-squares)
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ξb = (y − H−→ w̄−→)∗W ỹ−→ (J.A.12a)

ξf = (y − H←− w̄←−)∗W ỹ←− (J.A.12b)

ξo = (y − H←→ w̄←→)∗W ỹ←→. (J.A.12c)

The conversion factors are

γb � 1− H−→[�,:] P−→H−→
∗
[�,:] (J.A.13a)

γf � 1− H←−[�,:] P←−H←−
∗
[�,:] (J.A.13b)

γo � 1− H←→[�,:] P←→H←→
∗
[�,:], (J.A.13c)

where the vector quantities

h−→ � H−→[�,:] (J.A.14)

and
h←− � H←−[�,:] (J.A.15)

h←→ � H←→[�,:] (J.A.16)

referring to the last row (i.e. most recent regression vector) of H−→ and H←− respectively have been
introduce for notational convenience.

The triple of least-squares estimation problems, viz. (J.A.3), and (J.A.3a) and (J.A.3b) can be
used to relating the solution vectors {ŵ, ŵ−→, ŵ←−}, {P, P−→, P←−}
In this process we will invoke the following two matrix identities

[
A B
C D

]−1

=
[
A−1 0
0 0

]
+

[
−A−1B

I

]
(D − CA−1B)−1

[
−CA−1 I

]
(J.A.17)

[
A B
C D

]−1

=
[
0 0
0 D−1

]
+

[
I

−D−1C

]
(A−BD−1C)−1

[
I −BD−1

]
(J.A.18)

The matrix identities (J.A.17) and (J.A.26) relate the inverse of a block matrix to the inverse of
its top leftmost and bottom rightmost corner block respectively. By substituting

A ← P−1 = Π + H∗WH (J.A.19a)
B ← � + H∗W h−→ (J.A.19b)

C ← �∗ + h−→
∗WH (J.A.19c)

D ← � + h−→
∗W h−→ (J.A.19d)
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in (J.A.17)

P−→ =
[
P 0
0 0

]
+ (� + h−→

∗W h−→− (�∗ + h−→
∗WH)P (� + H∗W h−→))−1

[
−P (� + H∗W h−→)

1

] [
−(�∗ + h−→

∗WH)P 1
]

=
[
P 0
0 0

]
+ ζ−1

[
−ŵb

1

] [
−ŵb∗ 1

]
,

(J.A.20)

where

ŵb = P (� + H∗W h−→) (J.A.21)

w̄b

−→ = (I − P−→H−→
∗W H−→)−1P� (J.A.22)

and

ζ = (� + h−→
∗W h−→− (�∗ + h−→

∗WH)P (� + H∗W h−→)). (J.A.23)

Accordingly, the quantity ŵb can interpreted as the weight vector that solves the following
weighted regularized problem

min
w−→

b

[
(w−→

b − w̄−→
b)∗ Π−→(w−→

b − w̄−→
b) + ( h−→− H−→w−→

b)∗W (y − H−→w−→
b)
]

(J.A.24)

Similarly by substituting

A ← � + h←−
∗W h←− (J.A.25a)

B ← � + H∗W h←− (J.A.25b)

C ← �∗ + h←−
∗WH (J.A.25c)

D ← P−1 = Π + H∗WH (J.A.25d)

in (J.A.26) we readily obtain

[
A B
C D

]−1

=
[
0 0
0 D−1

]
+

[
I

−D−1C

]
(A−BD−1C)−1

[
I −BD−1

]
(J.A.26)

P−→ =
[
P 0
0 0

]
+ (� + h−→

∗W h−→− (�∗ + h−→
∗WH)P (� + H∗W h−→))−1

[
−P (� + H∗W h−→)

1

] [
−(�∗ + h−→

∗WH)P 1
]

=
[
P 0
0 0

]
+ ζ−1

[
−ŵb

1

] [
−ŵb∗ 1

]
,

(J.A.27)
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where

ŵb = P (� + H∗W h−→) (J.A.28)

w̄b

−→ = (I − P−→H−→
∗W H−→)−1P� (J.A.29)

and

ζ = (� + h−→
∗W h−→− (�∗ + h−→

∗WH)P (� + H∗W h−→)). (J.A.30)

Accordingly, the quantity ŵb can interpreted as the weight vector that solves the following
weighted regularized problem

min
w−→

b
[(w−→

b − w̄−→
b)∗ Π−→(w−→

b − w̄−→
b) + ( h−→− H−→w−→

b)∗W (y − H−→w−→
b)] (J.A.31)

P←→
−1 =

⎡⎣ΠUL �U ΠUR

�∗U � �∗L
ΠLL �L ΠLR

⎤⎦ +

⎡⎣H∗
U

h∗

H∗
L

⎤⎦W
[
HU h HL

]
. (J.A.32)

In summary,

ŷ←→ = ŷ + κh̃ (J.A.33)

ỹ←→ = ỹ − κh̃ (J.A.34)

ξ←→ = ξ − |ρ|2
σ + ξh

(J.A.35)

γ←→ = γ − |α̃|2
σ + ξh

(J.A.36)

ŵ←→ =

⎡⎣ŵU

0
ŵL

⎤⎦ + κ

⎡⎣−ŵs
U

1
−ŵs

L

⎤⎦ , (J.A.37)

where

κ =
ρ∗

σ + ξh
(J.A.38)

and the corresponding minimum cost ξh = h∗Wh̃
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J.A.2 Time-Update

J.A.3 General Order Update

The filter topology matrix Ψ is defined by

θk �
√

1− |ak|2k = 0, 1, . . . , M − 1 (J.A.39)

[
u(i, 0) ui−1

]
=

[
ui u(i− 1, M − 1)

]
Ψ (J.A.40)



7
4
8

B
IB

L
IO

G
R

A
P

H
Y

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a∗
0 0 0 . . . 0 0

0 θ1θ0 a∗
1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 −a1θ2θ0 θ2θ1 a∗

2 . . . 0 0
...

...
...

... . . .
...

...

0 (−1)M−3
M−3∏
k=1

ak θM−2θ0 (−1)M−4
M−3∏
k=2

ak θM−2θ1 (−1)M−5
M−3∏
k=3

ak θM−2θ2 . . . a∗
M−2 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 (−1)M−2
M−2∏
k=1

ak θ0/θM−1 (−1)M−3
M−2∏
k=2

ak θ1/θM−1 (−1)M−4
M−2∏
k=3

ak θ2/θM−1 . . . θM−2/θM−1 0

0 (−1)M−1
M−1∏
k=1

ak θ0/θM−1 (−1)M−2
M−1∏
k=2

ak θ1/θM−1 (−1)M−3
M−1∏
k=3

ak θ2/θM−1 . . . −aM−1θM−2/θM−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (J.A.41)
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where S is a 2× 2 signature matrix. We then define a 3× 3 signature matrix J by

J � (1 ⊕ Si−1) (J.A.42)

⎡⎣ γ−1/2(i− 1)
[
u(i) ui−1

]
L̄i−1

Ψ
[

0
gi−1γ

−1/2(i− 1)

]
L̄i−1

⎤⎦
︸ ︷︷ ︸

A

Θi =
[
x 0
y Z

]
︸ ︷︷ ︸

B

(J.A.43)

we simply compare entries on both sides of the equality:

AΘiJΘ∗
i︸ ︷︷ ︸

J

A∗ = BJB∗

now



7
5
0

B
IB

L
IO

G
R

A
P

H
Y

AΘiJΘ∗
i︸ ︷︷ ︸

J

A∗ =

⎡⎣ γ−1/2(i− 1)
[
u(i) ui−1

]
L̄i−1

Ψ
[

0
gi−1γ

−1/2(i− 1)

]
L̄i−1

⎤⎦
︸ ︷︷ ︸

A

J

⎡⎣ γ−∗/2(i− 1)
[

0
gi−1γ

−1/2(i− 1)

]∗
Ψ∗

L̄∗
i−1

[
u(i) ui−1

]∗
L̄∗

i−1

⎤⎦
︸ ︷︷ ︸

A∗

(J.A.44)

=

⎡⎣ γ−1/2(i− 1)
[
u(i) ui−1

]
L̄i−1

Ψ
[

0
gi−1γ

−1/2(i− 1)

]
L̄i−1

⎤⎦
︸ ︷︷ ︸

A

(1⊕ Si−1)

⎡⎣γ−∗/2(i− 1)
[
0 γ−∗/2(i− 1)g∗i−1

]
Ψ∗

L̄∗
i−1

[
u∗(i)
u∗

i−1

]
L̄∗

i−1

⎤⎦
︸ ︷︷ ︸

A∗

(J.A.45)

=

⎡⎣ γ−1/2(i− 1)
[
u(i) ui−1

]
L̄i−1Si−1

Ψ
[

0
gi−1γ

−1/2(i− 1)

]
L̄i−1Si−1

⎤⎦
︸ ︷︷ ︸

A(1⊕Si−1)

⎡⎣γ−∗/2(i− 1)
[
0 γ−∗/2(i− 1)g∗i−1

]
Ψ∗

L̄∗
i−1

[
u∗(i)
u∗

i−1

]
L̄∗

i−1

⎤⎦
︸ ︷︷ ︸

A∗

(J.A.46)

=

⎡⎢⎢⎣γ−1/2(i− 1)γ−∗/2(i− 1) +
[
u(i) ui−1

]
L̄i−1Si−1L̄

∗
i−1

[
u∗(i)
u∗

i−1

]
γ−1/2(i− 1)

[
0 γ−∗/2(i− 1)g∗i−1

]
Ψ∗ +

[
u(i) ui−1

]
L̄i−1Si−1L̄

∗
i−1

Ψ
[

0
gi−1γ

−1/2(i− 1)

]
γ−∗/2(i− 1) + L̄i−1Si−1L̄

∗
i−1

[
u∗(i)
u∗

i−1

]
Ψ

[
0

gi−1γ
−1/2(i− 1)

] [
0 γ−∗/2(i− 1)g∗i−1

]
Ψ∗ + L̄i−1Si−1L̄

∗
i−1

⎤⎥⎥⎦
(J.A.47)
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and

BJB∗ =
[
x 0
y Z

]
︸ ︷︷ ︸

B

(1 ⊕ Si−1)
[
x∗ y∗

0 Z∗

]
︸ ︷︷ ︸

B∗

=
[
x 0
y ZSi−1

]
︸ ︷︷ ︸
B(1⊕Si−1)

[
x∗ y∗

0 Z∗

]
︸ ︷︷ ︸

B∗

=
[
xx∗ xy∗

yx∗ yy∗ + ZSi−1Z∗

]
(J.A.48)

to find that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|x|2 = γ−1(i− 1) +
[
u(i) ui−1

]
L̄i−1Si−1L̄

∗
i−1

[
u∗(i)
u∗

i−1

]

yx∗ = Ψ

[
0

gi−1γ
−1(i− 1)

]
+ L̄i−1Si−1L̄

∗
i−1

[
u∗(i)
u∗

i−1

]

yy∗ + ZSi−1Z
∗ = Ψ

[
0

gi−1γ
−1/2(i)

][
0

gi−1γ
−1/2(i− 1)

]∗

Ψ∗ + L̄i−1Si−1L̄
∗
i−1

The Laguerre polynomials are defined by

Lk(x) =
k∑

n=0

(−1)n

n!

(
k

n

)
xn, x > 0. (J.A.49)

By insertion of fk(x) = e−x/2Lk(x) the corresponding Fourier transform Fk(jΩ) = we obtain

Fk

(
jΩ
2α

)
= Lk(x) =

k∑
n=0

(−1)n

n!

(
k

n

)
xn, x > 0 (J.A.50)

¶N = (αIλN+1Π + H∗
NΛNHN )−1 (J.A.51a)

¶N−1 = (αIλNΠ + H∗
N−1ΛN−1HN−1)−1. (J.A.51b)

J.B Leaky Recursive Least-Squares Algorithm

J.B.1 Introduction

It is well known that so-called fast recursive least-squares array suffers from stability problems.
The objective is to introduce leakage into the recursive least-squares in order to preserve numer-
ical stability.
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A design objective is to formulate a time-variant regularization weight matrix W̄ (M ×M) that
together with the likewise time-variant data weight matrix W (N×N) facilitates efficient recursive
updates. Recall that the dimension of W increases linearly with time.

P−1
N � ΦN = Υ + W̄NΠ + H∗

NWNHN (J.B.1a)

P−1
N−1 � ΦN−1 = Υ + W̄N−1Π + H∗

N−1WN−1HN−1, (J.B.1b)

where we by Π > 0 and Υ > 0 refer to the regularization matrix and leakage matrix respectively.
Both of these matrix quantities are assumed time-invariant.

Υ = υΔυ∗. (J.B.2)

By Φ̄N we denote the correlation matrix excluding the leakage term. Hence,

Φ̄N � ΦN −Υ. (J.B.3)

Similarly, by P̄−1
N we denote the inverse correlation matrix excluding the leakage term. Hence,

P̄−1
N � P−1

N −Υ. (J.B.4)

Hence, by invoking the matrix inversion lemma with

A← P̄−1
N , B ← υ, C ← Δ, D ← υ∗

we can obtain PN from P̄N by

PN = P̄N − P̄Nυ(1 + υ∗P̄Nυ)−1υ∗P̄N

= P̄N −
P̄NΥP̄N

(1 + υ∗P̄Nυ)
. (J.B.5)

Similarly at time N − 1

PN−1 = P̄N−1 −
P̄N−1ΥP̄N−1

(1 + υ∗P̄N−1υ)
. (J.B.6)

By subtracting (J.B.1b) from (J.B.1a) we obtain

δΦN � δP−1
N = P−1

N − P−1
N−1 (J.B.7)

= ¯δWNΠ + H∗
N−1δWNHN−1 + u∗

NWnuN . (J.B.8)

Moreover, it holds that δΦ � δP̄−1
N = δP−1

N � Φ̄
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Now by insertion of (J.B.10a) and (J.B.10b) in (J.B.7) we obtain

δPN = P̄N −
P̄NΥP̄N

1 + υ∗P̄Nυ
− P̄N−1 +

P̄N−1ΥP̄N−1

1 + υ∗P̄N−1υ

= δP̄N +
(1 + υ∗P̄Nυ)(P̄N−1ΥP̄N−1)− (1 + υ∗P̄N−1υ)(P̄NΥP̄N )

(1 + υ∗P̄Nυ)(1 + υ∗P̄N−1υ)

= δP̄N +
(1 + υ∗P̄Nυ)(P̄N−1ΥP̄N−1)− (1 + υ∗P̄N−1υ)(P̄NΥP̄N )

(1 + υ∗P̄Nυ)(1 + υ∗P̄N−1υ)
. (J.B.9)

J.B.2 Leaky Exponentially-Weighted Regularized Recursive Least-Squares Algorithm

In the case of WN = ΛN � diag{λN , λN−1, . . . , λ, 1} and W̄N = λN+1 we get a leaky but else
ordinary exponentially-weighted regularized recursive least-squares.

P−1
N � ΦN = Υ + λN+1Π + H∗

NΛNHN (J.B.10a)

P−1
N−1 � ΦN−1 = Υ + λNΠ + H∗

N−1ΛN−1HN−1 (J.B.10b)

The weighted difference δW Φ̄N between the leakage free coefficient matrices Φ̄N and Φ̄N−1 is
defined by1

δW Φ̄N � Φ̄N − λΦ̄N−1 (J.B.11)

and likewise for the weighted difference δW P−1
N pertaining to the inverse coefficient matrix

δW P̄−1
N � P̄−1

N − λP̄−1
N−1. (J.B.12)

By multiplying (J.B.10b) by λ and subtracting from (J.B.10a) we obtain

P̄−1
N =λP̄−1

N−1 + H∗
NΛNHN − λ(H∗

N−1ΛN−1HN−1)

=λP̄−1
N−1 + u∗

NuN (J.B.13)

with the identities

A← λP̄−1
N−1, B ← u∗

N , C ← 1, D ← uN

we obtain the following recursion for P̄N :

P̄N = λ−1P̄N−1 − λ−1P̄N−1u
∗
N (1 + λ−1uN P̄N−1u

∗
N )−1uNλ−1P̄N−1

= λ−1P̄N−1 − λ−1 P̄N−1u
∗
NuN P̄N−1

λ−1 + uN P̄N−1u∗
N

. (J.B.14)

1Remark that in general δW Φ̄N �= δWΦN � ΦN − λΦN−1, λ < 1.
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Now by insertion of (J.B.9) in (J.B.23)

PN = PN−1 −
P̄NΥP̄N

1 + υ∗P̄Nυ
− P̄N−1 +

P̄N−1ΥP̄N−1

1 + υ∗P̄N−1υ
.

J.B.3 Exponentially-Weighted Regularized Recursive Least-Squares Algorithm

If we also set Υ = 0 we get the ordinary exponentially-weighted regularized recursive least-
squares. The time-update of the inverse of the correlation matrix can then be directly found
from (J.B.23) by noting that P̄N = PN

PN = λ−1PN−1 − λ−1 PN−1u
∗
NuNPN−1

λ + uNPN−1u∗
N

. (J.B.15)

The tap-weight update can then be expressed by

wN = PN [H∗
NΛNyN ]

= PN

[
H∗

N−1ΛN−1yN−1 + u∗
Nd(N)

]
=

(
PN−1 − λ−1 PN−1u

∗
NuNPN−1

1 + λ−1uNPN−1u∗
N

)[
H∗

N−1ΛN−1yN−1 + u∗
Nd(N)

]
= PN−1H

∗
N−1ΛN−1yN−1︸ ︷︷ ︸
=wN−1

−λ−2 PN−1u
∗
N

1 + λ−1uNPN−1u∗
N

uN PN−1H
∗
N−1ΛN−1yN−1︸ ︷︷ ︸
=wN−1

+ PN−1u
∗
N

(
1− λ−1 uNPN−1u

∗
N

1 + λ−1uNPN−1u∗
N

)
d(N).

Accordingly, the tap-weight update can be expressed by

wN = wN−1 − λ−1 PN−1u
∗
N

1 + λ−1uNPN−1u∗
N

[d(N)− uNwN−1] . (J.B.16)

J.B.4 Leaky Exponentially-Weighted Sliding Window Recursive Least-Squares Algorithm

Notation

wu
N−1 � w[N−L:N−1] (J.B.17a)

wd
N−1 � w[N−L+1:N−1] (J.B.17b)

wu
N � w[N−L+1:N ] (J.B.17c)

and similarly for the inverse coefficient matrix:
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P̄u
N−1 � P[N−L:N−1] (J.B.18a)

P̄ d
N−1 � P[N−L+1:N−1] (J.B.18b)

P̄u
N � P[N−L+1:N ] (J.B.18c)

and data matrix

Hu
N−1 � H[N−L:N−1] (J.B.19a)

Hd
N−1 � H[N−L+1:N−1] (J.B.19b)

Hu
N � H[N−L+1:N ]. (J.B.19c)

In the case of Wu
N = Wu

N−1 = ΛL−1 � diag{λL−1, λL−2, . . . , λ, 1}, W d
N−1 = ΛL−2 � diag{λL−2, λL−3, . . . , λ, 1},

W̄u
N = λN+1, W̄u

N−1 = λN and W̄ d
N−1 = λN we get a leaky exponentially-weighted regularized

sliding window recursive least-squares.

(P̄u
N−1)

−1 � Φu
N−1 = Υ + λNΠ + (Hu

N−1)
∗ΛLHu

N−1 (J.B.20a)

(P̄ d
N−1)

−1 � Φd
N−1 = Υ + λNΠ + (Hd

N−1)
∗ΛL−1H

d
N−1 (J.B.20b)

(P̄ d
N−1)

−1 � Φu
N = Υ + λN+1Π + (Hu

N )∗ΛLHu
N . (J.B.20c)

Downdating

By downdating we understand the process of discarding information acquired earlier in the
process. More precisely at time N before using new information we will subtract the influence
of the regressor uN−L and the data d(N − L) on the estimate of the tap-weights and inverse

coefficient matrix. Hence, {wu
N−1, (P̄

u
N−1)

−1} downdating−−−−−−−→ {wd
N−1, (P̄

d
N−1)

−1}.

The unweighted difference δd
W Φ̄d

N−1 between the coefficient matrices Φ̄d
N−1 and Φu

N−L is defined
by 2

δΦ̄d
N−1 � Φ̄d

N−1 − Φ̄u
N−1

and likewise for the inverse coefficient matrix δd
W P̄ d

N−1

δ(P̄ d
N−1)

−1 � (P̄ d
N−1)

−1 − (P̄u
N−1)

−1. (J.B.21)

By insertion of (J.B.20a) and (J.B.20b) in (J.B.21) we readily achieve

(P̄ d
N−1)

−1 =(P̄u
N−1)

−1 + (Hd
N−1)

∗ΛL−1H
d
N−1 − (Hu

N−1)
∗ΛLHu

N−1

=(P̄u
N−1)

−1 − λL−1u∗
N−LuN−L (J.B.22)

2The unweighted difference is used here at downdating pertains to the same iteration number.
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with the identities

A← (P̄u
N−1)

−1, B ← u∗
N−L, C ← −λL−1, D ← uN−L

we obtain the following recursion for P̄u
N−1:

P̄ d
N−1 = P̄u

N−1 − P̄u
N−1u

∗
N−L(−λ1−L + uN−LP̄u

N−1u
∗
N−L)−1uN−LP̄u

N−1

= P̄u
N−1 +

P̄u
N−1u

∗
N−LuN−LP̄u

N−1

λ1−L − uN−LP̄u
N−1u

∗
N−L

. (J.B.23)

The tap-weight update can then be expressed by

wd
N−1 = P d

N−1

[
(Hd

N−1)
∗ΛL−1y

d
N−1

]
= P d

N−1

[
(Hu

N−1)
∗ΛLyu

N−1 − λL−1u∗
N−Ld(N − L)

]
=

(
Pu

N−1 +
Pu

N−1u
∗
N−LuN−LPu

N−1

λ1−L − uN−LPu
N−1u

∗
N−L

)[
(Hu

N−1)
∗ΛLyu

N−1 − λL−1u∗
N−Ld(N − L)

]
= Pu

N−1(H
u
N−1)

∗ΛLyu
N−1︸ ︷︷ ︸

=wu
N−1

+
Pu

N−1u
∗
N−L

λ1−L − uN−LP̄u
N−1u

∗
N−L

uN−L Pu
N−1(H

u
N−1)

∗ΛLyu
N−1︸ ︷︷ ︸

=wu
N−1

− λL−1Pu
N−1u

∗
N−L

(
1 +

uN−LPu
N−1u

∗
N−L

λ1−L − uN−LP̄u
N−1u

∗
N−L

)
d(N − L).

Accordingly, the tap-weight update can be expressed by

wd
N−1 = wu

N−1 −
Pu

N−1u
∗
N−L

λ1−L − uN−LPu
N−1u

∗
N−L

[
d(N − L)− uN−Lwu

N−1

]
. (J.B.24)

Updating

Following the downdating we will subsequently use the information in the present regressor uN

and the data d(N). Hence, {wd
N−1, (P̄

d
N−1)

−1} updating−−−−−−→ {wu
N (P̄u

N )−1}. By subtracting (J.B.20a)
from (J.B.20c) we obtain

δΦN � δP−1
N = λN+1Π + λH∗

N−1HN−1 + u∗
NΛNuN . (J.B.25)

The weighted difference δu
W Φ̄u

N between the coefficient matrices Φ̄u
N and Φ̄d

N−1 is defined by

δu
W Φ̄u

N � Φ̄u
N − λΦ̄d

N−1

= u∗
NΛNuN (J.B.26)
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and likewise for the inverse coefficient matrix δu
W P̄u

N

δu
W (P̄ d

N−1)
−1 � (P̄N )−1 − λ(P̄ d

N−1)
−1. (J.B.27)

By multiplying (J.B.20) by λ and insertion in (J.B.27) it is readily seen

(P̄N )−1 =λ(P̄N−1)−1 + H∗
NΛNHN − λ(H∗

N−1ΛN−1HN−1)

=λ(P̄N−1)−1 + u∗
NuN (J.B.28)

with the identities

A← λP̄−1
N−1, B ← u∗

N , C ← 1, D ← uN

P̄N = λ−1P̄N−1 − λ−1P̄N−1u
∗
N (1 + λ−1uN P̄N−1u

∗
N )−1uNλ−1P̄N−1

= λ−1P̄N−1 − λ−2 P̄N−1u
∗
NuN P̄N−1

1 + λ−1uN P̄N−1u∗
N

. (J.B.29)

J.B.5 Exponentially-Weighted Sliding Window Recursive Least-Squares Algorithm

Finally, if we also set Υ = 0 we get the ordinary exponentially-weighted regularized recursive
least-squares.

The time-update of the inverse of the correlation matrix can then be directly found from (J.B.29)
by noting that P̄N = PN

PN = λ−1PN−1 − λ−2 PN−1u
∗
NuNPN−1

1 + λ−1uNPN−1u∗
N

. (J.B.30)

The tap-weight update can then be expressed by

wN = PN [H∗
NΛNyN ]

= PN

[
λH∗

N−1ΛN−1yN−1 + u∗
Nd(N)

]
=

(
PN−1 − λ−1 PN−1u

∗
NuNPN−1

1 + λ−1uNPN−1u∗
N

)[
H∗

N−1ΛN−1yN−1 + u∗
Nd(N)

]
= PN−1H

∗
N−1ΛN−1yN−1︸ ︷︷ ︸
=wN−1

−λ−2 PN−1u
∗
N

1 + λ−1uNPN−1u∗
N

uN PN−1H
∗
N−1ΛN−1yN−1︸ ︷︷ ︸
=wN−1

+ PN−1u
∗
N

(
1− λ−1 u∗

NuNPN−1

1 + λ−1uNPN−1u∗
N

)
d(N).

Accordingly, the tap-weight update can be expressed by

wN = wN−1 − λ−1 PN−1u
∗
N

1 + λ−1uNPN−1u∗
N

[d(N)− uNwN−1] . (J.B.31)
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K. ORTHONORMAL FILTERS

K.1 Motivation

Pulse functions, Laguerre functions and Kautz functions belong to a more general class of or-
thonormal functions that among others also including Hermite, Charlie and Meixner functions.
Orthonormal functions have received much attention in signal, system and control theory. Due
to their inherent modeling capabilities orthonormal functions are extensively used for analysis
and synthesis in signal processing and control applications.

Since there is a lot of similarities between the Laguerre and Kautz models [16] a description of
these models will be conducted in parallel in this chapter.

For system identification purposes the order M of a finite-duration impulse response (FIR) filter
is determined by at least two rules of thumb [46].

1. Sample interval T . The sample interval must be smaller than the smallest time constant
of interest.

2. Settling time. The duration of the finite impulse response provided by the FIR filter, that
is, MT must exceed the settling time of the system.

In practice in order to assess model order and sampling frequency one often acquires a priori
knowledge about the dominating time constants of the system via physical modeling and/or
step-response experiments. The main disadvantage of a FIR filter can be attributed to the use of
simple delay operator as basis function. The canonical basis of l2(N0) are extremely localized in
time or equivalently the memory is too short (only one sample). Accordingly, if the system has
poles that are close to the unit circle, then a FIR filter would require a very high order in order
accurately to model the system. Therefore, research effort in recent years has given a resurrection
to the (complex) Laguerre and Kautz models as replacement to the ordinary FIR filter.

Historically, orthogonal functions have been used for the description of signals and systems
by a relatively small number of coefficients. These orthonormal functions have been used for
analysis and synthesis of linear networks, the design of cross correlators, computation of the
Laplace transform of transients, parametrization in pattern recognition. Due to the ease of
practical realization in an analogue computer focussed as been on the general class of continuous
orthonormalized exponential functions.

The probably most well-known work in this field dates back to the Fourier expansion in cosine
and sine functions. Lee [17] and Wiener [48] in a joint effort considered the use of Fourier trans-
forms of Laguerre’s functions for electrical network synthesis in particular transient synthesis
and provided another application of orthogonal basis functions. The main results from this work
can be found summarized in [18]. In the often cited work by Kautz [15] that is detailed in [14]
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a fundamental approach to the transient synthesis problem was established. The main achieve-
ments of the work by Kautz was to solve the problem of orthogonalizing a set of continuous-time
exponential functions by determining the corresponding Laplace transforms, which have very
simple structures.

It should be emphasized that the procedure pertains to synthesis of a finite, time-invariant,
lumped network. Applying this model for other physical systems must carefully be considered.
Nevertheless, from the discussion of Part IV and detailed in the papers by Schröter a hearing
protector device can to some extend be modeled by an equivalent time-invariant lumped finite
element network.

In latter work Broome [4], Young and Huggins [49] established a solution for the equivalent
discrete-time problem. In a manner analogous to Kautz, Broome established a general proce-
dure for the construction of orthonormal sequences. Broome formulated expressions for orthonor-
mal functions in the z-plane. The pertinent coefficients could then be determined by applying
Cauchy residue theorem. The Laguerre and Kautz continuous-time functions could be obtained
as specialization of this general discrete-time approach in the limit where the sampling interval
approaches zero.

The main advantages of decomposing the regression vector in terms of orthonormal basis func-
tions is that the approximation can be made with relative few constants. Due to the orthogonality
between the individual basis functions it can be stated that the base functions provide no over-
lapping information. Consequently, the corresponding approximation problem then has a simple
and direct solution. Moreover, the orthonormal filter structure allows us to model a larger class
of systems normally requiring an infinite-duration impulse response (IIR) filter implementation.
The orthogonality ensures that the governing equations have a Toeplitz structure which means
a reduced numerical sensitivity. In particular if the filter is driven by white noise the resulting
correlation matrix R will be in diagonal form. Furthermore, as the orthogonalized exponentials
correspond to all-pass filters their implementation will be numerically robust [47].

In practice the orthonormality condition implies that if the input s(t) is a white noise the tap-
weight input are orthogonal. For the pulse function this is well known. Formally, the orthogo-
nality applies to L2(0,∞) and the basis functions form a complete set in L2(0,∞) and L1(0,∞).
The spaces L1 and L2 are defined in, e.g., [11, App. A.1]. Hence, in theory any stable system can
be represented exactly by an infinite Laguerre/Kautz series. In practice, however, a truncated
orthonormal series are used.

Kautz and Laguerre filter structures are based on orthonormal discrete-time versions of the
Kautz and Laguerre basis functions respectively [15]. In recent years Laguerre and Kautz filters
have been proposed as an alternative to FIR filter or IIR filter in different applications including
acoustic echo cancelation (AEC) [29] and system identification [46, 47].

Although FIR filter has been the common choice probably due to its simple structure it is demon-
strated that both Kautz and Laguerre filter structures can be used instead to describe the per-
tinent system with fewer parameters or alternatively achieve a better performance for the same
number of parameters. The Laguerre model is in fact a particular instance of the more general
Kautz model obtained by instead of using pairs of complex conjugated poles to use real poles.
System specific a priori information can be used to determine if a Laguerre filter structure is
sufficient or a the more general Kautz filter structure should be evaluated. From a practical
point of view it should be recalled that a real pole corresponds to an exponentially damped
system while complex conjugate poles correspond to exponentially damped sinusoids. Therefore,
Kautz functions can approximate more efficiently signals with non-negligble oscillatory behav-
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ior. Accordingly systems with a dominant first-order dynamics can be modeled by Laguerre
functions whereas systems with a dominant second-order resonant dynamics are better modeled
with Kautz functions. For the Laguerre filter the real pole α should be determined according to
α = e−T/τ where τ is the underlying time constant for the system and T is the sampling time.

In signal processing applications as well as control systems filters with relatively long impulse
responses are often encountered. The long impulse response could stem from long propagation
distances, e.g., acoustic echo cancelation. In active noise control lightly damped structures will
normally exhibit long impulse responses [7, Ch. 2].

The filter structure becomes interesting in applications that can be parameterized in terms of
a few (1 or 2) time-invariant poles and possibly many time-varying zeros. Such time-variant
zero and time-invariant pole configuration has been observed and theoretically justified for room
transfer functions. It should be remarked that there is no direct association between the order
of poles required by the filter structure and the number of natural resonant frequencies or even
the number of distinctive peaks. However, the optimal pole position in the SISO case is related
to the system’s dominant mode.

K.1.1 Chapter Outline

Following the motivational remarks above the theme of section K.2 is orthonormal basis func-
tions. Then in applicability of orthonormal filters for system identification is discussed in
section K.3. In section K.4 - K.6 Kautz and Laguerre filters and a mixture hereof will be
addressed. Next procedures to optimize the free parameters involved will be considered in
section K.7.

The chapter is concluded by some final remarks in section K.8.

K.2 Orthonormal Basis Functions

The one-sided Laplace-transform is defined by

F (s) � L{f(t)} =
∫ ∞

0

f(t)e−st dt. (K.2.1)

For a lumped element network the transfer function H(s) � L{h(t)} can be modeled as rational
function of nominator polynomial N(s) to a denominator polynomial D(s).

H(s) =
N(s)
D(s)

= A
(s− z1)(s− z2) . . . (s− zNz)
(s− p1)(s− p2) . . . (s− pNp)

=
N0

p∑
k=1

Gk

s− pk
+

N0
p+N1

p∑
k=N0

p+1

Gk

s− pk
+ · · ·+

Np∑
k=

∏Np−1
l=1 N l−1

p

Gk

s− pk
, (K.2.2)

where Np and Nz refer to the number of poles and zeros respectively and A is some real constant.
The k’th pole and zero are denoted by pk and zk respectively. In the partial fraction expansion
N

(m)
p designates the number of m-th order poles. Then N

(1)
p is the number of simple poles.
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If the network is to be stable the real parts of all simple poles must be non-positive and the real
parts of higher order poles must be strictly negative. Hence,

�(pk) ≤ 0 k = 1, 2, . . .N1
p (K.2.3a)

�(pk) < 0 k = N1
p + 1, N1

p + 2, . . .Np. (K.2.3b)

The input output relation is given by

yi =

(
p−1∑
n=0

θnBm(q, ζn)

)
ui. (K.2.4)

This simple construction preserves orthonormality while at the same time allow a priori knowl-
edge about a variety of poles at ζ1, ζ2, . . . , ζNp to be incorporated. In the network synthesis
problem a transfer function H(s) of the form (K.2.2) satisfying the stability criteria (K.2.3) is
to be found. The estimated transfer function ĥ(t) must approach the desired impulse response
h(t) with prescribed tolerances.

In order to preserve compatibility with textbooks on adaptive filtering the linear part of the
parameter vector will be denoted by w.

θ � col{ζ, w}, (K.2.5)

where

ζ � ζ1, ζ2, . . . , ζNζ
. (K.2.6)

The orthonormality of the basis functions can be formulated in discrete-time for sequences. As
proved in [4, App. A] the orthonormality implies

〈Bl(z),Bk(z)〉 =

{
1, l = k

0, l �= k
0 ≤ l, k ≤M − 1, (K.2.7)

where Bl is a discrete orthonormal function and the index l is an index over the function set and
where the inner-product 〈Bl(z);Bk(z)〉 is defined by

〈Bl(z);Bk(z)〉 � 1
2πj

∮
T

Bl(z)B∗
k(1/z∗)

dz

z
=

1
2π

∫ π

−π

Bl(ejω)B∗
k(ejω) dω. (K.2.8)

K.3 System Identification

Wahlberg, Wahlberg [46, 47] has made a detailed analysis of using Laguerre/Kautz models as a
linear regression method. In a simple example of a resonant system the advantage of employing
a Kautz filter instead of Laguerre and FIR filter was demonstrated. The analysis, however, was
restricted to single pole Laguerre and complex conjugate pair poles in Kautz filters.

Therefore, these filters have attracted interest in recent years [12]. Then the objective is to
improve the basis functions Ψi(q, ϑ) such that an accurate description of the system can be
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achieved by a small order of M . From a system identification point of view the variance of
an estimated model is proportional to the number of estimated parameters [19]. Hence, it is
advantageous to use as few parameters as possible and still guarantee a useful model. In principle
when infinite many terms are included in the parameter vector the choice of the free parameters is
somewhat arbitrary. In practice, however, a truncated series is used and an immediate problem is
to optimally select the free parameters so as to reduce the truncation error. The free parameters
ϑ provides a mean to use a priori information concerning dominating time constants or resonant
modes of the system into the orthonormal basis functions.

Besides providing low order modeling capability the Lageurre/Kautz filters are also more in-
sensitive to the choice of sampling rate. Another advantage of Laguerre filter is related to the
so-called time-delay systems.

In [31] a unifying concept for the construction of orthonormal basis for system identification is
provided

Bm(q) =

√
1− |ζm|2
q − ζm

m−1∏
l=0

1− ζ∗l q

q − ζl
. (K.3.1)

It is demonstrated that the pulse function, Laguerre and Kautz filters are restrictive specializa-
tions of (K.3.1). The estimation bias error will be decreased. However, the increased flexibility
of the generalized orthonormal set has its price. Variance is more susceptible to noise. A more
detailed analysis of the convergence properties can be found in [33]. The numerical properties
are studied in [32].

K.4 Kautz Filter

Resonant poles (occur in complex conjugated pair) are poorly matched by real poles in Laguerre
filter. The governing equations can be found from (K.3.1) by using a complex conjugated pole
pairs ζ2m = ζ∗2m+1

Ψ2m(z, ζm) = |1 + ζm|
√

1− ζmζ∗m
2

z−1 − 1
(1− ζmz−1)(1 − ζ∗mz−1)

×
m−1∏
l=0

(z−1 − ζl)(z−1 − ζ∗l )
(1 − ζlz−1)(1− ζ∗l z−1)

(K.4.1a)

Ψ2m+1(z, ζm) = |1− ζm|
√

1 + ζmζ∗m
2

z−1 − 1
(1− ζmz−1)(1 − ζ∗mz−1)

×
m−1∏
l=0

(z−1 + ζl)(z−1 − ζ∗l )
(1 − ζlz−1)(1− ζ∗l z−1)

, (K.4.1b)

where ζm � αm + jβm and ζm, ζ∗m are a pair of complex conjugated poles. The number of
tap-weights M is even for Kautz basis functions (k = 0, 1, . . . , M/2− 1).

The filter structure governed by (K.4.1a) to (K.4.1b) in general provides too many degrees of
freedom. A major problem exists in the determination of the optimal pole positions in (K.4.1a)
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to (K.4.1b). Moreover, by using a 2-pole configuration a computational more efficient algorithm
can be obtained [29]. Therefore, one often resort to use a single pair complex conjugate poles
(Kautz filter) or single pole (Laguerre filter). Accordingly, when referring to the discrete-time
2-pole Kautz models the 2-pole designation is normally suppressed.

K2m(z, ζ) = K2m(z, ζ)A(z, ζ) (K.4.2a)
K2m+1(z, ζ) = K2m+1(z, ζ)A(z, ζ), (K.4.2b)

where

K0(z, ζ) = κ0K2m(z, ζ)A(z, ζ) (K.4.3a)
K1(z, ζ) = κ1K2m+1(z, ζ)A(z, ζ) (K.4.3b)

and

A(z, ζ) =
(z−1 − ζ)(z−1 − ζ∗)

(1− ζz−1)(1 − ζ∗z−1)
(K.4.4)

and where

κ0 = |1 + ζm|
√

1− ζζ∗

2
(K.4.5a)

κ1 = |1− ζm|
√

1− ζζ∗

2
. (K.4.5b)

The following transformation, which maps the unit disc to the unit disc establishes a link between
the simple Laguerre and Kautz filters above and is often used in filter design.

z̄ =
z(z − b)
1− bz

− 1 < b < 1. (K.4.6)

The Kautz topology filter is depicted in Figure K.1 on this page.

Fig. K.1: Adaptive Kautz Filter Topology

K.5 Laguerre Filter

Orthogonal polynomials including Laguerre polynomials were defined in [41]. The free parameter
in a Laguerre filter is often referred to as a time scale.

The orthonormal filter structure topology is depicted in Figure K.2 on the next page.

The governing equations can be found from (K.3.1) by using a single real pole ζm = ζ = α

Bm(z) =

√
1− |αm|2

1− αmz−1

m−1∏
l=0

z−1 − α∗
l

1− αlz−1
, (K.5.1)
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Fig. K.2: Adaptive Orthonormal Filter Topology

where each Bm(z) links the input signal s(i) to the m’th linear filter tap-weight input. The
existence of the continuous-time Laguerre expansion applies under the relative mild condition
g(t) ∈ L2(0,∞) ∪ L1(0,∞).

The substitution of the simple time-delay elements with Laguerre filters, however, has a price.
The convergence rate is decreased and the tracking capabilities are reduced.

K.6 Mixed Kautz Laguerre Filters

K.7 Optimization of Free Parameters

The parameter vector of the orthonormal model θ contains free parameters viz. (K.2.5). For a
given system the truncation error described above will be a function of the number of filters and
in particular the values of the free parameters. In the literature numerous references addressing
the problem of determining the optimal free parameters for a fixed number of filters can be found.
For example for the Laguerre model the free parameter(s) i.e. the pole(s) should be chosen close
to the dominating pole(s) of the system. However, if the pole does not match the dominating
poles with sufficient accuracy the superiority of Laguerre filters over FIR filter can no longer be
warranted. The main problem of determining the free parameter(s) is that the squared error
surface of the truncated series involved is highly nonlinear and multi-modal with respect to these
parameters [13, 18].

Scientist have investigated two different approaches for the of the optimization of the free pa-
rameters. In the first class the optimization is based on minimization of the error energy by
invoking a gradient. The second class is based on sub-optimal optimization.

K.7.1 Gradient Based Optimization

The optimum choice of the free parameter in continuous-time Laguerre functions was first an-
alytically investigated by Clowes [6]. It was demonstrated that although analytical expression
are readily obtainable the solution involves root finding in a polynomial in the free parameter of
order at least M + N

(1)
p , where N

(1)
p denotes the number of simple poles of the system. Unfor-

tunately, this approach requires complete specification of the signal to be approximated. Parks
[36] developed a procedure for the determination of the free Laguerre parameter in which the
signal properties are represented by two ”moment” characteristic functions.

In his doctorial thesis Masnadi-Shirazi [21] developed an analytical optimization procedure that
has subsequently been refined Masnadi-Shirazi and Ahmed [22, 23]. This method requires find-
ing roots of possible high-order polynomials. In Silva, Silva [38, 39] an analogous method of
finding the optimal pole position for nonrational transfer function and for an arbitrary input was
described. This work was extended to lattice filter structures in [40].

It is customary to estimate the few time-invariant poles by some off-line optimization process,
e.g., Gauss-Newton method. In [20] a Laguerre single-pole optimization approach where the
gradient and the Hessian are computed analytically was proposed.
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It was demonstrated in an example that this Laguerre pole optimization may contribute to model
reduction, since the a model with such an optimized pole may provide a better approximation
than a higher order model (in terms of M) with an arbitrary chosen pole. However, their
procedure did only provide local convergence in the pole position. By using a first order ARX
model an initial pole estimate close to the system pole can be made. If required this estimation
process can be repeated in order to accommodate slow variations in the optimal filter pole values.

The methods above are all off-line estimation and require a relatively high computational cost.

To the authors knowledge no general systematic approach for the derivation of multiple Kautz/La-
guerre poles has hitherto been presented in the literature. For complex time-invariant black box
systems with intrinsic multiple pole structure one could therefore consider employing global op-
timization as opposed to local optimization system identification procedures provided by for
example a genetic algorithm or neural nets. The coefficients are estimated by suitable linear
regression model, e.g., NLMS and RLS [19, 29, 34].

K.7.2 Suboptimal Optimization

Another approach was formulated by Fu and Dumont [8]. Here the linearly weighted sum of the
squared Laguerre coefficients is subject to minimization

J =
∞∑

m=1

mg2
m. (K.7.1)

The objective of (K.7.1) is to linearly increase the weight of each additional orthonormal func-
tion coefficient (e.g. Laguerre coefficient). Consequently, by gradually penalizing higher order
coefficients the suboptimum will favor a solution requiring relatively few terms to represent the
signal (or network).

This suboptimal optimization approach has continuingly being subject to improvements [42–45].
The technique requires only knowledge of few numerical characteristics of the signal. Moreover,
the technique applies generally to a broader class of orthonormal functions used in signal pro-
cessing. The main advantage of this technique is in terms of its simplicity, low computational
cost and often according to Tanguy et al. relatively good efficiency. In [42] the work in was
generalized by Tanguy et al. to a wider class of orthonormal functions and nonlinear Laguerre
weighting was introduced. It was demonstrated that the optimization in [8] is a minimization of a
criterion that is equivalent to an upper bound for the quadratic approximation error. Followingly
Tanguy et al. [43] established approximation to the Laguerre filter weights. Their method was
latter extended by an online method to optimize the Laguerre filter [44]. Finally, Tanguy et al.
[45] approved that this approach provided that the number of basis functions to be used is chosen
large enough, consists of minimizing an upper bound for the error energy.

By ϕn(i, θ) we refer to an orthonormal function that varies with the time-index i, the index n
designates the particular function (spectral index ) and where θ denotes the free parameter vector
to be optimally selected.

The discrete-time inner product for two real-valued functions 〈ψa; ψb〉 is defined by

〈ψa; ψb〉 =
∞∑

k=0

ψa(k)ψb(k). (K.7.2)
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Similarly the discrete-time weighted inner product is

〈ψa; ψb〉� =
∞∑

k=0

�(k)ψa(k)ψb(k), (K.7.3)

where � designates a weighting function.

〈ϕm(θ); ϕn(θ)〉 = δm,n (K.7.4)

and where δm,n denotes the Dirac delta function. According to [42] by using weighted Laguerre
functions viz. (K.7.3) a better approximation to initial transient response than non-weighted
functions viz. (K.7.2). Accordingly we will introduce a time-dependent weight function �(k)
and a weighted discrete orthonormal function by ϕ̆n(i, θ)

ϕ̆n(θ) = �(k)ϕn(θ) (K.7.5)

〈ϕ̆m(θ); ϕ̆n(θ)〉�−2 = δm,n. (K.7.6)

Hence, by using �−2 as inner product weighting function it is easily verified that (K.7.7) holds.

�(k) = w2(k). (K.7.7)

The two moment functions m1 and m2 are defined by

m1 � ‖f‖−2
∞∑

k=1

k [f(k)/�(k)]2 (K.7.8a)

m2 � ‖f‖−2
∞∑

k=1

k [f(k − 1)/�(k − 1)] [f(k)/�(k)] (K.7.8b)

where the weighted signal energy ‖f‖2 is defined by

‖f‖2 �
∞∑

k=1

[f(k)/�(k)]2 . (K.7.9)

Moreover, two quantities S1(a) and S2(a) defined by

S1(a) �
∞∑

m=0

(2m + 1)w2(m, a) (K.7.10a)

S2(a) � 2
∞∑

m=1

mw(m, a)w(m − 1, a) (K.7.10b)
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and an auxiliary variable ρ0

ρo =
S2(a) + ρS1(a)
ρS2(a) + S1(a)

(K.7.11)

with

ρ � 1 + a2

2a
(K.7.12)

are used. The procedure first involves an adaptive algorithm for the estimation of the fixed
parameters. In principle the suite of adaptive filters described in chapter 8 on page 371 are
to our disposition. Then the free parameter is determined a ← ao. The tap weights are then
recalculated from the following exchange relation

w(m, ao) =
∞∑

j=0

w(j, a)ϕm(j,
ao − a

1− aao
), m = 0 . . .M − 1 a ∈]− 1, 1[. (K.7.13)

In Ngia [28] the nonlinear optimization problem of Laguerre and Kautz filters is solved by a
separable nonlinear least-squares method. Hence, the optimization of the parameter vector θ is
split into separate optimization of the pole vector ζ and tap-weight vector w.

Both an online algorithm (recursive separable nonlinear least-squares algorithm and here abbre-
viated by RSNLS) and off-line algorithm based on Gauss-Newton optimization were developed.
A key point in this development is use of a theorem [28, Thrm. III.1]. However, this approach
does not solve the problem of local minima. Hence, the global optimal choice of the parameter
vector will only be found provided some appropriate initial value θ−1 is given. Although this
is not explicitly stated an example of this paper clearly reveals this lack of global optimization
capability.

K.8 Final Remarks

In conclusion Laugerre/Kautz filters can lead to reduced order modeling compared with FIR, AR
or ARX modeling and improved numerical accuracy of the corresponding linear regression.

If the system involves several scattered poles a requirement on multi-parameter optimization
exists.

In [10] a theory on of generalized orthonormal basis functions for linear time-invariant dynamical
system is made. The key point is to make a transformation from time-domain representation to
a domain representation more appropriate for the particular system/signal. It is demonstrated
that the z-transformation, Laguerre transformation and Kautz transformation are specialized
transformation associated with the pulse functions, Laguerre and Kautz polynomials respectively.

f(t) ≈
∞∑

k=0

ckLk(t) (K.8.1)
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where f(t) is defined for t > 0 and where the where the expansion coefficients ck(p) are also
referred to as Laguerre spectrum in turn is obtained from

ck(p) =
∫ ∞

0

e−tLk(t)f(t) dt. (K.8.2)

In the s-domain

Lk(s, ζ) =
√

2ζ
(s− ζ)k−1

(s + ζ)k
, k ∈ N, ζ > 0. (K.8.3)

Similarly, in the z-domain

Lk(z, ζ) =
√

1− ζ2
(z−1 − ζ)k−1

(1− ζz−1)k
, k ∈ N, |ζ| < 1. (K.8.4)

Then any square-summable sequence can be composed into its

h(i) =
∞∑

k=0

ck(ζ)Lk(i) (K.8.5)

The Laguerre spectral components are in turn obtained from an inner product

ck(ζ) = 〈h; Lk〉. (K.8.6)

A major advantage of the continuous-time Laguerre functions and discrete-time Laguerre se-
quences is that the have transforms that are rational functions with very simple repetitive form
viz. (K.8.3) and (K.8.4).

In the case of filter synthesis networks are designed starting from a prescribed transient response
instead of prescribed frequency characteristics.

Laguerre series can be interpreted as Kautz series governed by a single pole.

Supplementary material on this topic is provided in [9] [35] [30] [5] [2, 3] [39] [1] and [24–27]
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L. ALPHA-STABLE DISTRIBUTIONS

L.1 Motivation

The least-squares criterion has extensively been used for the design of adaptive filtering algo-
rithms. For most of the part this leads to tractable results. However, as already been discussed
and detailed in chapter 8 the least-squares criterion is only adequate under Gaussian (normal)
assumption. Unfortunately, not all noise is Gaussian. The Gaussian model is not well suited
for describing signals with impulsive behavior. Many data set acquired from physical and eco-
nomic systems exhibit empirical evidence for the stable distributions1 to model the heavy tails
and skewness encountered. Statistical analysis of observation made in nature, e.g., from atmo-
spheric (thunderstorms) and underwater (ice cracks) environments, low-frequency atmospheric
noise, gravitational fields of stars, temperature distributions in nuclear reactors, but also many
types of man-made noise have proved to be non-Gaussian. Instead probability density functions
for these phenomena are members of a generalization of the Gaussian distribution referred to as
the family of stable distributions. Other application areas include financial time series, insurance
modeling, hydrology data, meteorology data, geophysical signals, stresses in crystalline lattices,
annual rainfall, error clustering in telephone circuits. Typical realizations of such random signals
contain a large number of outliers. For such observations very low or at least moderate signal
levels prevail most of the time. However, occasionally very intensive signals are intercepted.
In a military context, noise spikes from gunfire or explosions could probably be modeled by a
α-stable distribution. Also in the audio signal processing community stable distributions have
been investigated [7]. In [10] it was observed that speech signals have relative low α-values and
in certain intervals approaches the Cauchy distribution. Both speech signals and background
noise signals are subject to time-variance. Finally, there is evidence of the heavy-tailed nature
of the size distributions of the files sent over the World Wide Web (WWW).

In [36, Ch. 1] some examples of the occurrence of 1-dimensional stable law applications is pro-
vided. They all involve the limit theorems for the sums of independent and weakly dependent
random variables (RVs).

Hence, there has been great interest in the last decade in the signal processing community
in α-stable distributions. However, the least-squares based adaptive filter algorithms degrade
under such impulsive noise conditions as they are not sufficiently robust against outliers in the
distribution function.

Two instances of the α-stable have received much attention, namely the symmetric α-stable (SαS)
distribution and the positive α-stable (PαS) distribution. The SαS distribution has also been used
to model audio noise signals [7], [10] in order to better model the outliers that exists in real signals.
In [24] the characteristics and potential applications for the PαS is presented. This distribution is

1This name stems from Lévy who together with Khintchine developed the theory of univariate stable distri-
butions in the 1920’s and 1930’s.
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useful for modeling signals related to energy or power where only positive outcomes are possible.
For this distribution all negative-order moments exist, and ratios of these moments are used
to estimate alpha. Application areas that are examined include: seismic activity, ocean wave
variability, and radar sea clutter modulation. In the radar community the α-stable distributions
has received attention over the last decade [6, 8, 28, 29, 33].

Finally, it should be remarked that in many other real-time applications data sets have su-
pergaussian distributions as opposed to the subgaussian distributions above. Moreover, stable
distributions are not appropriate for fitting data that exhibit multi-modality or gap in their sup-
port. In fact most heavy-tailed distributions do not belong to the class of stable distributions.

The engineering textbook by Nikias and Shao provides more detailed information in particular
on the SαS distribution family and corresponding signal processing algorithms.

L.1.1 Chapter Outline

Following these motivational remarks the fundamental theory of α-stable (αS) distributions is
presented. Then in the subsequent two sections specializations of the general αS distribution are
introduced. Most attention has been paid to the symmetric α-stable random variables discussed
in section L.3. Another important subclass of the αS distribution is the PαS distribution presented
in section L.4. Then the practical problem of parameter estimation is addressed in section L.5.
Next the related problem of synthesis of stable signals is discussed in section L.6. Then the theme
of section L.7 is signal processing applied to signals that belong to the class of αS distributions.
Next signal detection of stable signals is discussed in section L.8. Finally, section L.9 concludes
the chapter and topics for future research activities are suggested.

L.2 Theory

In addition to agreeing very well with experimental data , α-stable distributions have a strong
theoretical justification provided by the generalized central limit theorem (GCLT). Basically, the
GCLT states that α-stable distributions are the only class of distributions that can be the limiting
distributions for the sum of independent and identical distributed (i.i.d.) RVs.

Historically, the theoretical fundament for the stable distributions can be attributed to the work
by Lévy who studied the normalized sums of i.i.d. terms from an arbitrary distribution.

Any stable RV can be expressed as an infinite sum which involve the arrival times of a Poisson
process [25].

The term stable signifies that the distribution satisfy the following linear stability property [19,
Thrm. 1]: A fundamental consequence of this stability property is the Generalized Central Limit
Theorem that states that if the sum of i.i.d. random variables has a limiting shaped distribution
as the number approaches infinity, the limiting distribution must be a member of the stable
distributions. Actually, the objective of finding the limit distributions for sums of i.i.d. random
variables lead to the formulation of the stable distributions.

Definition L.1. A random variable ψ (vector ψ = ψ1, ψ2, . . . , ψd) is said to be a stable variable
(vector) in R (Rd) if and only if ∀A1, A2 ∈ R+∃C ∈ R+, D ∈ R(Rd)

A1ψ1 + A2ψ2
d=Cψ + D, (L.2.1)
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where ψ1 and ψ2 are independent copies of ψ. The symbol ψa d=ψb denotes equality in distri-
bution. In words, equation (L.2.1) says that the shape of ψ is preserved (up to scale and shift)
under addition.

Fundamental to the α-stable distribution is the the characteristic exponent or index of stability
α ∈ (0, 2], that links the quantities A1, A2 and C in (L.2.1).

Definition L.2. For any random variable ψ (vector ψ = ψ1, ψ2, . . . , ψd) is said to be a stable
variable (vector) in R (Rd) if ∀ψ ∈ Rd

+, ∃α(0, 2]

Cα = Aα
1 + Aα

2 . (L.2.2)

The characteristic exponent also determines to which abstract space the random variable belongs
to

Ψa ∈

⎧⎪⎨⎪⎩
Metric space, 0 < α < 1
Banach space, 1 ≤ α < 2
Hardy space, 2 ≤ α.

(L.2.3)

The stable distributions are of the form of a four-parameter family of functions, that in addition
to the or index of stability α also include the symmetry parameter β ∈ [−1, 1], the scale parameter
γ > 0 and the location parameter δ ∈ (−∞,∞). These parameters are subject to the following
constraints

0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, −∞ < δ <∞. (L.2.4)

The stable distribution is best used to model signals and noise that exhibit impulsive nature.
The characteristic exponent ranging between 0 and 2 is a measure of the thickness of the tails
of the distribution. Hence, the characteristic exponent sets the degree of impulsiveness.

A few specializations of the parameters in (L.2.4) should be mentioned. When the characteristic
exponent equals the upper limit, that is, α = 2 and the probability density function (pdf) exhibit
no skewness, that is, the symmetry parameter β = 0, then the stable distribution coincide with
a Gaussian distribution N(δ, 2γ2) d=S(α = 2, β = 0, γ, δ).

The Cauchy distribution is equivalent to C(α, μ) d=S(α = 1, β = 0, γ, δ) and the Lévy distribution
is obtained from L(α, β, c, μ) d=S(α = 1/2, β = 1, γ, δ = 0) and the degenerate (constant= μ)
distribution is obtained from S(α, β = 0, γ, δ = μ) [25, p. 10].

In the statistical analysis of α-stable distributions one faces many difficulties as compared with
the Gaussian case.

For Gaussian processes the minimum mean-square error (m.m.s.e.) criterion also minimizes the
probability of large estimation errors. The m.m.s.e. criterion, however, in no longer appropriate
for stable processes due to the lack of finite variance.

αS Property § 1. The class of univariate and multivariate stable distributions is very large
and cannot be parameterized. Hence, cumulative distribution functions (cdfs) or pdfs are usually
not known in closed-form. The stable univariate distribution is then instead described by its
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characteristic function

ψ(t) = exp{ıat− γ|t|α[1 + ıβ sign(t)ω(t, α)]}, (L.2.5)

where

ω(t, α) =

{
tan απ

2 , if α �= 1
2
π log |t|, if α = 1

(L.2.6)

and where sign( · ) denotes the signum function.

sign(t) =

⎧⎨⎩ −1, if t < 0
0, if t = 0
1, if t > 0,

(L.2.7)

Moreover, the lack of explicit densities causes difficulties or failure of many traditional methods
of estimation and simulation etc. Hence, the lack of analytical expressions for the pdf in general
makes it difficult building maximum likelihood (ML) estimators for the parameters. Moreover,
the presence of the factor log|θ| causes difficulties. The characteristic function is not continuous
at α = 1 except for β = 0. Generally the case α = 1 needs to be treated separately.

More information on the αS distributions can be found in [19, Ch. 2]. It suffice here to list the
following other properties of the αS distributions:

αS Property § 2. Non-existence of a closed-form expression for the probability density function
except for the cases α = 1 (Cauchy distribution) and α = 2 (Gaussian distribution).

αS Property § 3. The distribution decays as a power function (algebraic tail) as opposed to
an exponential function pertaining to the Gaussian distribution.

αS Property § 4. Only existence of fractional lower-order moments (FLOM). Hence, if the
characteristic exponent α < 2, then the second- or higher-order moments do not exist.

αS Property § 5. Some degradation of performance of adaptive algorithms derived assuming a
SαS distribution compared with least-squares techniques when exposed to Gaussian distributed
noise/signals. However, algorithms that are derived assuming a SαS distribution for the noise
and/or noise are generally more robust to modeling errors, e.g., in the α-parameter.

αS Property § 6. The estimation of the parameters including the characteristic exponent can
be cumbersome, due to the general lack of a closed-form expression for the pdf. Fortunately, we
can device an adaptive filter based on stochastic gradient methods that do not require closed-form
expressions.

αS Property § 7. Like the Gaussian distribution the family of distributions are smooth, uni-
modal, symmetric with respect to the median, and bell-shaped.

For multi-variate stable distributions we find some additional properties. Multi-variate also
become relevant as a complex RV can be regarded as a two-dimensional random vector whose
components are the real and imaginary parts.
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αS Property § 8. The autocovariance that is powerful tool in the study of Gaussian random
elements is not defined when α < 2. Instead the covariation of X1 with X2 [X1,X2]α is defined
for 1 < α < 2 by

[X1,X2]α �
∫

uc

x1x
〈α−1〉
2 μ( dr), 1 < α ≤ 2, (L.2.8)

where μ( · ) is the spectral measure of the SαS random vector (X1,X2) and where the signed
power a〈p〉 in turn is defined by

a〈p〉 =

{
ap, a ≥ 0
−|a|p, a < 0.

(L.2.9)

For SαS processes the covariation plays a role similar to covariance for Gaussian processes.

L.3 Symmetric Alpha-Stable Distributions

When positive and negative outcomes are equally likely, then the process posses no skewness and
would be SαS; that are defined by ψa d=−ψa. The subset of the general class of αS distributions
that is subject to the constraint on the symmetry parameter that β = 0 is very important in
practice. The Gaussian and Cauchy distributions belong to this class.

In this report SαS is used to model impulsive interference. Because the field of SαS has received
relative little attention in the active control communities, we devote this chapter for a brief review
of the basic results of SαS. A more complete presentation of the field and further applications
can be found in the textbooks [19, 25].

In [19, Ch. 9] a stable statistical-physical (as opposed to statistical-empirical) models for impulsive
noise is provided. It is shown that under appropriate assumptions on the spatial and temporal
distributions of the noise sources and the propagation conditions, the instantaneous amplitude
of received noise obeys the SαS distribution. The stable distributions are therefore characterized
by a peak in the probability function around a and then a more slowly decreasing tail. The
excursion from Gaussianity is governed by the α parameter. The symmetry parameter sets the
skewness. The scale parameter sets the dispersion around the mean and is therefore analogous
to the variance. The location parameter, or shift parameter sets the shift of the pdf.

The fraction p’th-order moment of a SαS rv is given by

E|ψa|p = C(p, α)γp/α, 0 < p < α, (L.3.1)

where

C(p, α) =
2p+1Γ(p+1

2 )Γ(− p
α )

απΓ(− p
2 )

(L.3.2)

and Γ( · ) denotes the gamma function.

In [27] a normalized correlation, moments and cumultants are defined. It is demonstrated that
these normalized quantities converge to the true values in probability Recent research fields
address the generalized statistical models for mixtures of Gaussian and impulsive noise.
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For simulation purposes we will use the standard SαS distribution for which a = 0 and γ = 1
with the corresponding probability density function

f(ψ; α, β) =
1
π

∫ ∞

0

exp(−tα) cos[ψt + βtαω(t, α)] dt. (L.3.3)

For the class of SαS random variable (RV) the so-called mixing property prevails:

Theorem 7. For X d=N(0, 2σ2) and Y d=S(α′ = α/2, β = −1, δ = 0) and independent from X,
then

Z = Y1/2X, (L.3.4)

where Z d=S(α, β = 0, σ, δ = 0).

Hence, Theorem 7 basically states that any SαS RV can be represented as the product of a
Gaussian RV and a PαS RV. The mixing property Theorem 7 can therefore be exploited for data
synthesis [14].

L.3.1 Sub Gaussian Symmetric Alpha-Stable Distributions

An important specialization of the SαS is the so-called Sub Gaussian Symmetric Alpha-Stable
Distributions abbreviated SGSαS. This distribution function has successfully been used to model
impulsive noise. The characteristic function2 is defined as

ψ(�) = exp
[
1
2
(�∗R�)α/2

]
(L.3.6)

and represents spherical invariant random processes.

The SGSαS model has also been used to model coherent detection of a signals embedded in heavy-
tailed noise with application to radar systems [32]. In such systems a contradicting requirement
on a high probability of detection and a low probability of false alarm exists. For a given data
intercept two mutually exclusive hypothesis can be made. The first hypothesis states that the
data stem from noise only. In the second hypothesis the data is considered as due to a signal
embedded in noise. In [32] it is demonstrated that a detector based on a multidimensional
Cauchy distribution exhibits resistance to the presence of sub-Gaussian interference and high
performance, compared with the performance of the Gaussian detector in Gaussian interference.

It is also argued that the gradient estimate in SαS becomes more and more sensitive to outliers
in the distribution as the characteristic exponent α decreases from Gaussian (α = 2) and down-
wards. Therefore, in a block update approach (refer to as momentum) the gradient estimates
can become less noisy and better convergence achieved. Following the block update procedure
both the fractional lower-order statistics (FLOS)-based algorithm and the block normalized LMS.
For the studied cases α = 1.2 and a 5-th order ARMA process a block length L = 3 seems

2Recall that the characteristic function and the density function f(x) constitute a Fourier transform pair

Ψx(ω) �
∫ ∞

−∞
f(x)eıωx dx. (L.3.5)
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to give a good trade-off between convergence speed and memory consumption. Moreover, by
the momentum approaches the performance of the normalized LMS and the proposed fractional
lower-order statistics became insignificant. FLOS mitigates the effects of heavy-tailed noise.

L.4 Positive Alpha-Stable Distributions

The PαS is often useful to describe phenomena related to energy or power which are examples
of signals where only positive outcomes are possible. In [24] the characteristics and potential
applications for the PαS is presented. For this distribution all negative-order moments exist, and
ratios of these moments are used to estimate alpha. Application areas that are examined include:
seismic activity, ocean wave variability, and radar sea clutter modulation.

L.5 Parameter Estimation

McCulloch [17] extended the quantile-based estimation approach to a more general case α ∈
[0.6, 2] and β ∈ [−1, 1]. Also the estimation problem there exists for α = 1 was solved.

The numerical properties of the empirical characteristic function (ECF) and projection method
(PROJ) estimators is studied in [22] and some methods for exploratory data analysis (EDA)
discussed. Noland [21] demonstrates that it is feasible to fit stable data from different physical
and economic systems and to use diagnostics to assess the goodness of fit. Moreover, Noland
[21] used [25, Thm. 2.3.1] to parameterizing multivariable stable distributions in terms of one
dimensional projections.

[23] The software package STABLE from Robust Analysis, Inc. is useful for computation of
basic quantities for stable distributions: densities, cumulative distribution functions, quantiles,
and simulation. This package has been used in chapter 2 on page 17 and in Appendix D on
page 547 for assessing the statistical properties of practical measurements. However, none of
these measurements actually exhibited stable distribution characteristics.

L.5.1 Parameter Estimation Symmetric α-Stable Distributions

The lack of closed-form expressions for pdf makes parameter estimation of SαS random variable
(RV) challenging. It is well known that important characteristics of a distribution can be deduced
from the moments of the distribution. It is therefore customary in statistical analysis to employ
first-, second-, and higher (third and fourth) order moments for density estimation. However,
the αS distributions do not possess higher order moments. Instead FLOM can be employed.

In [31] a real-time approach for the estimation of the parameters constituting the Alpha-Stable
distribution is proposed. The approach is hierarchical in structure and first the location param-
eter is estimated from sample median of the observations. Secondly, the characteristic exponent
is determined from extreme order statistics. Thirdly, the dispersion is determined based on frac-
tional lower order moments. Monte Carlo simulations revealed, however, that for α ≥ 1.5 the
bias error and an increasing variance in the estimate is observed.

Also most algorithms for blind channel identification of a finite-duration impulse response (FIR)
channel with non-Gaussian input are based on second- or higher order statistics (HOS).

They found that the value of p should be small for better estimation performance.
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Their experiments also showed that the standard deviation of the parameter estimators increases
as the order of the moment of Y = log|X | increases for a fixed sample size. The estimator is not
a ML estimator. Moreover, it has to be proven that the estimators are unbiased and consistent.

However, many signals encountered in real life are impulsive or skewed. Hence a Gaussian
autoregressive (AR) processes are not flexible enough. In [11] the general α-stable parametrization
problem including nonzero skew was solved analytically. Three types of estimators that have
closed-form solutions were proposed. However, the requirement of independent data time series
is enforced.

In [2] a target detection algorithm that incorporates SαS distribution for clutter modeling is
proposed.

L.6 Signal Synthesis

Various methods for the synthesis of α-stable signals exist [19, 30]. A numerical accurate repre-
sentation near α = 1 requires special treatment.

In [4, 18, 20] methods for simulating random samples for multivariate stable distributions is
presented.

L.7 Signal Processing

The non-Gaussianity of impulse noise implies that a noise-suppression filter should be non-linear.
In Kuruoğlu, Rayner, and Fitzgerald [12] proposed a nonlinear analogue of the Wiener filtering
for removing α-stable distributed noise. The algorithm extension to iteratively reweighted least-
squares (IRLS) is obtained by applying a Volterra expansion to the data. They called their
algorithm for polynolminal iteratively reweighted least-squares (PIRLS) due to the polynomial
entries involved. The superiority of the PIRLS over ordinary IRLS and in particular normalized
LMpN (NLMpN) and normalized LMAD (NLMAD) was demonstrated in an example of a synthesized
example of an audio signal corrupted with standard S(α = 1.5, β, γ, δ).

For adaptive filtering perspective it is probably better to overestimate the characteristic expo-
nents and chose a relative lower order in an least-mean-p-norm. It can be demonstrated that
the performance degradation by using a SαS-optimized adaptive filter algorithm in a Gaussian
noise environment is marginal. However, if a least-mean square criteria is used for under impulse
interference conditions a pronounced degradation is observed.

In [13] the IRLS method that involves the least lp-norm (LLpN) is used in the estimation of AR

coefficients of SαS processes. The IRLS was proposed by Yarlagadda, Bednar, and Watt [35].
The convergence of the IRLS is analyzed in [3].

In [1] an adaptive filtering approach for non-Gaussian stable processes is proposed.

L.8 Signal Detection

Most of the classical non-Gaussian receiver design techniques cannot be extended to the sym-
metric α-stable noise case since these techniques require an explicit compact analytical form for
the probability density function of the noise distribution. In general α-stable distributions do not
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possess such form. A remedy to this lack of an analytical pdf is to represent the noise as a scale
mixtures of Gaussians [14]. Any SαS RV can be represented as the product of a Gaussian RV and
a positive-stable RV with appropriate parameters [14]. An approximate analytical expression for
the pdf is obtained.

In [34] the performance of constant false alarm rate (CFAR) processors subjected to Pearson-
distributed clutter is investigated.

In [5] a near-optimal test statistics for the detection of arbitrary non-stationary second-order
complex signals, using a bivariate, isotropic α-stable model for the noise is developed. It is
demonstrated that this test statistics offers considerably enhanced performance compared with
a locally optimal linear receiver in even mildly impulsive noise.

L.9 Future Research Activities

The following list of future activities are foreseen:

• In the active control literature the study of performance under non-Gaussian conditions
has received very little attention. Therefore, the influence of the plant and the filtered-x
methods (cf., chapter 6) used to take the plant response into account will be subject to
further analysis.

• It is well-known that the recursive least-squares is superior to the least-mean-squares in
most cases. The recursive least-squares is an optimal solution to the least-squares opti-
mization problem, but can also be expressed as a stochastic gradient approximation to the
steepest descent method [26, Ch. 5]. It should be investigated if an equivalent recursive
deterministic algorithm can be formulated for the α-distributed signals.

• To demonstrate general applicability the analysis could optionally include radar clutter
data.

Hitherto, the work on α-stable signals has been relative limited. Focus has been on deriving
methods that can be use to deduce the statistical properties of a random process (RP). Only a few
studies address the design of adaptive filters. Hence, the potential of adaptive filtering of α-stable
distributed disturbances has not been full exploited at least in an active control (AC) context. In
[16] the convergence properties of the signed-error and sign-sign algorithm for stationary random
processes with index 1 < α < 2 is illuminated. By using system theoretic arguments, e.g.,
[26, Ch. 6-9] such analysis should be extended to include steady state performance and tracking
capabilities. Moreover, the robustness to model parameter errors shall be investigated.
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[15] Paul Lévy. Théorie des erreurs la loi de Gauss et les lois exceptionelles. Bulletin de la société
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M. FOURIER TRANSFORMS

In this appendix the continuous-time Fourier transform and the discrete-time Fourier transform
will formally be defined.

M.1 Fourier Transforms

Mathematical conditions for the existence of the Fourier transform can be very involved [1,
App. A.3].

M.1.1 Continuous-Time Fourier Transforms

Suppose ψa( · ) is a function that takes values on the real axis and outputs an m-vector with
real or complex entries, that is, ψa( · ) : R → Km. Moreover, suppose that ψa( · ) is a Lebesgue
integrable function1, that is, ψa( · ) ∈ L1(R; Km), then the bilateral continuous-time Fourier
transform of ψa( · ) ∈ L1(R; Km) designated by ψ̃a(ıω) is defined by2

ψ̃a(ıω) = (Fctψa)(ıω) �
∫ ∞

−∞
ψa(t)e−ıωt dt, ω ∈ R. (M.1.3)

The operator Fct is the bilateral continuous-time Fourier transform operator Fct : L1(R; Km)→
L1(R; Cm). For every ψa( · ) ∈ L1(R; Km) the Fourier transform ψ̃a(ıω) is continuous in ω ∈ R
and tends to 0 as ω → ∓∞. Hence, absolute integrability is a sufficient condition for the
existence of the Fourier transform (M.1.3) and also guarantees uniform convergence.

Some functions are not absolute-integrable, but are square-integrable (finite-energy), e.g., the
sinc( · ) function. In such cases the Fourier transform of signals ψa( · ) ∈ L2(R; Km) is required.
However, as L2(R; Km) � L1(R; Km) [1, (A.3.19)] the integral (M.1.3) is not necessarily con-

1In abstract integration theory Lp-spaces are defined by considering an interval T ⊂ R and a Banach space
(X, ‖ · ‖X). For p ∈ [1,∞] the p-norm of a Lebesgue measurable function x( · ) : T → X given by [1, App. A.3]

‖x( · )‖p =
[∫
T
‖x(t)‖pX dt

]1/p
, ‖x( · )‖∞ = inf{α; ‖x(t)‖X ≤ α, a.e. t ∈ T}. (M.1.1)

When using the p vector norm for the integrand in (M.1.1), that is, ‖y‖X = ‖y‖p we need the following
definition [1, App. A.1]: The vector norm for y ∈ Cm and p ∈ [1,∞] is defined by

‖y‖p = (|y1|p + |y2|p + · · ·+ |ym|p)1/p, 1 ≤ p <∞, ‖y‖∞ = max{|y1|, |y2|, . . . , |ym|}. (M.1.2)

2The notation ıω for the continuous-time Fourier transform (CTFT) is motivated by considering the substi-
tution of the Laplace transform variable s → ıω. Then, the CTFT; when it exists, is simply ψ̃a(s) with s = ıω.
In other contexts, for instance, among mathematicians the simpler notion ψ̃a(ω) is applied.
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vergent. Instead the Fourier Plancherel transform of ψa( · ) can be obtained from a limiting
operation

ψ̃a( · ) = lim
N→∞

ψ̃a,N ( · ) in L2(R; Cm), ψ̃a,N(ıω) �
∫ N

−N

ψa(t)e−ıωt dt, ω ∈ R, (M.1.4)

where N ∈ N. With the Fourier Plancherel transform convergence takes place a.e. For example
(Fct sinc(a · ))(ıω) = π

a 1[−a,a](ıω), a.e. ω ∈ R with the exceptions found at ω = ∓a.

In engineering applications it is useful to have Fourier transform representation for commonly
used functions, for instance, constant functions, Euler functions or periodic functions that are
neither absolutely-integrable nor square-integrable and therefore strictly speaking, do not have
Fourier transforms. Here the theory of generalized functions can be invoked and usage of Dirac
delta ”functions” made3.

The inverse transform of ψ̃a ∈ L1(R, Cm) is defined by4

ψa(t) = (F−1
ct ψ̃a)(t) � 1

2π

∫ ∞

−∞
ψ̃a(ıω)e+ıωt dω, a.e. t ∈ R, (M.1.5)

where F−1
ct is the inverse continuous-time Fourier transform (bilateral) operator. If, additionally

ψa( · ) is continuous then this inversion formula holds for all t ∈ R.

M.1.2 Discrete-Time Fourier Transforms

Suppose ψa( · ) is a function that takes values with indices in T ⊂ Z and outputs an m-vector
with real or complex entries, that is, ψa( · ) : Z → Km. Moreover, suppose that ψa( · ) is
a Lebesgue summable function5, that is, ψa( · ) ∈ l1(Z; Km), then the bilateral discrete-time
Fourier transform of ψa( · ) ∈ l1(Z; Km) designated by ψ̃a(eıθ)6 is defined by

ψ̃a(eıθ) = (Fdtψa)(eıθ) �
∞∑

n=−∞
ψa(n)e−ıθn; θ ∈ [−π, π]. (M.1.7)

The operator Fdt is the DTFT (bilateral) operator. The series converges uniformly in θ ∈ [−π, π]
and its limit ψ̃a( · ) : [−π, π]→ Cm is continuous with ψ̃a(−π) = ψ̃a(π).

The corresponding inverse transform are defined by

ψa(n) = (F−1
dt ψ̃a)(n) � 1

2π

∫ π

−π

ψ̃a(eıθ)e+ıθn dθ, n ∈ Z, (M.1.8)

3Formally, Dirac delta functions are not mathematical functions, but considered as distributions.
4The definition is not unique. A symmetric definition can also be formulated.
5In functional analysis lp-spaces are defined by considering an interval T ⊂ Z and a Banach space (X, ‖ · ‖X).

For p ∈ [1,∞] the p-norm of a Lebesgue measurable function x( · ) : T → X given by [1, App. A.3]

‖x( · )‖p =
[∑
t∈T
‖x(t)‖pX

]1/p
, 1 ≤ p <∞, ‖x( · )‖∞ = sup

t∈T
‖x(t)‖X . (M.1.6)

6The notation eıθ for the discrete-time Fourier transform (DTFT) is motivated by considering the substitution
of the z-domain variable: z ← eıθ . Then, the DTFT; when it exists, is simply ψ̃a(z) with z = eıθ. In other contexts,
for instance, among mathematicians the simpler notion ψ̃a(θ) is used.
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where F−1
dt denotes the bilateral inverse discrete-time Fourier transform operator.
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N. SIGNAL ALIASING EFFECTS

N.1 Introduction

In this chapter we attempt to establish expressions in general for aliasing effects encountered
in active noise control systems (ANCSs). In particular the relation between the continuous-
time ordinary coherence squared function and the corresponding discrete-time ordinary coher-
ence squared function will be derived. The conversion from the continuous-time domain to the
discrete-time domain and back is related with a risk of introducing aliasing and imaging prob-
lems. In audio system design audible effects from the conversion stages are of concern. In active
control system design audible artifacts from conversion is also of concern. In addition aliased
or imaging components that are not sufficiently suppressed may also effect the active noise
reduction (ANR) performance. Hence, in order to prevent aliasing an anti-aliasing filter (AAF)
precedes each of the analogue to digital converters (ADCs). Similarly, in order to prevent imag-
ing problems a reconstruction filter (RF) (or anti-imaging filter) succeeds each of the digital to
analogue converters (DACs). In multi-rate systems (MRSs) a design objective is to employ a very
fast system (zeroth level) sampling frequency so that almost negligible conversion delays are ob-
tained as discussed in section 5.2 on page 249. However, similar potential aliasing and imaging
problems are related to the use of the decimation interpolation filters (DIFs).

The performance of an ANCS is to a large extent determined by the inherent coherence functions
between the reference sensors and the error sensors that in turn are determined from the statistical
properties of the signals as explained in detail in chapter 2. The drop in coherence associated
with the transition from the continuous-time domain to the discrete-time domain and the reverse
transition and as a consequence a drop in ANR performance will be a function of the pertinent
auto- and cross-spectral density functions over an extended frequency range beyond the Nyquist
frequency and the choice of AAFs or decimation filters (DFs).

In ANCS delays in the control loop are of particular importance in the feedback system (FBS)
design as they ultimately will limit the operational bandwidth of the system when exposed to
random noise as discussed in Appendix A on page 529. Unfortunately, the requirements on small
delays and small aliasing effects are conflicting. Hence, the active control (AC) engineer must
make a trade-off between on one side avoiding aliasing/imaging effects and on the other side not
introducing delays associated with the AAFs and RFs.

This work has practical applications to the design of AAFs and DIFs used for suppression of aliased
components in the ordinary sampled case and the decimated case respectively. The AAFs/DFs

may be used both in the error sensors, the reference sensors and possible performance sensors.
The requirement imposed by the three sensor types on the AAFs/DFs, however, will be different.

To the author’s best knowledge no previous work in this field has yet been published. Some
guidelines related to this topic, however, is included in [1, Ch. 10].
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N.1.1 Chapter Outline

This chapter is organized as follows. Following these introductory remarks we decompose a
signal into an unaliased component and an aliased component in section N.2. For convenience
subsection N.2.1 lists the basic continuous-time and discrete-time ordinary coherence squared
functions. Moreover, the well known Fourier transform relations between the auto- and cross-
correlation functions and the auto- and cross-spectral density functions are established. Next,
in subsection N.2.2 we similarly split the discrete-time auto- and cross-correlation functions into
unaliased-, aliased- and cross aliased-unaliased signal components. Using Fourier transform
relations between the auto- and cross-correlation functions and the auto- and cross-spectral
density functions we establish equivalent partitioning of the discrete-time auto- and cross-spectral
density functions into unaliased-, aliased- and cross aliased-unaliased spectral components in
subsection N.2.3. The analysis then take a different approach for periodic signals and random
signals.

In section N.3 we apply our method to the practical design of AAFs in a single-rate ANR system
and DFs in a multirate (MR) ANR system. Finally, we will summarize the main conclusions from
this chapter in section N.4.

N.2 Decomposition of Signals into Aliased and Unaliased Components

In our derivation it will be useful to decompose a signal into an unaliased component and an
aliased component. Accents

�
{} and

�
{} will be used to designate the unaliased- and aliased

signal components respectively. Hence, our arbitrary random sequences (RSs) ψa(i), ψb(i) may
be decomposed according to

ψa(i) =
�
ψa(i) +

�
ψa(i) (N.2.1a)

ψb(i) =
�
ψb(i) +

�
ψb(i). (N.2.1b)

N.2.1 Coherence

A comprehensive discussion of coherence functions is provided in chapter 2 on page 17. In this
section the non-unity ordinary coherence squared function associated with aliasing effects will be
analyzed in detail. These results will subsequently be used in section N.3 on page 803 to establish
some simple design criteria for the filters that partake in the conversion from the continuous-time
domain to the discrete-time domain. The continuous-time ordinary coherence squared function
between the ψa and ψb is

γ2
ψaψb

(ω) =
|Sψaψb

(ω)|2
Sψaψa(ω)Sψbψb

(ω)
, ω ∈ R. (N.2.2)

The conversion from the continuous-time domain to the discrete-time domain aliasing implies that
aliased spectral components and cross aliased-unaliased spectral components enter the discrete-
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time ordinary coherence squared function

γ2
ψaψb

(θ) =
|Sψaψb

(θ)|2
Sψaψa(θ)Sψbψb

(θ)
, −π ≤ θ ≤ π. (N.2.3)

Expectably, this will lead to a decrease in the ordinary coherence squared function (γ2
ψaψb

(θ) ≤
γ2

ψaψb
(ω)|θ=ωT ). In the subsequent text we will give a proof of this.

The key to obtain the relation between γ2
ψaψb

(θ) and γ2
ψaψb

(ω)|θ=ωT is to express relations be-
tween the continuous-time auto- and cross-spectral density functions and their discrete-time
counterparts. It should be recalled that the auto spectral density function Sψaψa(ω) and auto cor-
relation function Rψaψa(τ) constitute a continuous-time Fourier transform pair and that the same
applies to the cross-spectral density function Sψaψb

(ω) and cross-correlation function Rψaψb
(τ),

that is,

Sψaψa(ω) Fct←→ Rψaψa(τ) (N.2.4a)

Sψaψb
(ω) Fct←→ Rψaψb

(τ). (N.2.4b)

Similarly, the auto spectral density function Sψaψa(θ) and auto correlation function Rψaψa(n)
constitute a discrete-time Fourier transform pair and that the same applies to the cross-spectral
density function Sψaψb

(θ) and cross-correlation function Rψaψb
(n).

Sψaψa(θ) Fdt←→ Rψaψa(n) (N.2.5a)

Sψaψb
(θ) Fdt←→ Rψaψb

(n). (N.2.5b)

For convenience a formal definition of the pertinent Fourier transformations is provided in
Appendix M on page 787.

N.2.2 Unaliased, Aliased and Cross Aliased-Unaliased Correlation Functions

In this section we will establish an expression for the discrete-time ordinary coherence squared
function in terms of the unaliased-, aliased- and cross aliased-unaliased spectral components.
This has applications to the design of AAFs and DIFs used for suppression of aliased components
in the ordinary sampled case and decimated case respectively.

From [2, Ch. 4] we find the following link between the continuous-time Fourier transform ψ̃a(ıω)
of a continuous-time signal ψa(t) and the discrete-time Fourier transform ψ̃a(eıθ) of the corre-
sponding sampled sequence ψa(nT )

ψ̃a(eıθ) =
1
T

∞∑
k=−∞

ψ̃a

(
ı
( θ

T
− 2πk

T

))
. (N.2.6)

Often it can be assumed that the signal is band limited such that only the first aliasing-bands
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Mm(Am, t)

Sm(F 0
m(ıω), f0

s,m, NADC,m)

D1
m(F 1

m(eıθ), M1
↓,m, L1

↑,m)

D2
m(F 2

m(eıθ), M2
↓,m, L2

↑,m)

ψm(rm, t)

ψM
m (t)

ψS
m(t0m)

ψD1

m (t1m)

ψD2

m (t2m)

ψm(i)

�
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t0m

�

gm
↓

�

gm
t1m

�

gm
t2m

Fig. N.1: Plant Receive Part Sensor Sampling.
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are of concern:

ψ̃a(eıθ) ≈ 1
T

1∑
k=−1

ψ̃a

(
ı
( θ

T
− 2πk

T

))
. (N.2.7)

Referring to (N.2.1) and (N.2.6) we designate by
�
ψ̃a(eıθ) the unaliased signal component of

ψ̃a(eıθ) that is defined by

�
ψ̃a(eıθ) =

1
T

ψ̃a

(
ı
θ

T

)
(N.2.8)

and we designate by
�
ψ̃a(eıθ) the aliased signal component of ψ̃a(eıθ) that is defined by

�
ψ̃a(eıθ) =

1
T

∞∑
k=−∞

k �=0

ψ̃a

(
ı
( θ

T
− 2πk

T

))
, (N.2.9)

which sometimes may be approximated by

�
ψ̃a(eıθ) ≈ 1

T
ψ̃a

(
ı
(θ + 2π

T

))
+

1
T

ψ̃a

(
ı
(θ − 2π

T

))
. (N.2.10)

In our context ψa(t) could represent the signal succeeding the AAF. Then, ψa(i) would represent
the signal following the continuous-time to discrete-time conversion. A design objective is to
formulate requirements on the attenuation provided by the AAF as a function of frequency such
that the residual aliasing side band content left after the AAF is sufficiently low.

For the continuous-time random signals the Fourier transform (M.1.3) or (M.1.4) do generally not
exist as ψa( · ) /∈ L1(R; R) ∪ L2(R; R). Instead the autocovariance and autocorrelation functions
that are aperiodic finite-energy, that is, L2(R; C), functions will be used to represent the statistical
properties of the signals. Similar considerations lead to the use of the aperiodic finite-energy
autocovariance and autocorrelation sequences1 that subsequently will be defined to represent
the statistical properties of the discrete-time random signals. For the same reasons, the spectral
representation of the random signals plays an important role in describing input-output relations
for a linear time-invariant (LTI) system excited by a stochastic signal.

The time-variant auto correlation function of an arbitrary nonstationary continuous-time random
signal ψa(t) denoted by Rψaψa(t1, t2) and the time-variant cross-correlation function between two
arbitrary nonstationary continuous-time random signals ψa(t), ψb(t) denoted by Rψaψb

(t1, t2) are
defined by

Rψaψa(t1, t2) = Eψa(t1)ψ∗
a(t2) (N.2.11a)

Rψaψb
(t1, t2) = Eψa(t1)ψ∗

b(t2). (N.2.11b)

1For discrete-time signals we will use the terms function and sequence synonymously.
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For discrete-time random signals similar definitions pertain. The time-variant auto correlation
function of an arbitrary nonstationary discrete-time random signal ψa(n) denoted by Rψaψa(n1, n2)
and the time-variant cross-correlation function between two arbitrary nonstationary discrete-time
random signals ψa(n), ψb(n) denoted by Rψaψb

(n1, n2) are defined by

Rψaψa(n1, n2) = Eψa(n1)ψ∗
a(n2) (N.2.12a)

Rψaψb
(n1, n2) = Eψa(n1)ψ∗

b(n2). (N.2.12b)

If ψa(t) and ψb(t) exhibit stationarity2 then the following time-independent definitions for the
continuous-time ACF and CCF are obtained

Rψaψa(τ) = E ψa(t)ψ∗
a(t− τ) (N.2.13a)

Rψaψb
(τ) = E ψa(t)ψ∗

b(t− τ). (N.2.13b)

Similarly if ψa(i) and ψb(i) exhibit stationarity3 then the following time-independent definitions
for the continuous-time ACS and CCS are obtained

Rψaψa(n) = E ψa(m)ψ∗
a(m− n) (N.2.14a)

Rψaψb
(n) = E ψa(m)ψ∗

b(m− n). (N.2.14b)

Furthermore, if the underlying process governing ψa(m) and ψb(m) can be considered as ergodic
processes then the following time-averaged auto correlation function 〈Rψaψa(τ)〉 and cross-
correlation function 〈Rψaψb

(τ)〉 are obtained

〈Rψaψa(τ)〉 = lim
T ′→∞

1
2T ′

∫ T ′

−T ′
ψa(t)ψ∗

a(t− τ) dt � {ψa(τ)}{ψ∗
a(t− τ)} (N.2.15a)

〈Rψaψb
(τ)〉 = lim

T ′→∞

1
2T ′

∫ T ′

−T ′
ψa(t)ψ∗

b (t− τ) dt � {ψa(τ)}{ψ∗
b (t− τ)} (N.2.15b)

for continuous-time signals4 and

〈Rψaψa(n)〉 = lim
L→∞

1
2L + 1

L∑
m=−L

ψa(m)ψ∗
a(m− n) � {ψa(m)}{ψ∗

a(m− n)} (N.2.16a)

〈Rψaψb
(n)〉 = lim

L→∞

1
2L + 1

L∑
m=−L

ψa(m)ψ∗
b (m− n) � {ψa(m)}{ψ∗

b (m− n)} (N.2.16b)

2Formally, the transitions from (N.2.11a) to (N.2.13a) and from (N.2.11b) to (N.2.13b) require stationarity in
a autocorrelation function (ACF) sense and stationarity in a cross correlation function (CCF) sense respectively
[3].

3Formally, the transitions from (N.2.12a) to (N.2.14a) and from (N.2.12b) to (N.2.14b) require stationarity in
a autocorrelation sequence (ACS) sense and stationarity in a cross correlation sequence (CCS) sense respectively
[3].

4Formally, the transitions from (N.2.13a) to (N.2.15a) and from (N.2.13b) to (N.2.15b) require ergodicity in
an ACF sense and ergodicity in a CCF sense respectively [3].
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for discrete-time signals5.

Next we decompose the auto- and cross-correlation function into unaliased-, aliased- and cross
aliased-unaliased components. By insertion of (N.2.1) in (N.2.14a) we obtain

Rψaψa(n) = Eψa(m)ψ∗
a(m− n) (N.2.17a)

= E {
�

ψa(m)
�

ψ∗
a(m− n) +

�
ψa(m)

�
ψ∗

a(m− n) +
�

ψa(m)
�

ψ∗
a(m− n) +

�
ψa(m)

�
ψ∗

a(m− n)}
(N.2.17b)

= R�
ψa

�
ψa

(n) + R�
ψa

�
ψa

(n) + R�
ψa

�
ψa

(n) + R�
ψa

�
ψa

(n), (N.2.17c)

where R�
ψa

�
ψa

(n) represents the ACF of unaliased components of ψa, R�
ψa

�
ψa

(n) denotes the CCF

between unaliased and components of ψa and similarly R�
ψa

�
ψb

(n) is the CCF between aliased

components of ψa and unaliased components of ψb and finally R�
ψa

�
ψa

(n) is the ACF of aliased

components of ψa. The second and third CCFs are related as R�
ψa

�
ψa

(n) = R∗
�
ψa

�
ψa

(−n).

By insertion of (N.2.1) in (N.2.14b) we obtain

Rψaψb
(n) = Eψa(m)ψ∗

b(m− n) (N.2.18a)

= E {
�

ψa(m)
�

ψ∗
b (m− n) +

�
ψa(m)

�
ψ∗

b (m− n) +
�

ψa(m)
�

ψ∗
b(m− n) +

�
ψa(m)

�
ψ∗

b(m− n)}
(N.2.18b)

= R�
ψa

�
ψb

(n) + R�
ψa

�
ψb

(n) + R�
ψa

�
ψb

(n) + R�
ψa

�
ψb

(n), (N.2.18c)

where R�
ψa

�
ψb

(n) represents the CCF between unaliased components of ψa and ψb, R�
ψa

�
ψb

(n)

denotes the CCF between unaliased components of ψa and aliased components of ψb and similarly
R�

ψa

�
ψb

(n) is the CCF between aliased components of ψa and unaliased components of ψb and

finally R�
ψa

�
ψb

(n) is the CCF between aliased components of ψa and ψb.

Note that in general R�
ψa

�
ψb

(n) �= R∗
�
ψa

�
ψb

(−n).

N.2.3 Unaliased, Aliased and Cross Aliased-Unaliased Power Spectra

Next we want an expression for the time-averaged cross-spectral density functions in terms of
the unaliased-, aliased- and cross aliased-unaliased spectral components. The equivalent auto
spectral density functions are readily obtained from substituting ψb by ψa. Using the linearity
property of the discrete-time Fourier transform and the relations (N.2.5b) and (N.2.18c) we may
similarly decompose the cross-spectral density function by

Sψaψb
(θ) = S�

ψa

�
ψb

(θ) + S�
ψa

�
ψb

(θ) + S�
ψa

�
ψb

(θ) + S�
ψa

�
ψb

(θ), (N.2.19)

5Formally, the transitions from (N.2.14a) to (N.2.16a) and from (N.2.14b) to (N.2.16b) require ergodicity in
an ACS sense and ergodicity in a CCS sense respectively [3].
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where the following discrete-time Fourier transform pairs are involved

S�
ψa

�
ψb

(θ) Fdt←→ R�
ψa

�
ψb

(θ) (N.2.20a)

S�
ψa

�
ψb

(θ) Fdt←→ R�
ψa

�
ψb

(θ) (N.2.20b)

S�
ψa

�
ψb

(θ) Fdt←→ R�
ψa

�
ψb

(θ) (N.2.20c)

S�
ψa

�
ψb

(θ) Fdt←→ R�
ψa

�
ψb

(θ) (N.2.20d)

In (N.2.20) S�
ψa

�
ψb

(θ) represents the CSDF between unaliased components of ψa and ψb, S�
ψa

�
ψb

(θ)

is the CSDF between unaliased components of ψa and aliased components of ψb, S�
ψa

�
ψb

(θ) is the

CSDF between aliased components of ψa and unaliased components of ψb and finally, S�
ψa

�
ψb

(θ)

is the CSDF between aliased components of ψa and ψb.

Once we have obtained expressions for the aliased-unaliased spectra in (N.2.20) we may substitute
into expression (N.2.3) on page 793 for the discrete-time ordinary coherence squared function

γ2
ψaψb

(θ) = ∣∣∣S�
ψa

�
ψb

(θ) + S�
ψa

�
ψb

(θ) + S�
ψa

�
ψb

(θ) + S�
ψa

�
ψb

(θ)
∣∣∣2(

S�
ψa

�
ψa

(θ) + S�
ψa

�
ψa

(θ) + S�
ψa

�
ψa

(θ) + S�
ψa

�
ψa

(θ)
)(

S�
ψb

�
ψb

(θ) + S�
ψb

�
ψb

(θ) + S�
ψb

�
ψb

(θ) + S�
ψb

�
ψb

(θ)
) ,

− π ≤ θ ≤ π. (N.2.21)

Now the product of the two sequences {
�
ψa(m − n)} and {

�
ψ∗

b(m)} with discrete-time Fourier

transform (DTFT) e−ıθn
�
ψ̃a(eıθ) and

�
ψ̃∗

b(e
ıθ) respectively can be determined from an inverse

discrete-time Fourier transform of the periodic convolution of the corresponding DTFT [2, Ch. 2].
Hence, we may obtain the first term in (N.2.19), that is, the cross-spectral density function (CSDF)
between unaliased components of ψa and ψb S�

ψa

�
ψb

(θ) by

S�
ψa

�
ψb

(θ) � (FdtR�
ψa

�
ψb

)(e−ıθ) (N.2.22a)

=
(
Fdt E

�
ψa(m− n)

�
ψ∗

b(m)
)
(e−ıθ) (N.2.22b)

using the shift and modulation properties of a discrete-time Fourier transform [2, Ch. 2.9] gives

S�
ψa

�
ψb

(θ) =
1
2π

∫ π

−π

Ee−ıθ′n
�
ψ̃a(eıθ′

)
�
ψ̃∗

b(e
ı(θ−θ′)) dθ′ (N.2.22c)
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insertion of (N.2.8) to obtain

S�
ψa

�
ψb

(θ) =
1
2π

∫ π

−π

Ee−ıθ′n 1
T

ψ̃a

(
ı
(θ′

T

)) 1
T

ψ̃∗
b

(
ı
(θ − θ′

T

))
dθ′ (N.2.22d)

=
1

2πT

∫ π/T

−π/T

Ee−ıω′τ ψ̃a(ıω′)ψ̃∗
b (ı(ω − ω′)) dω′. (N.2.22e)

By considering the expression (N.2.5b) for the continuous-time cross-spectral density function
we obtain

Sψaψb
(ω) � (FctRψaψb

)(ıω) (N.2.23a)

=
(
Fct E ψa(t− τ)ψ∗

b(t)
)
(ıω) (N.2.23b)

using the product rule and translation property of a continuous-time Fourier transform [4, Ch. 2]
gives

Sψaψb
(ω) =

1
2π

∫ ∞

−∞
Ee−ıω′τ ψ̃a(ıω′)ψ̃∗

b (ı(ω − ω′)) dω′. (N.2.23c)

From (N.2.22e) and (N.2.23c) we recognize (as expected) that TS�
ψa

�
ψb

(θ) = Sψaψb
(ω)|θ=ωT holds

provided that ψa(t), ψb(t) are bandlimited to [− fs

2 , fs

2 ].

The second term in (N.2.19), that is, the unaliased-aliased cross spectra S�
ψa

�
ψb

(θ) is obtained

from

S�
ψa

�
ψb

(θ) �
(
FdtR�

ψa

�
ψa

(n)
)
(e−ıθ) (N.2.24a)

=
(
Fdt E

�
ψa(m− n)

�
ψ∗

b (m)
)
(e−ıθ) (N.2.24b)

=
1
2π

∫ π

−π

E e−ıθ′n
�
ψ̃a(eıθ′

)
�
ψ̃∗

b (e
ı(θ−θ′)) dθ′ (N.2.24c)

insertion of (N.2.8) and (N.2.9) to obtain

S�
ψa

�
ψb

(θ) =
1
2π

∫ π

−π

E e−ıθ′n 1
T

∞∑
k=−∞

k �=0

ψ̃a

(
ı
(θ′

T
− 2πk

T

)) ∞∑
k=−∞

k=0

ψ̃∗
b

(
ı
(θ − θ′

T
− 2πk

T

))
dθ′

(N.2.24d)

=
1

2πT 2

∫ π

−π

Ee−ıθ′n
∞∑

k=−∞
k �=0

ψ̃a

(
ı
(θ′

T
− 2πk

T

))
ψ̃∗

b

(
ı
(θ − θ′

T

))
dθ′ (N.2.24e)

=
1

2πT

∫ π/T

−π/T

E e−ıω′τ
∞∑

k=−∞
k �=0

ψ̃a

(
ı(ω′ − kω)

)
ψ̃∗

b

(
ı(ω − ω′)

)
dω′. (N.2.24f)
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If the approximation in (N.2.7) holds we readily obtain

S�
ψa

�
ψb

(θ) ≈ 1
2πT

∫ π/T

−π/T

E e−ıω′τ 1
T

(
ψ̃a

(
ı(ω′ + ω)

)
+ ψ̃a

(
ı(ω′−ω)

))
ψ̃∗

b

(
ı(ω−ω′)

)
dω′. (N.2.25)

Likewise the third term in (N.2.19), that is, the aliased-unaliased cross spectra S�
ψa

�
ψb

(θ) is

obtained from

S�
ψa

�
ψb

(θ) �
(
FdtR�

ψa

�
ψa

(n)
)
(e−ıθ) (N.2.26a)

=
(
Fdt E

�
ψa(m− n)

�
ψ∗

b(m)
)
(e−ıθ) (N.2.26b)

=
1
2π

∫ π

−π

Ee−ıθ′n
�
ψ̃a(eıθ′

)
�
ψ̃∗

b(e
ı(θ−θ′)) dθ′ (N.2.26c)

insertion of (N.2.8) and (N.2.9) to obtain

S�
ψa

�
ψb

(θ) =
1
2π

∫ π

−π

Ee−ıθ′n 1
T

∞∑
k=−∞

k=0

ψ̃a

(
ı
(θ′

T
− 2πk

T

)) 1
T

∞∑
k=−∞

k �=0

ψ̃∗
b

(
ı
(θ − θ′

T
− 2πk

T

))
dθ′

(N.2.26d)

=
1

2πT 2

∫ π

−π

E e−ıθ′nψ̃a

(
ı
θ′

T

) ∞∑
k=−∞

k �=0

ψ̃∗
b

(
ı
(θ − θ′

T
− 2πk

T

))
dθ′ (N.2.26e)

=
1

2πT

∫ π/T

−π/T

Ee−ıω′τ ψ̃a(ıω′)
∞∑

k=−∞
k �=0

ψ̃∗
b

(
ı(ω − ω′ − kω)

)
dω′. (N.2.26f)

Note that in general S�
ψa

�
ψb

(θ) �= S�
ψa

�
ψb

(θ).

If the approximation in (N.2.7) holds we readily obtain

S�
ψa

�
ψb

(θ) ≈ 1
2πT

∫ π/T

−π/T

Ee−ıω′τ ψ̃a(ıω′)
(

ψ̃∗
b

(
ı(2ω − ω′)

)
+ ψ̃∗

b (−ıω′)
)

dω′. (N.2.27)

The fourth term in (N.2.19), that is, the spectra of the cross correlation sequence of the aliased
signals S�

ψa

�
ψb

(θ) is obtained by
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S�
ψa

�
ψb

(θ) � Fdt{R�
ψa

�
ψa

(n)} (N.2.28a)

=
1
2π

∫ π

−π

E e−ıθ′n
�
ψ̃a(eıθ)

�
ψ̃∗

b(e
ı(θ−θ′)) dθ′ (N.2.28b)

=
1
2π

∫ π

−π

E e−ıθ′n 1
T

∞∑
k=−∞

k �=0

ψ̃a

(
ı
(θ′

T
− 2πk

T

)) 1
T

∞∑
k=−∞

k �=0

ψ̃∗
b

(
ı
(θ − θ′

T
− 2πk

T

))
dθ′

(N.2.28c)

=
1

2πT

∫ π/T

−π/T

Ee−ıω′τ
∞∑

k=−∞
k �=0

ψ̃a

(
ı(ω′ − kω)

) ∞∑
k=−∞

k �=0

ψ̃∗
b

(
ı(ω − ω′ − kω)

)
dω′. (N.2.28d)

If the approximation (N.2.7) holds we may simplify (N.2.28)

S�
ψa

�
ψb

(θ) ≈ 1
2πT

∫ π/T

−π/T

E e−ıω′τ

(
ψ̃a

(
ı(ω′+ω)

)
+ψ̃a

(
ı(ω′−ω)

))(
ψ̃∗

b

(
ı(2ω−ω′)

)
+ψ̃∗

b(−ıω′)
)

dω′.

(N.2.29)

By inspection of the expressions (N.2.22), (N.2.24), (N.2.26) and (N.2.28) for the cross-spectral
density functions we may unfortunately draw the conclusion that some simplifications are nec-
essary in order to obtain practical results.

N.2.4 Anti-Aliasing and Decimation Filters

Referring to the discussion in section 5.3 on page 252 and Figure N.1 on page 794 the frequency
response of the AAF will now be taking into account. Moreover, the results obtained can be used
for synthesis of AAFs in AC where a compromise between filter delays and aliasing effects prevail.

The discussion now takes different form dependent on the properties of the signals.

N.2.5 Periodic Signals

A signal ψa may be constituted by a number of periodic signals , say, Nψa
ps . Then aliasing might

be of concern if the sample frequency ωs coincide with an integer number of a periodic signal ωi

and therefore will coincide with one of the harmonics of this periodic signal. More precisely, if
ωs = nωi; n ∈ N∗ \ {1}, i ∈

¯
Nψa

ps , then the aliased frequency corresponding to periodic signal ωi

which we will denote by �
ωi and that is obtained as �

ωi = ωs−ωi will coincide with the (n− 2)’th
harmonics, that is,

�
ωi = ω

(n−2)
i , (N.2.30)

where ω
(q)
i is the q’th harmonics of periodic signal ωi and the 0’th harmonic is the fundamental

frequency, that is, (ω(0)
i = ωi). For example if ωs = 2π1000 rad/s, ωi = 2π100 rad/s then n = 10

and �
ωi = ω

(3)
i = 2π400 rad/s.
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For periodic signals aliased and unaliased signal components may indeed be cross correlated,
that is,

S�
ψa

�
ψa

(θi) = S∗
�
ψa

�
ψa

(θi) �= 0, S�
ψb

�
ψb

(θi) = S∗
�
ψb

�
ψb

(θi) �= 0, S�
ψa

�
ψb

(θi) = S∗
�
ψa

�
ψb

(θi) �= 0,

θi = ωiT ∈ [−π, π], periodic signals.
(N.2.31)

N.2.6 Random Signals

For random signals no cross correlation between aliased and unaliased components exists. Hence,

S�
ψa

�
ψa

(θ) = S�
ψa

�
ψa

(θ) = S�
ψb

�
ψb

(θ) = S�
ψb

�
ψb

(θ) = S�
ψa

�
ψb

(θ) = S�
ψa

�
ψb

(θ) = 0,

θ ∈ [−π, π], random signals.
(N.2.32)

Hence, expression (N.2.21) on page 798 for the ordinary coherence squared function may be
simplified

γ2
ψaψb

(θ) =

∣∣∣S�
ψa

�
ψb

(θ) + S�
ψa

�
ψb

(θ)
∣∣∣2(

S�
ψa

�
ψa

(θ) + S�
ψa

�
ψa

(θ)
)(

S�
ψb

�
ψb

(θ) + S�
ψb

�
ψb

(θ)
) , − π ≤ θ ≤ π. (N.2.33)

See(θ) = S�
e

�
e
(θ) + S�

e
�
e
(θ) + S�

e
�
e
(θ) + S�

e
�
e
(θ) (N.2.34a)

= |F 0(ω)|2See(ω)/T + |F 0(ωa)|2See(ωa)/T + 2�{F 0(ω)(F 0(ωa))∗S�
e

�
e
(θ)}, (N.2.34b)

where the aliased frequency ωa is computed as

ωa = ωs − ω [rad/s]. (N.2.35)

The frequency response of the AAF at the frequencies ω and ωa is represented by F 0(ω) and
F 0(ωa) respectively.

Continuing with the reference sensor and reference sensor-error sensor cross terms yields:

Sxx(θ) = Sxx(ω)/T + 2�{S�
x

�
x
(θ)} + S�

x
�
x
(θ) (N.2.36)

= Sxx(ω)/T + |F 0
j (ωa)|2Sxx(ωa)/T + 2�{S�

x
�
x
(θ)} (N.2.37)

and

Sxe(θ) = S�
x

�
e
(θ) + S�

x
�
e
(θ) + S�

x
�
e
(θ) + S�

x
�
e
(θ) (N.2.38)

= Sxe(ω)/T + S�
x

�
e
(θ) + S�

x
�
e
(θ) + S�

x
�
e
(θ) (N.2.39)

= Sxe(ω)/T + |F 0
m(ωa)|2Sxe(ωa)/T + S�

x
�
e
(θ) + S�

x
�
e
(θ). (N.2.40)
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N.3 Active Control System

We will now use the results from the previous sections in the design of AAFs and DIFs to be
employed at the error sensors and reference sensors in an ANCS. The presentation follows [1,
Ch. 10] with some extensions. The operation of the error sensors can here be considered passive
as no direct secondary source activation takes place, while the reference sensors play an active
role in driving the secondary actuators. However, in a FBS using internal model control (IMC)
the role of the error sensor is twofold. The error sensors are used both to provide performance
feedback cf. section I.1, but are also used to deduce the filtered-reference signals. Hence, the
AAF in the error sensors must comply with both objectives. Finally, possible aliasing effects at
the performance sensors needs separate discussion.

The reference signals, error signals and performance signals can then be decomposed as in (N.2)

x(i) = �
x(i) + �

x(i) (N.3.1a)

e(i) = �
e(i) + �

e(i) (N.3.1b)

ep(i) = �
ep(i) + �

ep(i). (N.3.1c)

We will consider an active control system with a bandwidth extending from a lower frequency
limit fl to the upper frequency limit fu

6. The dynamic range of AC is Aac(f).

In [1, Ch. 10] (weighted) uniform spectra are considered. Here we will allow the disturbance
signals and reference signals to decay with a rate of Ṡd(f) and Ṡx(f) for f > fu respectively
both measured in dB · octave−1 7.

N.3.1 Aliasing Reference Sensors

The dynamic range of the reference signal Dx(f) is measured in [dB]. First it will be assumed
that no aliasing of the error signals occur, that is, S�

e
�
e

= S�
e

�
e

= S�
e

�
e

= 0. The two extreme cases
of random signals and periodic signals will be treated separately.

Reference Sensors Random Signals

The requirement on the fall-off rate of the AAF is

Ḟ 0
j (ıω) ≥ Dx + 20

log2(
fs−fu

fu
)
− Ṡx. (N.3.2)

Reference Sensors Periodic Signals

The reference signal is considered composed by, say, a number of periodic signals Nx
ps . For

periodic signals the aliased and unaliased signals will be coherent, that is, γ2
�
x

�
x

= 1.

6In this section we adopt the usual engineering practice and use the frequency f that is obtained from the
continuous-time angular frequency as f = 2πω = 2πθ/T .

7Recall that pink noise and brown noise decay by 3 dB · octave−1 and 6 dB · octave−1 respectively.
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Now if we accept that the dynamic range is reduced by ΔD(f) dB, which is equivalent to a
similar increase in the noise floor, then we may allow a level of aliased signal component L(

�
fi)

that is determined from

L(
�
fi) = −D(fi)− 20 log10

(
10

ΔD(fi)
20 − 1

)
, i ∈

¯
Nx

ps. (N.3.3)

where fi refers to a periodic signal.

For example, if we only allow the aliased signal components to exceed the noise floor by 0.8 dB,
then the aliased signal component must be suppressed to level 20 dB below D(f)8.

For a normalized amplitude of the q’th harmonics of a periodic signal fi Ā
(q)
i , that is defined by

Ā
(q)
i = 20 log10

A
(q)
i

A
(0)
i

; i ∈
¯
Nx

ps, (N.3.4)

then the magnitude of the transfer function of the AAF in the error sensors F 0
j (ıω) measured in

[dB/octave] must ensure that the aliased component is suppress by

|F 0
j (fi)| = L(fi)− Ā

(q)
i ; i ∈

¯
Nx

ps, (N.3.5)

and the requirement on the fall-off rate becomes

Ḟ 0
j (ıω) ≥ max

i∈
¯
Nps

{
−|F 0

j (fi)|/ log2

( �
fi

fu

)}
. (N.3.6)

N.3.2 Aliasing Error Sensors

The quantity Dd(f) will be used to denote the dynamic range of the disturbance signal. First
it will be assumed that no aliasing of the reference signal occur, that is, S�

x
�
x

= S�
x

�
x

= S�
x

�
x

= 0.
The two extreme cases of random signals and periodic signals will be again treated separately.

Error Sensors Random Signals

For random error signals we have vanishing aliased unaliased cross spectra, that is, S�
e

�
e

= S�
e

�
e

= 0
then the ordinary coherence squared function (N.2.21) reduces to

γ2
xe(θ) =

|S�
x

�
e
(θ) + S�

x
�
e
(θ)|2

S�
x

�
x
(θ)(S�

e
�
e
(θ) + S�

e
�
e
(θ))

. (N.3.7)

which is readily seen to be less than in aliasing-free case, that is, γ2
xe(θ) ≤ γ2

xe(ω)|θ=ωT . However,
this should be of less concern as the aliased signal is outside the operational bandwidth of the

8In [1, Ch. 10] an aliased signal level equal to the dynamic range is allowed, that is, L(
�
fi) = −D(fi). However,

then the noise floor is actually raised by ΔD(fi) =6 dB.
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controller (
�
f > fu) and the coherence function γ2

x
�
e
(θ) is preserved. Accordingly aliasing effects

in the error sensors exposed to random signals would usually not decrease the performance.

In order to ensure that aliasing components are suppressed by more than Dd into the bandwidth
of AC fl ≤ f ≤ fu implies that the fall-off rate Ḟ 0

m(ıω) measured in [dB/octave] must satisfy

Error Sensors Periodic Signals

The error signal as is considered constituted by, say, a number of periodic signals Ne
ps . The

requirement on the fall-off rate is therefore

Ḟ 0
m(ıω) ≥ max

i∈
¯
Ne

ps

{
Dd + 20

log2(
�
fi

fi
)
− Ṡd

}
. (N.3.8)

For periodic error signals, that is, |S�
e

�
e
|2 = |S�

e
�
e
|2 = S�

e
�
e
S�

e
�
e

then the coherence function becomes

γ2
xe(θ) =

|S�
x

�
e
(θ)|2

S�
x

�
x
(θ)(S�

e
�
e
(θ) + S�

e
�
e
(θ))

. (N.3.9)

It should be recalled that the active noise control (ANC) bandwidth normally will be an magnitude
of order less than the audible frequency range. As also explained in [1, Ch. 10] for random signal
aliasing in the error signal does not pose a real problem to the system performance. The main
reason for this is the lack of coherence between the in-band disturbance and the aliased (off-band)
disturbance. The off-band disturbance is left unaltered by the system. Some, but normally,
full acceptable increase in the excess noise will be expected for the least-mean-squares (LMS)
algorithm, but not the recursive least-squares (RLS) algorithm. For tonal disturbances (N.3.8)
applies as full coherence between a disturbance and one of its harmonics might exist.

N.3.3 Aliasing Performance Sensors

The performance sensors are only passively monitoring the performance of the active control
system. Any aliased component �

ep(i) will increase the measured power spectral density (PSD).
However, the aliased component �

ep(i) is due to measurement imperfections that will not be
present if the performance signal is perceived by for example the human ear. The ANR perfor-
mance is therefore underestimated by ΔÂ�

ep(f) that is obtained from

ΔÂ�
ep(f) = 10 log10

(
S�

ep
�
ep(f) + S�

ep
�
ep(f) + S�

ep
�
ep(f) + S�

ep
�
ep(f)

Sepep(f)

)
[dB]. (N.3.10)

N.4 Conclusions
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O. MATHEMATICAL MODEL DYNAMICAL SYSTEM

The concept of state-space representation of a dynamical system is widely employed within the
control community. The state-space approach involves external variables as well as internal vari-
ables. The external variables include controlled and uncontrolled inputs, measured and regulated
outputs.

O.0.1 Dynamical System

A dynamical system is characterized by the seven tuple Σ = (T, U,U , X, Y, ϕ, η) consisting of
the time domain T ⊂ R, input alphabet U , admissible input functions U ⊂ UT , state space X ,
output value space Y , state transition map ϕ : Dϕ → X and output map η : T ×X × U → Y ,
where Dϕ ⊂ T 2 ×X × U designates the domain of definition of ϕ( · ).

The governing equations for a state-space representation for a linear continuous-time but pos-
sibly time-varying system is

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ R (O.0.1a)
y(t) = C(t)x(t) + D(t)u(t). (O.0.1b)

where the state transition matrix A(t) ∈ Kn×n, the control matrix B(t) ∈ Kn×m, the observation
matrix C(t) ∈ Kp×n and the direct input-output coupling matrix D(t) ∈ Kp×m have been
introduced.

Similarly, the governing equations for a state-space representation for a linear discrete-time but
possibly time-varying system is

x(t + 1) = A(t)x(t) + B(t)u(t), t ∈ T (O.0.2a)
y(t) = C(t)x(t) + D(t)u(t). (O.0.2b)

An advantage of the state-space representation is that it is a pointwise approach in which the
instantaneous state of the system at time t contains all the necessary information needed to
determine the effect of the past inputs upon the present output which is readily seen from
(O.0.1b) and (O.0.2b).

For the hybrid MIMO feedforward-feedback system (HMIMOFFFBS) presented in chapter 6 on
page 273 the disturbance signals and communication signals can be considered as uncontrolled
and controlled inputs respectively. Similarly, the regulated and measured outputs corresponds to
the performance signals and error signals respectively. The internal variables describe processes in
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the interior of the system. There is no general descriptions for choosing an adequate state vector.
In tracking system design kinematic parameters such as position, velocity and acceleration usually
constitute the state vector. In a more advanced context of bearings-only tracking system (BOTS)
design a state vector consisting of range, bearing, normalized range rate has successfully been
implemented [4]. In physical systems state variables are often associated with important energy
stores of the system. In active control of sound (ACS) state variables have been associated with
acoustical modes in an enclosure. In active control of vibration (ACV) contexts structural modes
have been used as state variables [3]. The main problem arises in broad band control where the
modal density explodes and renders the dimension of the state-space vector prohibitive large. On
the other hand it is difficult to find aggregated internal variables that adequately characterize the
system. In active noise control system (ANCS) applications only a limited number of attempts
have therefore been made to employ state space optimal control.

Additional discussion of the difficulties in employing state-space control is provided in [1, Ch. 6.1]
and the references herein.

Instead, the multiple-input and multiple-output (MIMO) system will be considered as input-output
system where the internal parts in principle are considered as a ”black box” [2, Ch. 2.3].
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P. Terma NOISE CHAMBER FACILITY

P.1 Background

As the available time slot for F-16 and CH-47 measurements is scarce and since a considerably
time consumption is associated with the preparation and instrumentation of the cockpit, it was
decided to build a dedicated noise chamber at Terma premises. The objective of the noise chamber
is to establish an acoustical environment that closely resembles the cockpit environment. The
following physical quantities are being considered:

• Spatial homogeneity of sound pressure

• Diffuseness of sound

• Reverberation time

• Dynamic range of sound pressure levels

• Instrumentation

The noise chamber has been used during test of the various test units including prototype headset
as developed in the project. Basically, the noise chamber is a 6.21 m (width) times 5.77 m (length)
times 2.89 m (height) room where the walls, floor and ceiling are made of concrete. The acoustical
sources are constituted from 4 loudspeakers positioned on the floor in each of the corners such
that the two adjacent walls jointly act as dihedral reflectors. A subwoofer is responsible for the
energy contents below 40 Hz. More detailed information regarding the Terma noise chamber
facility can be found in [1] and a qualification test is reported in [2].
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Acronyms

αS α-stable distribution

αε-APA αε-affine projection algorithm

αγΠε-APA αγΠε-affine projection algorithm

αγΠε-NLMS αγΠε-NLMS (algorithm)

ε-NLMS ε-NLMS (algorithm)

ε-APA ε-affine projection algorithm

MPNLMS μ-law PNLMS (algorithm)

AAF anti-aliasing filter

ABS acrylonitrile butadiene styrene thermoplastic

AC active control

ACSV active control of sound and vibration

ACS active control of sound

ACS autocorrelation sequence

ACF autocorrelation function

ACV active control of vibration

ACSVTU active control sound and vibration test unit

ADC analogue to digital converter

ADF adaptive delay filter

ALMS adjoint LMS (algorithm)

AF adaptive filter

ADPCM adaptive differential pulse code modulation

AIC adaptive inverse control

ANC active noise control

ANCS active noise control system

ANVC active noise and vibration control

ANN artificial neural network

ANR active noise reduction

ANSI American National Standards Institute

AP affine projection
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APA affine projection algorithm

APU Auxiliary Power Unit

AR autoregressive model

ASDF autospectral density function

AUT antenna under test

BEFAP block exact fast affine projection (algorithm)

BEM boundary element method

BK Brüel & Kjær

BMIO block multirate input-output

BOTS bearings-only tracking system

BS back side

B.Sc. Bachelor of Science

BWF Butterworth filter

CCF cross correlation function

CCS cross correlation sequence

CFAR constant false alarm rate

CFF confined feedforward

CFFAC confined feedforward active control

CFFS confined feedforward system

CFFFBACS confined feedforward-feedback active control system

cdf cumulative distribution function

CL-LMS circular leaky LMS (algorithm)

CLT central limit theorem

CM control mass

CMAC Cerebellar Model Articulation Controller

CPSD cross power spectral density function

CSDF cross-spectral density function

CoPSD coincident power spectral density function

CS control surface

CTFT continuous-time Fourier transform
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CV control volume

dof degrees of freedom

DAC digital to analogue converter

DARE discrete-time algebraic Riccati equation

DAT digital audio tape

DF decimation filter

DIF decimation interpolation filter

DC direct current

DCT discrete cosine transform

DN degree of nonstationarity

DFT discrete Fourier transform

DSP digital signal processor

DST discrete sine transform

DTAC Danish Tactical Air Command

DTFT discrete-time Fourier transform

eFKF extended fast Kalman filter

eFTF extended fast transverse filter

eFAEST extended fast a priori error sequential technique

ECA Engineering College of Aarhus

ECS environmental control system

ECF empirical characteristic function

EDA exploratory data analysis

EMSE excess-mean-square error

EOS equation of state

Fast RLS Array fast recursive least-squares array (algorithm)

FAP fast affine projection (algorithm)

FDAF frequency-domain adaptive filter

FARLS fast array recursive least-squares (algorithm)

Fe filtered-error (method)

FFFBS feedforward-feedback system
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FFFBICS feedforward-feedback integrated communication system

FFFBICIDS feedforward-feedback integrated communication on-line system identification
system

FBS feedback system

FFS feedforward system

FTF fast transversal filter

FFT fast Fourier transform

FFACS feedforward active control system

FIR finite-duration impulse response

FLOM fractional lower-order moments

FLOS fractional lower-order statistics

Fast RLS fast recursive least-squares (algorithm)

FS free space

FSAE fractionally spaced adaptive equalizer

FSFT fast spherical Fourier transform

Fu filtered-u method

FuRLMS filtered-u RLMS (algorithm)

FuRLMS filtered-v RLMS (algorithm)

Fx filtered-x method

FxLMS filtered-x LMS method

mFx modified-filtered-x method

GC generalized coherence

GCLT generalized central limit theorem

GPD group & phase delay

HATS head and torso simulator

HFFFBS hybrid feedforward feedback system (FBS)

HMIMOFFFBS hybrid MIMO feedforward-feedback system

HMIMOCFFFB hybrid MIMO confined-feedforward feedback

HMIMOCFFFBS hybrid MIMO confined-feedforward-feedback system

HCTDTT hybrid continuous-time discrete-time topology
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HDD hard disc drive

HFe hybrid Fe (algorithm)

HFeLMS hybrid FeLMS (algorithm)

HGU head gear unit

HOS higher order statistics

HPD hearing protection device

i.i.d. independent and identical distributed

IF interpolation filter

IC integrated communication

IIR infinite-duration impulse response

IMC internal model control

I/O input output

IRF impulse response function

IRLS iteratively reweighted least-squares (algorithm)

IT independence theory

JCRSA joint-channel residual spectral analysis

JHMCS joint helmet mounted cuing systems

KIAS Knots indicated airspeed

KLT Karhunen Lòeve transform

LAN local area network

LEM linear estimation model

l.m.s.e. least-mean-squares estimate

l.l.m.s.e. linear-least-mean-squares estimate

l.l.m.s.e. linear-least-mean-squares estimation

LMMEN least-mean-mixed-even-norm (algorithm)

l.l.m.m.e.n. linear-least-mean-mixed-even-norm estimation

LHS left-hand side

LMAD least-mean-absolute deviation (algorithm)

LMF least-mean-fourth (algorithm)

LMMN least-mean-mixed-norm (algorithm)
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MERLLMS multiple error recursive leaky LMS (algorithm)

LMS least-mean-squares (algorithm)

LLpN least lp-norm (algorithm)

L-LMS leaky LMS (algorithm)

LMpN least-mean-p-norm (algorithm)

LPF low-pass filter

LS least-squares (algorithm)

LTI linear time-invariant

LTV linear time-variant

MC multiple-channel

MCPEFSF multiple-channel prediction error filter spectral factorization (algorithm)

MC-αγΠε-APA multiple-channel-αγΠε-affine projection algorithm

MC-αγΠε-NLMS multiple-channel-αγΠε-NLMS (algorithm)

MCOF multiple coherence function

ME maximum entropy

MIMO multiple-input and multiple-output (system)

MISO multiple-input and single-output (system)

MIE microphone in the ear

MIPS million instructions per second

ML maximum likelihood

MLE maximum likelihood estimation

MLP multilayer perceptron

MMSCOF multiple magnitude-squared coherence function

m.m.s.e. minimum mean-square error

MOM method of moments

MR multirate

MRS multi-rate system

m.s.e. mean-square error

MSC magnitude-squared coherence

m.s.d. mean-square deviation
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NLMAD normalized LMAD

NLMpN normalized LMpN

NLMS normalized LMS (algorithm)

OCOF ordinary coherence function

OCOSF ordinary coherency squared function

ODE ordinary-differential-equation

p.d. positive-definite

p.s.d. positive-semidefinite

PαS positive α-stable distribution

PC personal computer

PCOF partial coherence function

PE persistent excitation (condition)

PEF prediction error filter

pdf probability density function

PIRLS polynolminal iteratively reweighted least-squares (algorithm)

Ph.D. Doctor of Philosophy

PNLMS proportionate NLMS (algorithm)

PANLMS proportionate adaptation NLMS (algorithm)

PAPA proportionate APA

PROJ projection method

PSD power spectral density function

PVDF Polyvinylidene Difluoride

QPSD quadrature power spectral density function

rms root-mean-square

rpm rotations per minute

RAM random access memory

RDAF Royal Danish Air Force

RF reconstruction filter

RHS right-hand side

RLMS recursive LMS (algorithm)
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RLS recursive least-squares (algorithm)

ROC region of convergence

ROC receiver operating characteristic

RP random process

RS random sequence (discrete-time RP)

RTE real-time environment

RTU reference test unit

RV random variable

RWN random white noise

SD steepest descent (algorithm)

SG stochastic gradient (algorithm)

SαS symmetric α-stable distribution

SC single-channel

SDA statistical data analysis

SDCS sampled-data control system

SI Système International d’Unités (mksA)

SID system identification

SIMO single-input and multiple-output (system)

SISO single-input and single-output (system)

SL-LMS subspace leaky LMS (algorithm)

SLL side lobe level

SNFAT spherical near-field antenna testing

SNR signal-to-noise ratio

SNFT spherical near-field testing facility

SOF safety of flight

SPL sound pressure level

SPE secondary path equalization

SRS single-rate system

SS state-space

SW software
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TDAF time-domain adaptive filter

TDOA time difference of arrival

TF transfer function

TNC Terma noise chamber facility

TPL Thermoplastic Liner

TUD Technical University of Denmark

uc unit circle

UUT unit under test

VLSI very-large-scale integration

WEMSE weighted excess-mean-square error

WF Wiener Filter (algorithm)

WH Wiener-Hopf

w.m.s.e. weighted mean-square error

WSE wide-sense ergodicity

WSS wide-sense stationary

WWW World Wide Web

SUN Sæder, Udrustning og Nødudstyr (in Danish)

AK aktiv kontrol (in Danish)

ASR aktiv støjreduktion (in Danish)

IFFAK indesluttet-feedforward aktiv kontrol (in Danish)

MIMO mange-input-mange-output (in Danish)

HMIMOIFFFB hybrid MIMO indesluttet-feedforward feedback (in Danish)

HMIMOIFFFBS hybrid MIMO indesluttet-feedforward FBS (in Danish)

SKRSA samlet kanal residual spektral analyse (in Danish)
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NOMENCLATURE

[X1,X2]α covariation of X1 with X2; (L.2.8) on page 777

ΔL(z) whitening filter error(ΔL(z) ∈ CNx×Nx); (3.5.10) on page 217

ΔSvv spectral factorization error averaged norm; (3.5.11) on page 217

ΔSxx(eıω) spectral factorization error(; (3.5.9) on page 217

Δ(r, t) dilatation, Δ(r, t) = ∇ · s(r, t); Equation 24

Δ̇(r, t) dilatation rate [s−1 ]; (F.3.44) on page 642

ΔÂ�
ep(f) deviation in attenuation estimate due to aliasing in the performance sensor,

[dB] (N.3.10)

ΔfDFT DFT frequency resolutionin (modified) periodogram in spectrum estimation
[Hz ]; section C.2 on page 540

Δfm main lobe widthof DFT window used in (modified) periodogram in spectrum
estimation [Hz]; section C.2 on page 540

Δu number of samples used for inter-block decorrelation in APA; (8.6.9) on page 398

Δsxx(eıω) relative spectral factorization error; (3.5.8) on page 217

E( · ) expectation operator; section 8.3.1 on page 375

ΛA exponential weight matrix (MA ×MA) used in time-averaged attenuation cal-
culations (A.2.9)

Λe diagonal matrix of real eigenvalues of See(eıω); (3.5.6) on page 216

Ω frequency offset; (9.2.17) on page 427

ΦM (t, t0) mean weight-error vector state-space evolution matrix, ΦM (t, t0) : KM×M →
KM×M ; (9.4.1) on page 436

Φ(r, t) potential energy density [J ·m−2 ]; (F.3.97) on page 656

Φ(r, t) velocity potential[m2 · s−1 ]; (F.8.2) on page 674

Φ(ϕ) azimthal function(in solution to Laplace or Helmholtz equations); (G.3.2) on
page 710

ΠiΠ weight regularization matrix, ΠiΠ ∈ KM×M ; (8.3.21) on page 384

Ψ arbitrary vector; (J.A.40) on page 747
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Σ Hermitian positive-definite weighting matrix, Σ ∈ KM×M ; (9.3.20) on page 432

ΣΥ
iB

deterministic weight-error vector weighting matrix, ΣΥ
iB
∈ KM×M ; (9.A.26a) on

page 463

Σo
iB

deterministic optimal weight vector weighting matrix, Σo
iB
∈ KM×M ; (9.A.26b)

on page 463

Σq
iB

random walk weight vector weighting matrix, Σq
iB
∈ KM×M ; (9.A.38b) on

page 466

Σq̄
iB

deterministic random walk weight vector weighting matrix, Σq̄
iB
∈ KM×M ;

(9.A.26c) on page 463

Σw̆
iB

regularization weight vector weighting matrix, Σw̆
iB
∈ KM×M ; (9.A.38c) on

page 466

Σw′o

iB
mean optimal weight vector weighting matrix, Σw′o

iB
∈ KM×M ; (9.A.38a) on

page 466

Σwow0

iB
mean optimal weight vector to initial weight vector coupling cross-weighting
matrix, Σwow0

iB
∈ KM×M (state-space model); (9.3.27a) on page 434

Σwow̆
iB

cross-weighting matrix, Σwow̆
iB

∈ KM×M ; (9.A.39) on page 466

Σwow̆
iB

cross-weighting matrix associated with the coupling between the mean optimal
weight vector and the regularized weight vector, Σwow̆

iB
∈ KM×M (state-space

model); (9.3.27a) on page 434

Σw̆w0

iB
cross-weighting matrix related to the coupling between the regularized weight
vector and the initial weight vector, Σw̆w0

iB
∈ KM×M (state-space model); (9.A.39)

on page 466

ΘiB−1 covariance matrix of perturbation vector θiB−1, ΘiB−1 � E θiB−1θ
∗
iB−1 ∈ KM×M (random-

walk model) in LEM; section 9.2 on page 422, (9.A.35) on page 465

Θ(ϑ) polar function(in solution to Laplace or Helmholtz equations); (G.3.2) on page 710

Υ′
iΥ

leakage-weight regularization matrix, Υ′
iΥ
∈ KM×M ; (9.3.19) on page 431

ΥiΥ transformed leakage-weight regularization matrix, ΥiΥ ∈ KM×M ; (8.6.13) on
page 399

Υχ
iΥ

random-walk-modified leakage-weight regularization matrix, Υχ
iΥ
∈ KM×M ; (9.3.15)

on page 430

Ξ(r) amplitude function of the radius(in solution to Laplace or Helmholtz equations);
(G.3.2) on page 710

ᾱ(ΦM ) upper Lyapunov exponent, ᾱ(ΦM ) ∈ R+; (9.4.1) on page 436

αiα(wiα
B
) weight-driven leakage control matrix (parameter), αiα(wiα

B
) ∈ RM×M (αiα(wiα

B
) ∈

R), 0 � αiα ≺ I(0 � α(iα)� 1); (8.3.12) on page 380
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α characteristic exponent or index of stability, α ∈ (0, 2]; Appendix L on page 773,
Definition L.2 on page 775

α volume thermal expansivity [K−1 ]; (F.3.71) on page 649

α0 circular leakage control upper value parameter (α0 
 0); (8.3.14) on page 381

α̌(r, t, P, T ) thermal pressure increase at constant volume [Pa · K−1 ]; (F.3.71) on page 649

β, γ Lee-Kesler equation of state (EOS) constants; (F.3.7) on page 629

β symmetry parameter, β ∈ [−1, 1]; Appendix L on page 773

ΣΥ
iB

stochastic weight-error vector weighting matrix,ΣΥ
iB
∈ KM×M ; (9.A.21a) on

page 460

Σo
iB

stochastic optimal weight vector weighting matrix,Σo
iB
∈ KM×M ; (9.A.21b) on

page 460

Σq̄
iB

stochastic random walk weight vector weighting matrix,Σq̄
iB
∈ KM×M ; (9.A.21c)

on page 460

θiB random-walk vector, θiB ∈ KM×1 in LEM; section 9.2 on page 422

θ−1 random initial condition, θ−1 ∈ KM×1 of random-walk vector in LEM; section 9.2
on page 422

χ pole position, χ ∈ C in random-walk model (forgetting factor) in LEM (0 ≤
|χ| < 1); section 9.2 on page 422

χA(s) characteristic polynomial of A ∈ Cn×n; (9.4.7) on page 437

χF (s) characteristic polynomial of F ∈ Cn×n; (9.4.54) on page 447

〈i〉M i modulus M ; (8.3.14) on page 381

δ inexact differential

δ location parameter, δ ∈ (−∞,∞); Appendix L on page 773

δD {z ∈ C; |z| = 1}

δ(3)(r − r′) delta function in three dimensions

δ(t− t′) delta function in one dimension

iΠB weight block update iteration number corresponding to iΠ, iΠB ≤ iB; (8.3.21)
on page 384

iΥB weight block update iteration number corresponding to iΥ, iΥB ≤ iB; (9.A.7) on
page 455

iαB weight block update iteration number corresponding to iα, iαB ≤ iB; (8.3.11)
on page 380

iB weight block update iteration number, iB = �(i/B); subsection 8.3.1 on page 374
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iΠ weight regularization matrix update iteration number, iΠ ≤ iB; (8.3.21) on
page 384

ijΥ transformed weight leakage factor update iteration number at block time j

where (iiB

Υ ≡ iΥ); (9.A.13) on page 457

iΥ transformed weight leakage factor update iteration number, iΥ = iμ + iα + iγ +
iΠ; (8.6.15) on page 399

iα weight leakage control matrix update iteration number, iα ≤ iB; (8.3.11) on
page 380

iε regularization update iteration number, iε ≤ iB; (8.5.11) on page 391

iγ control-effort-driven matrix update iteration number, iγ ≤ iB; (8.3.15) on
page 382

ijμ step-size parameter update iteration number at block time j where (iiB
μ ≡ iμ);

(9.A.13) on page 457

iμ step-size parameter update iteration number, iμ ≤ iB; (8.5.1) on page 389

iν weight leakage factor update iteration number, iν = max {iμ, iα}; (8.3.11) on
page 380

T̃ (ıω) complementary sensitivity function; (8.A.10) on page 406

T̃0(ıω) complementary sensitivity function for the nominal plant; (8.A.9) on page 406

iw̄ point of attraction update iteration number, iw̄ ≤ iB; (8.3.21) on page 384

�( · ) floor operator; subsection 8.3.1 on page 374

ε(ϕ) normalized root-mean-square (rms) error, ε(ϕ) �
√

E(ϕ̂2−ϕ2)

ϕ in the estimation
of (arbitrary) parameter ϕ; section C.3 on page 541

ε
(
|Ĥψaψb

|
)

normalized rms error in the estimate of the magnitude of the transfer function
between the random signal ψa and the random signal ψb; (C.3.8)

σ
(
�Ĥψaψb

)
standard deviation random error in the estimate of phase of the transfer func-
tion between the random signal ψa and the random signal ψb; (C.3.9)

ε(r) permittivity (capacity) of the medium [F · m−1 ]; (F.5.1b) on page 665

ε degree of reaction; (F.3.30)

ε
(
γ̂2

ψa · ψC

)
normalized rms error in the estimate of the multiple magnitude-squared coher-
ence function between the random signal ψa and the (arbitrary) random signal
set ψC ; (C.3.10)

ε
(
γ̂2

ψaψb⊥ψC

)
normalized rms error in the estimate of the partial coherence function of the
random signal ψa, the random signal ψb and the (arbitrary) random signal set
ψC ; (C.3.11)

ε
(
γ̂2

ψaψb

)
normalized rms error in the estimate of ordinary coherence squared function
between the random signal ψa and the (arbitrary) random signal ψb; (C.3.7)
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ε0 permittivity (capacity) in vacuum [8.854 pF · m−1]; (F.5.1b) on page 665

εiε regularization term, εiε ∈ RM×M , εiε � 0; (8.5.11) on page 391

εσ(ϕ) normalized random error, εσ(ϕ) �
√

E ϕ̂2−E2 ϕ̂

ϕ in the estimation of (arbitrary)
parameter ϕ; section C.3 on page 541

εb(ϕ) normalized bias error in the estimation of (arbitrary) parameter ϕ, εb(ϕ) �
E ϕ̂
ϕ − 1; section C.3 on page 541

η output map, η : T ×X × U → Y ; subsection O.0.1 on page 807

ηψa mean of arbitrary random signal ψa(t); (2.2.16) on page 24

γ scale parameter, γ > 0; Appendix L on page 773

γ2
ψaψb

(f) ordinary coherence squared function (or just coherence function) between (ar-
bitrary) random signal ψa and (arbitrary) random signal ψb; (2.2.10)

γiγ (yiγ ) control-effort-driven leakage or actuator weighting diagonal matrix (parameter), γiγ (yiγ ) ∈
RNy×Ny(γ(iγ ,y(iγ)) ∈ R), 0 � γiγ ≺ I(0 � γ(iγ)� 1); (8.3.15) on page 382

γl
iγ

weight factor attributed to the l’th actuator; (8.3.15) on page 382

γ̂2(f) generalized coherence (GC) estimate; (2.A.3) on page 103

γ2
ψa ·ψC multiple magnitude-squared coherence function between the conditioning signal

sets ψC and random signal ψa; (2.2.23) on page 27

γ2
ψa ·ψC multiple magnitude-squared coherence function between ψa and the set of ψC

signals; subsection 2.2.5 on page 25

γ2
ψaψb⊥ψC partial coherence function between random signals ψa and ψb conditioned on

the random signal set ψC ; subsection 2.2.5 on page 25

γ2
th(pfa, pd) detection threshold; section 2.A on page 102

γψaψb
ordinary complex coherence functionbetween (arbitrary) random signal ψa and
random signal ψb; (2.2.11) on page 23

γiγ⊗K(yiγ ) actuator weighting block diagonal matrix, γiγ⊗K(yiγ ) ∈ R(KNy)×(NyK); (8.6.10)
on page 398

ι internal energy index; (F.3.16) on page 633

κ(r, t) thermal conductivity(isotropic material) [W · K−1 · m−1 ]; (F.3.84) on page 652

λ coefficient of bulk viscosity (compressional resistance) [Pa · s ]; (F.3.97) on page 656

λA weight scalar (forgetting factor) used in time-averaged attenuation calculations;
(A.2.9)

λ Lamé constant [Pa ]; (F.4.12) on page 663

D+ {z ∈ C; |z| ≥ 1}
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D∗
+ {z ∈ C; |z| > 1}

D∗
− {z ∈ C; |z| < 1}

D(1,0) unit disc with origo in (1, 0) in the complex z-plane; (9.4.6) on page 437

AΣ
iB

auxiliary matrix,AΣ
iB
∈ KKNe×KNe ; (9.A.17) on page 458

Ei error signal time-block matrix,Ei ∈ KKNe(Ei ∈ KK×1); (9.3.4) on page 428

Ea,i a priori block-time error vector,Ea,i ∈ KKNe×1; (9.2.9a) on page 425

Ep,i posteriori block-time error vector,Ep,i ∈ KKNe×1; (9.2.9b) on page 425

LiB auxiliary matrix,LiB ∈ KM×M ; (9.4.5) on page 437

MiB state-space mean weight-error vector transition matrix,MiB ∈ KM×M ; (9.A.11)
on page 456 (9.3.18) on page 431

P′
i,Pi auxiliary matrices,P′

i,Pi ∈ KM×KNe ; (9.3.10a)-(9.3.10c) on page 429

d(i) disturbance signal,d(i) ∈ K(di ∈ KNe×1) in SISO, SIMO (SIMO, MIMO); section 8.3.1
on page 375

di disturbance signal,di ∈ KNe×1 in LEM; section 9.2 on page 422

ea,i a priori error vector, ea,i ∈ KKNe×1; (9.2.8a) on page 425

ep,i posteriori error vector, ep,i ∈ KKNe×1; (9.2.8b) on page 425

q̄iB modified random-walk vector, q̄iB ∈ KM×1in LEM; (9.3.13) on page 430

qiB random-walk vector,qiB ∈ KM×1 in LEM; section 9.2 on page 422

ui regression vector (matrix),ui ∈ K1×M (ui ∈ KNe×M ) in SISO, SIMO (MISO,
MIMO); section 8.3.1 on page 375

ui regression vector,ui ∈ KNe×M in LEM; section 9.2 on page 422

vi noise signal (estimation error),vi ∈ KNe×1 in LEM; section 9.2 on page 422

w̃
′Υ
iB−1 leakage-transformed modified weight-error vector, w̃

′Υ
iB−1 ∈ KM×1; (9.3.9) on

page 429

w̃iB weight-error vector, w̃iB ∈ KM×1; (9.3.7) on page 429

wo
iB

optimal adaptive tap-weight vector,wo
iB
∈ KM×1(time-variant); in LEM section 9.2

on page 422

w−1 initial weight vector,w−1 ∈ KM×1 in LEM; section 9.2 on page 422

wo
−1 initial optimal weight vector,wo

−1 ∈ KM×1 in LEM; section 9.2 on page 422

xi reference signal,xi ∈ K1×M (xi ∈ KNy×M ) in SISO, MISO (SIMO, MIMO); section 8.3.4
on page 382

y(i) control output signal,y(i) ∈ K(yi ∈ KNy×1) in SISO, MISO (SIMO, MIMO);
section 8.3.4 on page 382
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Ap
k(t) attenuation at the k’th performance sensor; (A.2.5) on page 531

Aτ attenuation limited by delays in a random white noise (RWN); (A.3.1)

Dϕ domain of definition of ϕ( · ),Dϕ ⊂ T 2 ×X × U ; subsection O.0.1 on page 807

D1
m( · ) resampling function (1st level) at m’th error sensor; (5.3.7)

D2
m( · ) resampling function (2nd level) at m’th error sensor; (5.3.7)

FiB companion state transition matrix of mean-square weight-error vector,FiB ∈
KM2×M2

(state-space model); (9.4.53) on page 446

GiB total control input matrix,GiB ∈ KM2×1 (state-space model); (9.4.55) on page 447

Gq
iB

random-walk control input,Gq
iB
∈ KM2×1 (state-space model); (9.4.56a) on

page 447

Gv
iB

system noise control input,Gv
iB
∈ KM2×1 (state-space model); (9.4.56b) on

page 447

Gw̆
iB

control input related to the regularized weight vector,Gw̆
iB
∈ KM2×1 (state-space

model); (9.4.57b) on page 448

Gw′o

iB
control input associated with the mean optimal weight vector,Gw′o

iB
∈ KM2×1

(state-space model); (9.4.57a) on page 448

Gwow0

iB
mean optimal weight vector to initial weight vector coupling control input,Gwow0

iB
∈

KM2×1 (state-space model); (9.4.58b) on page 448

Gwow̆
iB

control input associated with the coupling between the mean optimal weight
vector and the regularized weight vectors,Gwow̆

iB
∈ KM2×1 (state-space model);

(9.4.58a) on page 448

Gw̆w0

iB
control input related to the coupling between the regularized weight vector
and the initial weight vectors,Gw̆w0

iB
∈ KM2×1 (state-space model); (9.4.58c) on

page 448

P( · ) penalty or a barrier function,P( · ) : R×R→ R+; subsection 8.A.1 on page 404

P⊥
H projection operator; (J.1.5) on page 738

Sl( · ) sampling function (0th level) at l’th actuator; (5.4.7) on page 259

Sm( · ) sampling function (0th level) at m’th error sensor; (5.3.3) on page 254

U admissible input functions,U ⊂ UT ; subsection O.0.1 on page 807

U1
l ( · ) resampling function (1st level) at l’th actuator; (5.4.6) on page 259

U2
l ( · ) resampling function (2nd level)at l’th actuator; (5.4.3) on page 257

WiB state vector of weighted mean-square weight-error vector,WiB ∈ KM2×1 (state-
space model); (9.4.52) on page 446
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iM2 vectorized identity matrix, iM2 ≡ vec {IM} ∈ RM2×1; subsection 9.4.5 on page 450

μ(r) permeability (inductivity) of medium [H · m−1 ]; (F.5.1a) on page 665

μ coefficient of viscosity [Pa · s ]; (F.3.97) on page 656

μ0 permeability (inductivity) in vacuum [4π × 10−7 H · m−1]; (F.5.1a) on page 665

μB coefficient of bulk viscosity [Pa · s ]; (F.3.88) on page 652

μ Lamé constant [Pa ]; (F.4.12) on page 663

μ(iμ) step-size parameter (positive-definite learning matrix), μ(iμ) ∈ R(μiμ ∈ RM×M �
0); (8.5.1) on page 389

μ
(ϕ)
c chemical potential of the c’th constituent of the p’th phase [J · mol−1 ]; (F.3.29)

on page 637

∇2
wJ Hessian matrix of J with respect to w of the cost function J(w); (8.5.11) on

page 391

ν(iiν ) leakage factor, ν(iiν ) � 1− μ(iμ)α(iα), ν(iiν ) � 1; (8.3.12) on page 380

ν Poisson’s ratio; (F.4.14) on page 664

νi stoichiometric coefficient of the i’th constituent; (F.3.23) on page 636

ω angular frequency [rad · s−1 ]

ω continuous-time angular frequency [rad · s−1 ]; (5.A.1) on page 268

ω sampling frequency [rad · s−1 ]; (5.A.6) on page 269

ωa aliased frequency [rad/s]; (N.2.35)
�
ωi aliased frequency corresponding to periodic signal ωi [Hz ]; subsection N.2.5 on

page 801

ω
(q)
i q’th harmonics of periodic signal ωi and the 0’th harmonic is the fundamental

frequency, that is, (ω(0)
i = ωi) [rad/s ]; (N.2.30) on page 801

φ(r) scalar potential

φ phase offset; (9.2.17) on page 427

φη viscous dissipation function [W · m−3 ]; (F.3.82) on page 651

φκ thermal dissipation function [W · m−3 ]; (F.3.81) on page 651

ψa, ψb arbitrary random signals; section 2.2 on page 18
�
ψ̃a(eıθ) aliased signal component of ψ̃a(eıθ); (N.2.9) on page 795

SψAψA ψa−ψC channel power spectral density matrix, SψAψA ∈ CNf×NA
ψ ×NA

ψ ; (2.2.22)
on page 26

�
ψ̃a(eıθ) unaliased signal component of ψ̃a(eıθ); (N.2.8) on page 795
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ψl(j) l-th control output signal , ψl(j) � ψU2

l (t2l ) at sample index j; Figure 5.2 on
page 258

ψI
�=j subset of input signals obtained from excluding the j’th element , ψI

�=j = ψI \ψI
j

; subsection 2.2.5 on page 25

ψU0

l (t0l ) resampled (0th level) l-th control output signal at sample index t0l ; (5.4.6) on
page 259

ψU1

l (t1l ) resampled (1st level) l-th control output signal at sample index t1l ; (5.4.3) on
page 257

ψm(i) m-th error signal at sample index i , ψm(i) � ψD2

m (t2m) ; (5.3.15) on page 256

ψD1

m (t1m) resampled (1st level) m-th error signal at sample index t1m; (5.3.7) on page 255

ψD2

m (t2m) resampled (2nd level) m-th error signal at sample index t2m; (5.3.10) on page 256

ψM
m (t) transduced m-th error signal at time t; (5.3.1) on page 252

ψS
m(t0m) sampled m-th error signalat sample index t0m; (5.3.3) on page 254

ψa
n n-order value of the field variable ψa; (F.2.3) on page 622

n
(ϕ)
c number of moles of the c’th constituent of the p’th phase; (F.3.28) on page 637

ψA set of A signals , ψA = ∪j∈
¯
NA

ψ
ψA

j ; (2.2.8) on page 22

ψB set of B signals , ψB = ∪k∈
¯
NB

ψ
ψB

k ; (2.2.8) on page 22

ψC set of C (conditioning) signals , ψC = ∪l∈
¯
NC

ψ
ψC

l ; (2.2.4) on page 21

ψI set of input signals , ψI = ∪j∈
¯
NI

ψ
ψI

j ; (2.2.4) on page 21

ψO set of output signals , ψO = ∪k∈
¯
NO

ψ
ψO

k ; (2.2.4) on page 21

ψS set of all signals; (2.2.5) on page 21

ρ ambient mass density [kg · m−3 ]; 7 on page 657

ρ(r, t) volume source of charge density flow [C · m−3 ]; (F.5.1) on page 665

ρψaψb
(τ) correlation coefficient (coherence function in space-time); (2.2.15) on page 23

σ(A) spectrum of A, σ(A) ∈ Cn×n; (9.4.7) on page 437

σ Stefan-Boltzmann constant[56.697 nW · m−2 · K−4]; (F.3.86) on page 652

σ2
V variance of the block-time noise in the LEM, σ2

V ∈ KKNe×KNe ; Equation 9.2.4
on page 424

σ2
d(i) variance of the desired signal d(i); (8.4.3) on page 386

σα
j (k) weight for j’th inequality constraints related to weight-driven leakage; (8.A.17)

on page 408
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σγ
j (k) weight for j’th inequality constraints related to effort-driven leakage; (8.A.18)

on page 408

σ2
v variance, σ2

v ∈ KNe×Ne of the noise in LEM; section 9.2 on page 422

τ delay in plant response; (A.3.1) on page 532

τg(ω) group delay continuous-time (5.A.1) on page 268

τg total group delay [s ]; (5.5.1) on page 260

τL
g group delay associated with transduction in the transmitter part of the plant

[s ]; (5.5.4a) on page 260

τM
g group delay associated with transduction in the receiver part of the plant [s ];

(5.5.4b) on page 260

τS
g , τD1

g , τD2

g group delays involved in the sampling stage and downsampling stages of the
plant [s ]; (5.5.5) on page 261, (5.A.8) on page 269

τU2

g , τU1

g , τH
g group delays involved in the upsampling stages and the sample and hold stage

of the plant [s ]; (5.5.5) on page 261, (5.A.10) on page 269
�

τct
g group delay from receiver part of the continuous-time part of plant [s ]; (5.5.3)

on page 260
�

τct
g group delay from transmitter part of the continuous-time part of plant [s ];

(5.5.3) on page 260
∼
τg group delay from propagation part of plant [s ]; (5.5.1) on page 260
�

τg group delay from receiver part of plant [s ]; (5.5.1) on page 260
�

τdt,tot
g total group delay from receiver part of the discrete-time part of plant [s ]; (5.5.7)

on page 261
�

τdt
g group delay from receiver part of the discrete-time part of plant [s ]; (5.5.5) on

page 261
�

τg group delay from transmitter part of plant [s ]; (5.5.1) on page 260
�

τdt,tot
g total group delay from transmitter part of the discrete-time part of plant [s ];

(5.5.6) on page 261
�

τdt
g group delay from transmitter part of the discrete-time part of plant [s ]; (5.5.5)

on page 261

τct
g group delay from continuous-time part of plant [s ]; (5.5.2) on page 260

τg(θ) group delay discrete-time (5.A.3) on page 268

τdt
g group delay from discrete-time part of plant [s ]; (5.5.2) on page 260

τw
g group delay associated with the generation of the control output [s ]; (5.5.5) on

page 261

τκ
ι time constant in relaxation process(F.3.20) on page 635
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τp(ω) phase delay continuous-time (5.A.2) on page 268

τp(θ) phase delay discrete-time (5.A.4) on page 268

τrot relaxation time constant for rotational dof [s ]; (F.3.22) on page 635

τ̂SI
g group delay estimate from system identification[s ]; (5.A.11) on page 270

τtr relaxation time constant for translational dof [s ]; (F.3.22) on page 635

τvib relaxation time constant for vibrational dof [s ]; (F.3.22) on page 635

τψI
j ψO

k
acquisition lead-time between input signal ψI

j and output signal ψO
k ; Definition 2.1

on page 68

τψI
j ψO

k
spatially-weighted-averaged acquisition lead time between input signal ψI

j and
output signal ψO

k ; Definition 2.2 on page 68

θ discrete-time angular frequency [rad · sample−1 ]; (5.A.4) on page 268

θj,s, φj,s angles of incidence of the s’th field relative to the j’th reference sensor; (3.2.21)
on page 119

D()
Dt material derivative; (F.3.40) on page 640

υa arbitrary constitutional parameter; Equation F.2.1 on page 622

ε emissivity; (F.3.86) on page 652

κ species indicator(F.3.15) on page 633

ϕ (arbitrary) parameter; section C.3 on page 541

ϕ state transition map, ϕ : Dϕ → X ; subsection O.0.1 on page 807

�xi(r, t) rotation components; (F.4.3) on page 661

ξ1, ξ2, ξ3 curvilinear coordinates

ξ̂1, ξ̂2, ξ̂3 unitary vectors in a curvilinear coordinate system

A(r) vector potential

AiB , BiB auxiliary matrices, AiB , BiB ∈ KM2×M2
in state-space (SS) representation; (9.4.18)

on page 440

Aγ2 attenuation limited by (lack of) coherence; (2.2.1) on page 18

Aac(f) dynamic range of active control (AC) [dB]; section N.3 on page 803

AALMS(z) adjoint LMS (ALMS) part of error filter in hybrid FeLMS (HFeLMS); (6.4.11) on
page 279

Ā
(q)
i normalized amplitude of the q’th harmonics of a periodic signal fi; (N.3.6) on

page 804

Ae
m(f, t) attenuation at the m’th error sensor (A.2.11)
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Āp(f, t) trial-averaged attenuation estimate; (A.2.3) on page 530

Ǎp(f, t) scenario-averaged attenuation estimate; (A.2.4)

Am(t) attenuation at the m’th error sensor; (8.3.1) on page 375

Ap
k(f, t) attenuation at the k’th performance sensor; (A.2.1)

ASPE(z) secondary path equalization (SPE) part of error filter in HFeLMS; (6.4.12) on
page 279

A(z) error filter; section 6.4 on page 277

b1, b2, b3, b4 Lee-Kesler EOS constants; (F.3.7) on page 629

B weight update block size, B ∈ N; subsection 8.3.1 on page 374

B block size in DFT domain adaptive filter; subsection 8.3.2 on page 377

B(ω) magnitude of unstructured multiplicative plant uncertainty; (8.A.9) on page 406

Bs(r, t, P, T ) isentropic bulk modulus [Pa ]; (F.3.74) on page 650

BT (r, t, P, T ) isothermal bulk modulus [Pa ]; (F.3.74) on page 650

bxj minimum directivity of the j’th reference sensor (0 ≤ bxj ≤ 1)(pedestal level);
(3.2.21) on page 119

c speed of sound [m · s−1 ]

C1, C2, D circular leakage control lower-, upper- and medium threshold parameters; (8.3.14)
on page 381

c1, c2, c3, c4 Lee-Kesler EOS constants; (F.3.7) on page 629

c0 speed of light in vacuum 2.99790× 108 meter · s−1; (F.5.2) on page 665

Cw̆
iB

time evolution matrix for the regularized weight vector, Cw̆
iB
∈ KM×M ; (9.A.14c)

on page 457

Cwo

iB
time evolution matrix for the mean optimal weight vector, Cwo

iB
∈ KM×M ;

(9.A.14a) on page 457

Cψ constraint constant pertaining to variable ψ; subsection 8.A.1 on page 404

Cψaψb
(f) CoPSD (co-spectrum)between signal ψa and ψb; (2.2.14) on page 23

CRD upper bound on disturbance enhancement; (8.A.13) on page 407

CRS upper bound on robust stability, CRS � 1; (8.A.9) on page 406

c̆C spherical Bessel function order; (G.4.15) on page 715

c̆F spherical Bessel function order; (G.4.14) on page 715

C elasticity 4-tensor; (F.4.13) on page 663

Ĉ(z) plant correction transfer function(estimate); (4.7.1) on page 245
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cL compressional propagation velocity [m · s−1 ]; (F.4.14) on page 664

CP (r, t, P, T ) specific heat capacity at constant pressure [J ·K−1 · kg−1 ]; (F.3.76b)

cs(r, t, P, T ) isentropic speed of sound [m · s−1 ]; (F.3.75) on page 650

cT shear wave propagation velocity [m · s−1 ]; (F.4.16) on page 664

cT (r, t, P, T ) isothermal speed of sound [m · s−1 ]; (F.3.75) on page 650

Ct capacitance in cross-over network tweeter in closed-back headset system; (11.4.2)
on page 485

Cv(r, t, P, T ) specific heat capacity at constant volume [J ·K−1 ·kg−1 ]; (F.3.76a)

Cψaψb
(τ) cross-covariance functionbetween two arbitrary continuous-time random signals

ψa(t), ψb(t); (2.2.16) on page 24

Cy2 upper bound on the control output signal power level; (8.A.2) on page 405

dm(t1m) disturbance signal, m’th error sensor at time t1m; Figure 7.1 - 7.3 on pages 293–
315

D longitudinal stiffness [Pa ]; (F.4.14) on page 664

d1, d2 Lee-Kesler EOS constants; (F.3.7) on page 629

dQZ
10 dB spatial extent of zone of quite in pure-tone diffuse sound field [m ]

Dd(f) dynamic range of the disturbance signal [dB ]; section N.3 on page 803

D(r, t) fluid shear-stress-flux (viscous-stress-flux) tensor [Pa ]; (F.3.89) on page 653

d̂(i) disturbance estimate at time i; (6.3.3) on page 276

d̂m(t1m) disturbance signal estimate at multirate level 1 , d̂m(t1m) ∈ K m’th error sensor
FBS at time t1m; (7.2.5) on page 296

d̂m(t2m) disturbance signal estimate at multirate level 2 , d̂m(t2m) ∈ K m’th error sensor
FBS at time t2m; (7.2.6) on page 296

d̂m(t1m) disturbance signal estimate at multirate level 1 , d̂m(t1m) ∈ K m’th error sensor
feedforward system (FFS) at time t1m; (7.3.3) on page 305

d̂m(t1m) disturbance signal estimate at multirate level 1 , d̂m(t1m) ∈ K m’th error sensor
feedforward-feedback system (FFFBS) at time t1m; (7.4.4) on page 316

d̂m(t1m) disturbance signal estimate at multirate level 1 , d̂m(t1m) ∈ K m’th error sensor
feedforward-feedback integrated communication system (FFFBICS) at time t1m;
(7.5.3) on page 322

d̂ĝl,m
ey (t1G) desired signal estimate system identification secondary path, FFFBICS at time

t1G; (7.6.3) on page 329

d̂ĝl,j
xy (t1G) desired signal estimate system identification feedback path, FFFBICS at time

t1G; (7.6.4) on page 330
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Di disturbance signal time-block matrix, Di ∈ KKNe×1(Di ∈ KK×1); (8.6.6) on
page 397

̂(dp
k(i))2 estimated squared-disturbanceat the k’th performance sensor at the i’th itera-

tion; (A.2.7a) on page 531

Dx(f) dynamic range of the reference signal [dB ]; section N.3 on page 803

dij strain element; (F.4.4) on page 661

D(r, t) strain dyadic; (F.4.5) on page 661

dS(r′) surface unit area at position r′; (F.3.42) on page 641

dS′ surface normal differential vector; (F.3.42) on page 641

e(r, t) specific energy [J · kg−1 ]; (F.3.60) on page 646

epot(r, t) specific potential kinetic energy [J ·kg−1 ]; (F.3.60) on page 646

E Young’s modulus of elasticity [Pa ]; (F.4.14) on page 664

�
e(t1m) error signal, m’th error sensor FFFBS at time t1m (7.4.2) on page 314

�
e(t1m) error signal, m’th error sensor FFFBICS at time t1m (7.5.1) on page 322

eĝl,m
ey (t1G) error signal system identification secondary path, FFFBICS at time t1G (7.6.7)

on page 331

eĝl,j
xy (t1G) error signal system identification feedback path, FFFBICS at time t1G (7.6.8) on

page 331

eij(r, t) component of strain; (F.4.2) on page 660

ekin(r, t) specific kinetic energy [J · kg−1 ]; (F.3.60) on page 646

Ekin kinetic energy function [J ·m−3 ]; (F.3.9)

�
em(t1m) error signal, m’th error sensor FBS at time t1m; (7.2.2) on page 295

�

em(t1m) error signal, m’th error sensor FFS at time t1m (7.3.1) on page 305

̂(ep
k(i))2 estimated squared-errorat the k’th performance sensor at the i’th iteration;

(A.2.7a) on page 531

Epot potential energy function [J · m−3 ]; (F.3.9)

ÊuE estimate of the pulse energy; (8.6.25) on page 401

E(r, t) electric intensity [V · m−1 ]; (F.5.1a) on page 665

Eeiei∗ error-covariance matrix, Eeiei∗ � 0; subsection 8.3.1 on page 374

eΔw( · ) error signal used for tap-weight update; section 6.2 on page 274

�̂
eΔw

m (t2m) error signal estimate (frozen tap-weights), m’th error sensor, FBS at time t2m;
(7.2.17) on page 298



BIBLIOGRAPHY 835

�̂

eΔw
m (t2m) error signal estimate (frozen tap-weights), m’th error sensor, FFS at time t2m;

(7.3.18) on page 307

�̂
eΔw

m (t2m) error signal estimate (frozen tap-weights), m’th error sensor, FFFBS at time t2m;
(7.4.10) on page 317

EMSE EMSE of the adaptive filter, EMSE ∈ R+; (9.2.15) on page 426

F 0
m(ıω) anti-aliasing filter (AAF) (0th level) at m’th error sensor; (5.3.3)

F 2
l (eıθ) decimation interpolation filter (DIF) (2nd level) at l’th actuator; (5.4.3) on

page 257

F 2
m(eıθ) DIF (2nd level) at m’th error sensor; (5.3.7)

f specific Helmholtz function [J · kg ]; section 6 on page 627

f0 resonance frequency of closed-back headset system, (f0 = 141 Hz); (10.3.1) on
page 472

FiB mean-square weight-error vector state transition matrix, FiB ∈ KM2×M2
(state-

space model); (9.4.17) on page 440

F−1
ct inverse continuous-time Fourier transform (bilateral) operator; (M.1.5) on page 788

Fct bilateral continuous-time Fourier transform operatorFct : L1(R; Km)→ L1(R; Cm);
(M.1.3) on page 787

ψ̃a(ıω) bilateral continuous-time Fourier transform of ψa( · ) ∈ L1(R; Km); (M.1.3) on
page 787

ψ̃a(eıθ) bilateral discrete-time Fourier transform of ψa( · ) ∈ l1(Z; Km); (M.1.7) on
page 788

F−1
dt bilateral inverse discrete-time Fourier transform operator; (M.1.8) on page 788

Fdt bilateral discrete-time Fourier transform operator (M.1.7) on page 788

�

fj(t1j + 1) feedback signal, j’th reference sensor FFS at time t1j + 1; (7.3.38) on page 311

�

fj(t1j + 1) feedback signal, j’th reference sensor FFFBS at time t1j +1; (7.4.16) on page 319

�

fj(t1j + 1) feedback signal, j’th reference sensor FFFBICS at time t1j + 1; (7.5.12) on
page 325

fγ2(γ2) pdf of the magnitude-squared coherence function; section 2.A on page 102

�

f̂j(t1j + 1) estimate of
�

fj(t1j + 1); (7.3.35) on page 311

�

f̂j(t1j + 1) estimate of
�

fj(t1j + 1); (7.4.15) on page 318

�

f̂j(t1j + 1) estimate of
�

fj(t1j + 1); (7.5.11) on page 325

F κ
ι (T ) degree of internal energy function; (F.3.19) on page 634
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F 0
j (ıω) transfer function of the AAF in the error sensors [dB/octave]; (N.3.5) on page 804

�

f̂j−l
(t1G + 1) estimate of

�

fj−l
(t1G + 1); (7.6.12) on page 332

fl lower frequency limit in ANC [Hz ]; section N.3 on page 803

fl low-pass cut-off frequency from leakage in closed-back headset system, (fl =
500 Hz); (10.3.1) on page 472

F 0
l (ıω) reconstruction filter (RF) (lowpass filter); (5.4.7) on page 259

F 1
l (eıθ) DIF (1st level) at l’th actuator; (5.4.6) on page 259

Ḟ 0
m(ıω) fall-off rate of AAF in error sensors for f > fu [dB/octave]

F 1
m(eıθ) DIF (1st level) at m’th error sensor; (5.3.7)

f0
s,l sampling frequency (0th level) at l’th actuator [Hz ]; section 5.4 on page 257

f1
s,l sampling frequency (1st level) at l’th actuator [Hz ]; section 5.4 on page 257

f2
s,l sampling frequency (2nd level) at l’th actuator [Hz ]; section 5.4 on page 257

f0
s,m sampling frequency (0th level) at m’th error sensor [Hz ]; section 5.3 on page 252

f1
s,m sampling frequency (1st level) at m’th error sensor [Hz ]; section 5.3 on page 252

f2
s,m sampling frequency (2nd level) at m’th error sensor [Hz ]; section 5.3 on page 252

F(ce)
semene(re, θe, φe) spherical wave vector function at position as defined in reference sphere co-

ordinates (re, θe, φe)

F(cx)
sxmxnx(rx, θx, φx) spherical wave vector function at position as defined in reference sphere

coordinates (rx, θx, φx)

ft 6 dB cut-off frequency of tweeter in closed-back headset system, (ft = 870 Hz);
(11.4.2) on page 485

fu upper frequency limit in ANC [Hz ]; section N.3 on page 803

f(r, t) external force intensity [N · kg−1 ]; (F.4.18) on page 664

f(r, t) external body force per unit mass [N · kg−1 ]; (F.3.50) on page 643

fS
ω (r′) force per unit area acting on the surface [Pa ]; (F.10.15b) on page 679

fS(r′, t′) force per unit area acting on the surface [Pa · s−1]; (F.10.15b) on page 679

G shear modulus [Pa ]; (F.4.16) on page 664

G total Gibb’s function [J ];(F.3.28) on page 637

g(S11, · · · , SNψNψ
) Gram determinant of a Nψ ×Nψ Gram matrix; (2.A.3) on page 103

g specific Gibb’s function [J ·kg ]; (F.3.27) on page 637
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Gq
iB

random-walk control input matrix, Gq
iB
∈ KM2×M2

(state-space model); (9.4.44b)
on page 445

Gw̆
iB

control input matrix related to the regularized weight vector, Gw̆
iB
∈ KM2×M2

(state-space model); (9.4.44c) on page 445

Gw′o

iB
control input matrix associated with the mean optimal weight vector, Gw′o

iB
∈

KM2×M2
(state-space model); (9.4.64) on page 450

Gwow0

iB
mean optimal weight vector to initial weight vector coupling control input
matrix, Gwow0

iB
∈ KM2×M2

(state-space model); (9.4.46b) on page 445

Gwow̆
iB

control input matrix associated with the coupling between the mean optimal
weight vector and the regularized weight vector, Gwow̆

iB
∈ KM2×M2

(state-space
model); (9.4.46a) on page 445

Gw̆w0

iB
control input matrix related to the coupling between the regularized weight
vector and the initial weight vector, Gw̆w0

iB
∈ KM2×M2

(state-space model);
(9.4.46c) on page 445

G(r, t, r′, t′) Green’s dyadic free space time-domain; (F.6.5) on page 671
�

gl
t0l

transmitter (0th level) part of plantsinvolving the m’th error sensor at sample
index t0l ; section 5.3 on page 252

�

gl
t1l

transmitter (1st level) part of plantsinvolving the m’th error sensor at sample
index t1l ; section 5.3 on page 252

�

gl
t2l

transmitter (2nd level) part of plantsinvolving the l’th actuator at sample index
t2l ; section 5.3 on page 252

�

gl
↑ transmitter (up conversion) part of plants involving the l’th actuator; section 5.4

on page 257
�

gm
↓ receiver (down conversion) part of plants involving the m’th error sensor; section 5.3

on page 252
�

gm
t0m

receiver (0th level) part of plantsinvolving the m’th error sensor at sample index
t0m; section 5.3 on page 252

�

gm
t1m

receiver (1st level) part of plantsinvolving the m’th error sensor at sample index
t1m; section 5.3 on page 252

�

gm
t2m

receiver (2nd level) part of plantsinvolving the m’th error sensor at sample index
t2m; section 5.3 on page 252

Gω(r, r′) Green’s function in FS frequency-domain (F.10.6) on page 677

G
(
r, r′, t, t′

)
Green’s function in FS time-domain (F.10.5) on page 677

�

gj
x,t1 receive part of feedback plants involving the j’th reference sensor; Figure 7.2 -

7.3 on pages 304–315
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�

gk
p,t1 receive partof plants involving the k’th performance sensor; Figure 7.1 - 7.3 on

pages 293–315
�

gm
e,t1 receive part of plants involving the m’th error sensor at time t1; Figure 7.1 - 7.3

on pages 293–315
�

gl
y,t1 transmission partof plants involving the l’th secondary actuator; Figure 7.1 -

7.3 on pages 293–315

gxj(θj,s, φj,s) elementary directivity of the j’th reference sensor; (3.2.21) on page 119

γ̂2
ψaψb

estimate of ordinary coherence squared function (or just coherence function)
between the (arbitrary) random signal ψa and the (arbitrary) random signal
ψb; (C.3.5)

gl,m
ey,t1 physical plant linking the l’th secondary source output to the m’th error sensor

input , gl,m
ey,t1 ∈ K

M
g

l,m
ey at time t1; Figure 7.1 - 7.3 on pages 293–315

©

ĝl,m
ey,t1G

estimate of gl,m
ey,t1 (copy weights) at multirate level 1 ,

©

ĝl,m
ey,t1G

∈ K
M

ĝ
l,m
ey at time

t1G; Figure 7.1 - 7.3 on pages 293–315
©

ĝl,m
ey,t2G

estimate of gl,m
ey,t1 (copy weights) at multirate level 2 ,

©

ĝl,m
ey,t2G

∈ K
M

ĝ
l,m
ey at time

t2G; Figure 7.1 - 7.3 on pages 293–315

∼
gl,m

ey,t1 propagation path of secondary path between the l’th secondary source and the
m’th error sensor; Figure 7.1 - 7.3 on pages 293–315

ĝl,m
ey (t1G) secondary path estimate system identification (l’th secondary source to m’th

error sensor), FFFBICS at time t1G; Figure 7.3 on page 315

gl,k
py,t1G

controller-performance path linking the l’th secondary source output to the

p’th performance sensor input at time t1G; Figure 7.1 - 7.3 on pages 293–315

gl,k
py,t1 physical plant linking the l’th secondary source output to the k’th performance

sensor input , gl,k
py,t1 ∈ K

M
g

l,k
ey at time t1; Figure 7.1 - 7.3 on pages 293–315

∼
gl,k

py,t1G
propagation pathof control-performance path between the l’th secondary source
and the p’th performance sensor; Figure 7.1 - 7.3 on pages 293–315

gl,j
xy,t1 physical feedback plant linking the l’th secondary source output to the j’th

reference sensor input , gl,j
xy,t1 ∈ K

M
g

l,j
xy at time t1; Figure 7.3 on page 315

©

ĝl,j
xy,t1G

estimate of gl,j
xy,t1 (copy weights) at multirate level 1 ,

©

ĝl,j
xy,t1G

∈ K
M

ĝ
l,j
ey at time

t1G; Figure 7.3 on page 315

∼
gl,j

xy,t1G
propagation path of feedback path between the l’th secondary source and the
j’th reference sensor; Figure 7.2 - 7.3 on pages 304–315

ĝl,j
xy(t1G) secondary path estimate system identification (l’th secondary source to j’th

reference sensor), FFFBICS at time t1G; Figure 7.3 on page 315
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h absolute humidity; subsection F.3.10 on page 653

H ′
iB

auxiliary matrix, H ′
iB
∈ K2M×2M ; (9.4.77) on page 452

h1, h2, h3 metric coefficients in orthogonal curvilinear coordinate system

H enthalpy [J ]; (F.3.11) on page 631

h specific enthalpy [J · kg ]; (F.3.12) on page 631

h(r, t) thermalconvection coefficient [W · K−1 ·m−2 ]; (F.3.85) on page 652

HiB auxiliary matrix, HiB ∈ K2M×2M ; (9.4.61) on page 449

HC(s) continuous-time feedback filter(transfer function); Figure 4.1 on page 241

H(r, t) thermal conductivity tensor [W · K−1 · m−1 ]; (F.3.83) on page 651

Hl(ıω) hold function in DAC (0th order)at l’th actuator; (5.4.7) on page 259

Hmax(z) maximum-phase lag termof H(z); (6.4.9) on page 279

Hmin(z) minimum-phase lag termof H(z); (6.4.9) on page 279

HUC(z) delay termof H(z); (6.4.9) on page 279

H(r, t) magnetic intensity [A · m−1 ]; (F.5.1b) on page 665

H(z−1) adjoint (time-reversed) transfer function of H(z); (6.4.11) on page 279

i iteration time index; (I.2.2) on page 731

iw̆ transformed point of attraction update iteration number, iw̆ ≤ iB; (8.6.14) on
page 399

i iteration number; subsection 8.3.1 on page 374

i iteration number; section 6.2 on page 274

iγ iteration number corresponding to iγ , iγ ≤ iB; (8.3.15) on page 382

I unit dyadic (idemfactor); F.3.9 on page 653

iΔw( · ) tap-weight update time; section 6.2 on page 274

J accumulated index in spherical harmonics expansion; (G.4.11) on page 714

J(wiB ) cost function, J(wiB ) : KM×1 → R+(KM×M � 0); subsection 8.3.1 on page 374

Jα(wiB ) cost function weight norm penalty term (leakage); (8.3.11) on page 380

Jγ( · ) cost function control output signal mean-square penalty term (leakage); (8.3.16)
on page 382

JΠ(wiB ) cost function term (weight regularization); (8.3.22) on page 385

JαγΠ(wiB ) cost function term (weight and control-effort-driven leakage and regularization);
(8.3.22) on page 385
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Je2αγΠ(wiB ) cost function (l.l.m.s.e. with weight-driven leakage control-effort-driven leakage
and weight regularization); (8.3.22) on page 385

Je2αγ(wiB ) cost function (l.l.m.s.e. with weight and control-effort-driven leakage); (8.3.18)
on page 383

Je2α(wiB ) cost function (l.l.m.s.e. with leakage); (8.3.12) on page 380

Je2γ(wiB ) cost function (l.l.m.s.e. with control-effort-driven leakage); (8.3.16) on page 382

Je2
(wiB ) cost function (l.l.m.s.e.); (8.3.5) on page 376

Je2pαγΠ(wiB ) l.l.m.m.e.n. cost function with weight-driven leakage control-effort-driven leakage
and weight regularization; (8.5.26) on page 395

Je2p

(wiB ) cost function (l.l.m.m.e.n.; (8.5.27) on page 395

JiB auxiliary matrix, JiB ∈ KM×M ; (9.A.31a) on page 464

Jφ number of samples ϕ ∈ [0, 2π); subsection G.4.2onpage 714

Jθ number of samples ϑ ∈ [0, 2π); subsection G.4.2onpage 714

J(r, t) fluid momentum-flux tensor [Pa ]; (F.3.54) on page 644

Jmin(wo
iB

) cost function when weights attain their optimal values; (8.4.2) on page 386

J
{}+
min (wo

iB
) minimum cost function z-domain filtering; subsection 8.4.2 on page 387

jn(ζ) spherical Bessel function of order n; (G.3.3a) on page 710

J
n+

1
2
(ζ) Bessel function of order n + 1

2 ; (G.3.4a) on page 711

J(r, t) current density [A · m−2 ]; (F.5.1) on page 665

k second viscosity coefficient [Pa · s ]; (F.3.97) on page 656

K ′
DFT effective number of DFT averagesin (modified) periodogram in spectrum esti-

mation; section C.2 on page 540

K used t in APA; (8.6.9) on page 398

k wave number m−1 ; (F.3.38) on page 639

KiB auxiliary matrix, KiB ∈ KM×M ; (9.A.31b) on page 464

Ka stiffness of the air in closed-back headset system, (Ka = 26 kN · m−1); (10.3.1)
on page 472

Kc stiffness of the cushion in closed-back headset system, (Kc = 100 kN · m−1);
(10.3.1) on page 472

KDFT number of full length DFT averagesin (modified) periodogram in spectrum es-
timation; section C.2 on page 540

Ks(r, t, P, T ) isentropic compressibility [Pa−1 ]; (F.3.73) on page 649
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KT (r, t, P, T ) isothermal compressibility [Pa−1 ]; (F.3.72) on page 649

l mean-free-path of molecules [m ]

L(z) minimum phase function (modeling filter), L(z) ∈ CNx×Nx ; (3.2.3) on page 107

L2
↑,l upsampling factor in resampling (2nd level) at l’th actuator; (5.4.3) on page 257

L2
↑,m upsampling factor in resampling (2nd level) at m’th error sensor; (5.3.7)

L∗(z−∗) para-Hermitian conjugate of L(z) (whitening filter)(L∗(z−∗) ∈ CNx×Nx); (3.2.3)
on page 107

L̂−1(z) whitening filter estimate(L̂−1(z) ∈ CNx×Nx); (3.5.10) on page 217

L+(z) spectral factor (minimum phase, modeling filter); (3.2.5) on page 108

L−(z) para-Hermitian conjugate of L+(z); (3.2.5) on page 108

L(
�
fi) level of aliased signal component; (N.3.3)

L̄(z) minimum phase rational matrix sequence (modeling filter), L̄(z) ∈ CNx×nx(rank
deficient z-autospectrum); (3.2.6) on page 108

LDFT DFT window lengthin (modified) periodogram in spectrum estimation; section C.2
on page 540

L source or polarization dyadic; (F.9.3) on page 675

Lt inductance in cross-over network tweeter in closed-back headset system; (11.4.2)
on page 485

Lv(z) minimum phase function (modeling filter), Lv(z) ∈ CNv×Nv ; (3.3.1) on page 135

L auxiliary vector component (longitudinal)

L1
↑,l upsampling factor in resampling (1st level) at l’th actuator; (5.4.6) on page 259

L1
↑,m upsampling factor in resampling (1st level) at m’th error sensor; (5.3.7)

Ldw(z) minimum phase function (modeling filter), Ldw(z) ∈ CNd×Nv ; (3.3.3) on page 135

Lu,i,+(z) spectral factor (minimum phase, modeling filter); (8.4.7) on page 387

Lu,i,−(z) para-Hermitian conjugate of Lu,i,+; (8.4.7) on page 387

LαγWe

ux,i,+(z) spectral factor (minimum phase, modeling filter); (8.5.22) on page 394

LαγWe

ux,i,−(z) para-Hermitian conjugate of LαγWe

u,i,+ (z); (8.5.22) on page 394

Lxw(z) minimum phase function (modeling filter), Lxw(z) ∈ CNx×Nv ; (3.3.2) on page 135

m azimuthal index in spherical harmonic expansion (exponential form); G.3.8 on page 712

M2
↓,l downsampling factor in resampling (2nd level) at l’th actuator; (5.4.3) on

page 257
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M2
↓,m downsampling factor in resampling (2nd level) at m’th error sensor; (5.3.7)

M number of adaptive tap-weights in FIR filter; section I.2

M total number of adaptive tap-weights, M �
�
Mw ∈∈ N; (7.A.10) on page 367

M molecular weight [kg · mol ]; (F.3.18)

Ma number of adaptive direct (feedforward) coefficients in infinite-duration impulse
response (IIR) filter; section I.3

MA number of samples used in the attenuation calculations; (A.2.10)

Mb number of adaptive recursive (feedback) coefficients in IIR filter; section I.3

m̆ azimuthal index in spherical harmonic expansion (cos, sin form); G.3.8 on page 712

�
Mu total regressor length for feedback adaptive tap-weights,

�
Mu ∈∈ N; (7.A.13a)

on page 367

�
Mw number of feedback adaptive tap-weights,

�
Mw ∈∈ N; (7.A.11a) on page 367

�

Mu total regressor length for feedforward adaptive tap-weights,
�

Mu ∈∈ N; (7.A.13b)
on page 367

�

Mw number of feedforward adaptive tap-weights,
�

Mw ∈∈ N; (7.A.11b) on page 367

Mmax
ĝl

ey
maximum filter order used in the secondary path models involving the l’th
secondary source; on page 299

Mmax
gl

py
maximum filter order used in the control-performance path models involving
the l’th secondary source; on page 301

Mmax
ĝl

xy
maximum filter order used in the feedback path models involving the l’th sec-
ondary source; on page 310

Mĝey filter order used to represent the secondary path; on page 275

Mmax
ĝey

maximum filter order used in the secondary path models, Mmax
ĝey

∈ N; (7.2.13)
on page 297

Mmax
ĝl

y
maximum filter order used in path models involving the l’th secondary source;
(7.3.41) on page 311

MĈ number of tap-weights in Ĉ; section 4.7 on page 245

MP̂ number of tap-weights in P̂ ; section 4.7 on page 245

Ms mass of the shell in closed-back headset system, (Ms = 0.16 kg); (10.3.1) on
page 472

Mu total regressor length for adaptive tap-weights, M �
�
Mu ∈∈ N; (7.A.12) on

page 367

�
Mm′,l,2

u regressor length used for adaptive tap-weights
�
wm′,l

t1B
,

�
Mm′,l,2

u ∈ N; (7.2.16) on
page 298
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�

M j,l
u regressor length used for the update of the adaptive tap-weights

�

wj,l
t1B

,
�

M j,l
u ∈ N;

(7.3.16) on page 307

�
Mmax

u maximum regressor length involved in the adaptive tap-weights update,
�
Mmax

u ∈
N

�
wm′,l

t2B
; (7.2.15) on page 297

�

Mmax
u maximum regressor length involved in the adaptive tap-weights representation

�

wj,l
t2B

,
�

Mmax
u ∈ N; (7.3.16) on page 307

�
Mmax

wm′ maximum filter order used for the adaptive tap-weights
�
©
wm′,l

t1B
,

�
Mmax

wm′ ∈ NNe ;
(7.2.9) on page 296

�

Mmax
wj maximum filter order used for the adaptive tap-weights

�

©
wj,l

t1B
,

�

Mmax
wj ∈ NNx ;

(7.3.11) on page 306

M1
↓,l downsampling factor in resampling (1st level) at l’th actuator; (5.4.6) on page 259

M1
↓,m downsampling factor in resampling (1st level) at m’th error sensor; (5.3.7)

MSD m.s.d. of the adaptive filter, MSD ∈ R+; (9.2.12) on page 426

MSE m.s.e. of the adaptive filter, MSE ∈ R+; (9.2.13) on page 426

N the set of natural numbers, N � {1, 2, 3, . . .}.

N number of atoms in molecule; section F.3.1 on page 632

n polar index in spherical harmonic expansion

n number of moles of the gas; (F.3.1) on page 628

nε number of standard deviationsin confidence interval analysis; (C.3.2) on page 542

Nψ total number of channels; (2.2.5) on page 21

Nψa
ps number of periodic signals in ψa; subsection N.2.5 on page 801

NADC number of bits in the ADC; (5.3.3) on page 254

N∗ the set of 0 and all natural numbers, N∗ � {0, 1, 2, 3, . . .}.

Nc number of components in the thermodynamic system;(F.3.26) on page 637

Nκ number of constituents(in the thermodynamic system); (F.3.23) on page 636

Nκ,l number of constituents on the LHS of (F.3.23)

Nκ,r number of constituents on the RHS of (F.3.23)

NDFT DFT (block) sizein (modified) periodogram in spectrum estimation; section C.2
on page 540

Ne number of error sensors; Figure 1.1 on page 7

NEu number of samples used for the estimate of the pulse energy; (8.6.24) on
page 401
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Nf equation variance(in the thermodynamic system); (F.3.69) on page 649

Nf,DFT number of DFT frequency pointsin (modified) periodogram in spectrum estima-
tion; section C.2 on page 540

n̂(r′) surface normal unit vector at position r′; (F.3.42) on page 641

h
(1)
n (ζ) spherical Hankel function of first kind and order n; (G.3.3c) on page 710

h
(2)
n (ζ) spherical Hankel function of first kind and order n; (G.3.3d) on page 710

nn(ζ) spherical Neumann function of order n; (G.3.3b) on page 710

N
n+

1
2
(ζ) Neumann function of order n + 1

2 ; (G.3.4b) on page 711

Nι number of internal energy modes;(F.3.15c) on page 633

Nκ number of gas species;(F.3.15b) on page 633

Np number of filter poles; (5.A.7) on page 269

Np number of performance sensors; Figure 1.1 on page 7

Ne
ps number of periodic signalserror sensors; subsection N.3.2 on page 804

Nx
ps number of periodic signals reference sensors; section N.3.1 on page 803

NA
ψ number of A channels; (2.2.9) on page 22

NB
ψ number of B channels; (2.2.9) on page 22

NC
ψ number of C (conditioning) channels; (2.2.5) on page 21

N I
ψ number of input channels; (2.2.5) on page 21

NO
ψ number of output channels; (2.2.5) on page 21

Nr number of independent reactions(in the thermodynamic system; (F.3.26) on
page 637

Ndof
rot degrees of freedom (dof) for rotational movements; section F.3.1

Nsc number of (different) scenarios; (A.2.4) on page 531

Nt number of trials (simulations); (A.2.3) on page 530

Ndof
tr dof for translational movements; section F.3.1

Nv number of random white noise signals; Figure 3.1 on page 112

Ndof
vib dof for vibrational movements; section F.3.1

Nx number of reference sensors; Figure 1.1 on page 7

nx rank of Sxx(eıω), nx ∈ N∗; (3.2.6) on page 108

Ny number of control output (actuators); Figure 1.1 on page 7
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Nz number of filter zeroes; (5.A.7) on page 269

Nz number of independent restricting equations(in the thermodynamic system;
(F.3.26) on page 637

Nec number of equality constraints (Nec < M); (8.A.1) on page 404

Nα
iec number of inequality constraints related to weight-driven leakage; (8.A.17) on

page 408

Nγ
iec number of inequality constraints related to effort-driven leakage; (8.A.18) on

page 408

p(r, t) acoustical pressure [Pa ]

P ambient (or equilibrium) pressure [Pa ]; 7 on page 657

pω(r) acoustic pressure at position r at frequency ω [Pa · s ]

P̆ (r, t) instantaneous pressure under relaxation (non-equilibrium) [Pa ], (F.3.88) on
page 652

Pc critical pressure [Pa ]; (F.3.4a) on page 629

pd probability of detection; section 2.A on page 102

P(r, t) fluid stress-flux tensor [Pa ]; (F.3.50) on page 643

pfa probability of false alarm; section 2.A on page 102

�
ep

k(t1k) performance signal, k’th performance sensor FBS at time i; (7.2.32) on page 301

�

ep
k(t1k) performance signal, k’th performance sensor FFS at time t1k; (7.3.39) on page 311

�
ep

k(t1k) performance signal, k’th performance sensor FFFBS at time t1k; (7.4.17) on
page 319

�
ep

k(t1k) performance signal, k’th performance sensor FFFBICS at time t1k; (7.5.13) on
page 325

P m̆
n (z) associated Legendre functions of integer parameters m̆, n; (G.3.5) on page 711

Pr reduced pressure; (F.3.4a) on page 629

Pref (z) reference plant transfer function; Figure 4.1 on page 241, (4.7.1) on page 245

p(r, t) acoustic pressure; [Pa ]

Psμn(kA) probe response constants

P (z) plant transfer function; (4.7.1) on page 245

P m̆
n associated Legendre functions, (G.4.9) on page 714

ψ1 scan angle in E-Plane

ψ2 scan angle in H-Plane
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Q̃′(ω) earphone volume displacement of acoustical source in closed-back headset sys-
tem; (11.4.1) on page 483

Q̃(eıω) earphone volume displacement of ideal acoustical source with infinite acoustic
impedance in closed-back headset system; (11.4.1) on page 483

Q matrix related to the covariance of w̃o
iB

, Q � Eqiq∗
i ∈ KM×M (random-walk

model) in LEM; section 9.2 on page 422

q vectorized random-walk covariance matrix, q ≡ vec {Q} ∈ KM2×1 ; (9.4.49) on
page 446

Qψaψb
(f) QPSD (quad-spectrum)between signal ψa and ψb; (2.2.14) on page 23

δQ quantity of heat received by the system [J ]; (F.3.9)

QDFT amount of samples availablefor a (modified) periodogram based spectrum esti-
mation; section C.2 on page 540

Qe matrix of real eigenvectors of See(eıω); (3.5.2) on page 207

q(r, t) volume source of mass-flow [kg · m−3 · s−1 ]; (F.3.48) on page 642

Qt quality factor of the cross-over network tweeter in closed-back headset system;
(11.4.2) on page 485

q(r, t) heat flux vector [W · m−2 · s−1 ]; (F.3.67) on page 648

q(r, t) heat flux vector [W · m−2 ]; (F.3.63) on page 647

qcnv(r, t) heat flux vector due to convection [W ·m−2 ]; (F.3.85) on page 652

qcon(r, t) heat flux vector due to conduction [W · m−2 ]; (F.3.83) on page 651

qrad(r, t) heat flux vector due to radiation [W · m−2 ]; (F.3.86) on page 652

R source point - field point distance (F.10.7) on page 677

R(eıω) earphone response-ratio in closed-back headset system; (11.4.1) on page 483

R2
�,l resampling factor (2nd level) , R2

�,l � f1
s,l

f2
s,l

= L2
↑,l

M2
↓,l

at l’th actuator; (5.4.3) on
page 257

R2
�,m resampling factor (2nd level) , R2

�,m � f2
s,m

f1
s,m

= L2
↑,m

M2
↓,m

at m’th error sensor; (5.3.7)
on page 255

R gas constant [J · kg−1 · K−1 ]; (F.3.16) on page 633

R̄ universal gas constant [8.3145 J · mol−1 ·K−1]; (F.3.1) on page 628

Rc resistance of the cushion in closed-back headset system, (Rc = 80 N · s · m−1);
(10.3.1) on page 472

RDFT number of samples displacement between two consecutive DFT averagesin (mod-
ified) periodogram in spectrum estimation; section C.2 on page 540
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Re normalization matrix (constant), Re ∈ RNx×Nx � 0; (3.2.3) on page 107

R̄e normalization matrix, R̄e ∈ Rnx×nx � 0 (rank deficient z-autospectrum); (3.2.6)
on page 108

�
rp
k(t1k) rejection signal, k’th performance sensor FBS at time t1k; (7.2.33) on page 301

�

rp
k(t1k) rejection signal, k’th performance sensor FFS at time t1k; (7.3.40) on page 311

�
rp
k(t1k + 1) rejection signal, k’th performance sensor FFFBS at time t1k + 1; (7.4.18) on

page 319

�
rp
k(t1k + 1) rejection signal, k’th performance sensor FFFBICS at time t1k + 1; (7.5.14) on

page 325

�
rm(t1m + 1) rejection signal, m’th error sensor FBS at time t1m + 1; (7.2.27) on page 300

�

rm(t1m + 1) rejection signal, m’th error sensor FFS at time tml + 1; (7.3.28) on page 309

�
rm(t1m + 1) rejection signal, m’th error sensor FFFBS at time t1m + 1; (7.4.14) on page 318

�
rm(t1m + 1) rejection signal, m’th error sensor FFFBICS at time t1m +1; (7.5.10) on page 324

�̂
rm(t1m + 1) estimate of

�
rm(t1m + 1); (7.2.25) on page 299

�̂

rm(t1m + 1) estimate of
�

rm(t1m + 1); (7.3.27) on page 309

�̂
rm(t1m + 1) estimate of

�
rm(t1m + 1); (7.4.13) on page 318

�̂
rm(t1m + 1) estimate of

�
rm(t1m + 1); (7.5.9) on page 324

�̂
rm−l

(t1G + 1) estimate of
�
rm−l

(t1G + 1); (7.6.10) on page 332

rpot(t) reference position in space of zero potentialm ; (F.3.62)

Rψaψb
(t) cross-covariance matrix/vector (B.1.2) on page 537

〈Rψaψb
(τ)〉 cross-correlation function between two arbitrary signals ψa, ψb (time-averaged)

(N.2.15b) on page 796

〈Rψaψa(τ)〉 auto correlation function of an arbitrary signal ψa (time-averaged) (N.2.15a)
on page 796

Ru auto correlation matrix of the regressor ui, Ru � Eu∗
i ui ∈ CM×M ; (8.5.15a)

on page 392

RWe
u error sensor-weighted auto correlation matrix of the regressor ui, R

We
u � Eu∗

i Weui ∈
CM×M ; (8.5.15a) on page 392

Ru,i auto correlation matrix of the regressor ui , Ru,i � Eu∗
i ui ∈ CM×M in LEM;

section 9.2 on page 422

Rv, Rx radius of the spherical surface virtual sensor and reference sensor surface Sv,Sx;
Figure 1.1 on page 7

R vector from source point to field point [m ], (F.10.7) on page 677
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rj position in space of the j’th reference sensor; Figure 7.2 on page 304

rl position in space of the l’th actuator; Figure 7.1 on page 293

rm position in space of the m’th error sensor; Figure 7.1 on page 293

R1
�,l resampling factor (1st level) , R1

�,l � f0
s,l

f1
s,l

= L1
↑,l

M1
↓,l

at l’th actuator; (5.4.6) on
page 259

R1
�,m resampling factor (1st level) at m’th error sensor; (5.3.7) on page 255

R�
ψa

�
ψa

(n) ACF of aliased components of ψa; (N.2.17) on page 797

R�
ψa

�
ψb

(n) CCF between aliased components of ψa and unaliased components of ψb; (N.2.18)
on page 797

R�
ψa

�
ψa

(n) CCF between unaliased and components of ψa; (N.2.17) on page 797

R�
ψa

�
ψa

(n) ACF of unaliased components of ψa; (N.2.17) on page 797

Rψaψa(n1, n2) time-variant auto correlation function of an arbitrary nonstationary discrete-
time random signal ψa(n); (N.2.12a) on page 796

Rψaψa(t1, t2) time-variant auto correlation function of an arbitrary nonstationary continuous-
time random signal ψa(t); (N.2.11a) on page 795

R�
ψa

�
ψb

(n) CCF between aliased components of ψa and ψb; (N.2.18) on page 797

R�
ψa

�
ψb

(n) CCF between aliased components of ψa and unaliased components of ψb; (N.2.18)
on page 797

R�
ψa

�
ψb

(n) CCF between unaliased components of ψa and aliased components of ψb; (N.2.18)
on page 797

R�
ψa

�
ψb

(n) CCF between unaliased components of ψa and ψb; (N.2.18) on page 797

Rψaψb
(n1, n2) time-variant cross-correlation function between two arbitrary nonstationary

discrete-time random signals ψa(n), ψb(n); (N.2.12b) on page 796

Rψaψb
(t1, t2) time-variant cross-correlation function between two arbitrary nonstationary

continuous-time random signals ψa(t), ψb(t); (N.2.11b) on page 795

Rψaψb
(τ) cross-correlation functionbetween two arbitrary continuous-time random sig-

nals ψa(t), ψb(t); (2.2.16) on page 24

REt voice-coil resistance tweeter in closed-back headset system; (11.4.2) on page 485

rP ′,iB vectorized data auto correlation matrix, rP ′,iB ∈ KM2×M2
; (9.4.48) on page 445

Ru,i auto correlation matrix of reference signal estimate

ru,i vectorized data auto correlation matrix, ru,i � vec {Ru,i} ∈ KM2×1 ; subsection 9.4.5
on page 450
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rWe

u,i vectorized data weighted auto correlation matrix, rWe

u,i � vec {RWe

u,i } ∈ KM2×1 ;
subsection 9.4.5 on page 450

Rud cross-correlation vector between the regressor ui and disturbance signal di, Rud �
Eu∗

i di ∈ CM×1; (8.5.15a) on page 392

RWe

ud error sensor-weighted cross-correlation vector between the regressor ui and dis-
turbance signal di, R

We

ud � Eu∗
i Wedi ∈ CM×1; (8.5.15a) on page 392

R
γiγ (yiγ )

x,i auto correlation matrix of the actuator-weighted reference signal xi, R
γiγ (yiγ )

x,i �
Ex∗

i γiγ (yiγ )xi ∈ CM×M ; (8.3.17) on page 383

�̂
rΔw
m (t2m + 1) rejection signal estimate (frozen tap-weights), m’th error sensor, FBS at time

t1m + 1; (7.2.31) on page 300

�̂
rΔw
m (t2m + 1) rejection signal estimate (frozen tap-weights), m’th error sensor, FBS at time

t2m + 1; (7.2.17) on page 298

�̂

rΔw
m (t2m + 1) rejection signal estimate (frozen tap-weights), m’th error sensor, FFS at time

t2m + 1; (7.3.18) on page 307

�̂

rΔw
m (t2m + 1) rejection signal estimate (frozen tap-weights), m’th error sensor, FFS at time

t2m + 1; (7.3.31) on page 310

�̂
rΔw
m (t2m) rejection signal estimate (frozen tap-weights), m’th error sensor, FFFBS at time

t2m; (7.4.10) on page 317

r̂Δw(i) cancelation signal estimate (frozen filter) at time i; (6.3.3) on page 276

R(r, t) rotation (deformation) dyadic; (F.4.6) on page 661

s (L,M,N)-type indicator; (F.11.4) on page 680

S̃(ıω) sensitivity function; (8.A.14) on page 407

s amplitude parameter; (F.2.2) on page 622

ŝC
s propagation direction of the s’th clutter signal; Figure 3.1 on page 112

ŝS
s propagation direction of the s’th periodic signal; Figure 3.1 on page 112

S̃0(ıω) sensitivity function for the nominal plant; (8.A.13) on page 407

sψaψa(ω) normalized single-sided autospectra; (2.2.19) on page 24

Sψaψa ·ψC (f) coherent auto spectral density functionof random signal ψa conditioned on
random signal set ψC ; (2.3.1) on page 30

Sψaψa⊥ψC (f) residual auto spectral density functionof random signal ψa conditioned on ran-
dom signal set ψC ; (2.3.1) on page 30

Sψaψb⊥ψC (f) residual cross-spectral density functionbetween random signal ψa and random
signal ψb conditioned on random signal set ψC ; (2.3.2) on page 30

Ṡd(f) slope of disturbance signals decay for f > fu
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Sd surface spanned by the error sensors; Figure 1.1 on page 7

Sd surface spanned by the error sensors; Figure 1.1 on page 7

δSgen entropy generation [J ·K−1 ]; (F.3.13)

PI(r, t) fluid pressure tensor [Pa ]; (F.3.89) on page 653

	 signal source in a FFFBICS; Figure 7.4 on page 321

�

yl(t1l + 1) signal source output, l’th secondary source, FFFBICS at time t1l + 1; (7.5.7) on
page 324

sgen(r, t) specific entropy generated during irreversible processes [J ·kg−1 · K−1 ]; (F.3.67)
on page 648

Sh effective head surface area of closed-back headset system, (Sh = 40 cm2);
(10.3.1) on page 472

sij component of strain element; (F.4.5) on page 661

Sp Performance surface (sphere)

SψAψA⊥ψC residual cross spectral density matrix; (2.3.5) on page 31

Sψaψa(f) PSD of signal ψa

Sψaψa(f, t) instantaneous (short term) auto spectral density function (power spectral density
(PSD)) of signal ψa(t); (A.2.1) on page 530

Sψaψb
(f) CPSD between signal ψa and signal ψb

Sψaψb
(f, t) instantaneous (short term) cross-spectral density function between signal ψa(t)

and ψb(t); (A.2.1) on page 530

Sψbψb
(f) PSD of signal ψb

S(r, t) time-varying surface integration limits; (F.3.50) on page 643

s(r, t) specific entropy [J · kg−1 · K−1 ]; (F.3.67) on page 648

S(r, t) surface integration limits of the mass element;(F.3.45)

sS
ω(r′) mass velocity per unit surface area [kg · m−2 · s−1 ]; (F.10.15a) on page 679

sS(r′, t′) mass velocity per unit surface area [kg · m−2 · s−2 ]; (F.10.15a) on page 679

Sv surface spanned by the virtual sensors; Figure 1.1 on page 7

Sv surfacespanned by the virtual sensors; Figure 3.1 on page 112

s(r, t) displacement vector [m ]; (F.4.1) on page 660

Ṡx(f) slope of reference signals decay for f > fu

Sx reference surface; Figure 1.1 on page 7

Sx surface spanned by the reference sensors; Figure 1.1 on page 7
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Sx surface spanned by the reference sensors; Figure 1.1 on page 7

Sψψ MIMO channel power spectral density matrix, Sψψ ∈ CNf×Nψ×Nψ ; (2.2.3) on
page 21

SψAψA A channel power spectral density matrix, SψAψA ∈ CNf×NA
ψ ×NA

ψ ; (2.3.3) on
page 30

SψAψC A-C cross channel power spectral density matrix, SψAψC = S∗
ψCψA ∈ CNf×NC

ψ ×NA
ψ ;

(2.3.3) on page 30

SψCψC C channel power spectral density matrix, SψCψC ∈ CNf×NC
ψ ×NC

ψ ; (2.3.3) on
page 30

SψIψI input channel power spectral density matrix, SψIψI ∈ CNf×NI
ψ×NI

ψ ; (2.2.6) on
page 21

SψIψO input-output cross channel power spectral density matrix, SψIψO = S∗
ψOψI ∈

CNf×NO
ψ ×NI

ψ ; (2.2.6) on page 21

SψOψO output channel power spectral density matrix, SψOψO ∈ CNf×NO
ψ ×NO

ψ ; (2.2.6)
on page 21

S�
ψa

�
ψb

(θ) CSDF between aliased components of ψa and ψb; (N.2.20) on page 798

S�
ψa

�
ψb

(θ) CSDF between aliased components of ψa and unaliased components of ψb;

(N.2.20) on page 798

S�
ψa

�
ψb

(θ) CSDF between unaliased components of ψa and aliased components of ψb;

(N.2.20) on page 798

S�
ψa

�
ψb

(θ) CSDF between unaliased components of ψa and ψb; (N.2.20) on page 798

Sψaψb · ψC (f) coherent cross-spectral density functionbetween random signal ψa and random
signal ψb conditioned on random signal set ψC ; (2.3.2) on page 30

SαγWe
uuxx (z) mixed filtered-reference signal z-auto-cross-spectrum, SαγWe

uuxx (z) ∈ CM×M ; (8.5.21)
on page 394

S(r, t) pure stain dyadic; (F.4.5) on page 661

a〈p〉 signed power, (L.2.9) on page 777

SNRa SNR at port a; (2.2.2) on page 20

SNRb SNR at port b; (2.2.2) on page 20

SNRx signal-to-noise ratio at the reference sensor; (6.5.4) on page 280

A(t) state transition matrix, A(t) ∈ Kn×n; subsection O.0.1 on page 807

B(t) control matrix, B(t) ∈ Kn×m; subsection O.0.1 on page 807

C(t) observation matrix, C(t) ∈ Kp×n; subsection O.0.1 on page 807
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D(t) direct input-output coupling matrix, D(t) ∈ Kp×m; subsection O.0.1 on page 807

T sampling period; [s ]

T (ω) response of the second-order high-pass cross-over filter tweeter in closed-back
headset system; (11.4.1) on page 483

T ambient temperature [K ]; 7 on page 657

T time domain, T ⊂ R; subsection O.0.1 on page 807

TA attenuation estimation time [s ]; (A.2.10)

T β
α (z) Gegenbauer polynomials of real non negative parameters α, β, (G.3.5) on page 711

T̆ κ
ι (r, t) apparent temperature associated with mode ι for species κ (under relaxation)

[K ], (F.3.88) on page 652

Tc critical temperature [K ]; (F.3.4b) on page 629

T(r, t) stress-momentum-flux tensor [Pa ]; (F.3.55) on page 644

Tij strain element; (F.4.7) on page 662

T 0
l sampling period , T 0

l � 1/f0
s,l (0th level) at l’th actuator [s ]; section 5.4 on

page 257

t0l sample index(0th level) at l’th actuator; section 5.4 on page 257

T 1
l sampling period , T 1

l � 1/f1
s,l (1st level) at l’th actuator [s ]; section 5.4 on

page 257

t1l sample index (1st level) at l’th actuator; section 5.4 on page 257

T 2
l sampling period , T 2

l � 1/f2
s,l (2nd level) at l’th actuator [s ]; section 5.4 on

page 257

t2l sample index(2nd level) at l’th actuator; section 5.4 on page 257

T 0
m sampling period(0th level) at m’th error sensor [s ]; section 5.3 on page 252

t0m sample index(0th level) at m’th error sensor; section 5.3 on page 252

T 1
m sampling period , T 1

m � 1/f1
s,m (1st level) at m’th error sensor [s ]; section 5.3

on page 252

t1m sample index (1st level) at m’th error sensor; section 5.3 on page 252

T 2
m sampling period , T 2

m � 1/f2
s,m (2nd level) at m’th error sensor [s ]; section 5.3

on page 252

t2m sample index(2nd level) at m’th error sensor; section 5.3 on page 252

Tp permissable time frame

Tr reduced temperature[ ]; (F.3.4b) on page 629

TAAF (s) anti-aliasing filter(transfer function); Figure 4.1 on page 241
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TADC(s) analogue to digital converter(transfer function); Figure 4.1 on page 241

TDAC(s) digital to analogue converter(transfer function); Figure 4.1 on page 241

TRF (s) reconstruction filter(transfer function); Figure 4.1 on page 241

t2B tap-weight update time (index); on page 274

t1B adaptive tap-weight time index multirate level 1 , t1B ∈ N ; subsection 7.2.5 on
page 298 and subsection 7.3.5 on page 307

t2B adaptive tap-weight time index multirate level 2 , t2B ∈ N ; subsection 7.2.5 on
page 298 and subsection 7.3.5 on page 307

T(r, t) stress dyadic [Nm−2 ]; (F.4.7) on page 662

t1G plant estimation time index multirate level 1 , t1G ∈ N ; section 7.6 on page 326

t2G plant estimation time index multirate level 2 , t2G ∈ N ; section 7.6 on page 326

ui filter input vector,ui ∈ C1×M ; (I.2.2)

U(r, t) internal energy [J ]; (F.3.66) on page 647

u(r, t) specific internal energy [J ·kg−1 ]; (F.3.15) on page 633

U internal energy function [J · m−3 ]; (F.3.9)

U input alphabet; subsection O.0.1 on page 807

�
u(t2l ) filtered-reference signalat multirate level 2FBS at time t2l ; subsection 7.2.4 on

page 296

�̊
ut2l

FBS regressor block cell matrix,
�̊
ut2l
∈ KNe×Ny×Ne at multirate level 2 at time

t2l ; (7.A.4a) on page 365

�

u(t2l ) filtered-reference signal, FFS at time t2l ; on page 306

�̊

ut2
l

FFS regressor block cell matrix,
�̊

ut2
l
∈ KNe×Ny×Nx at multirate level 2 at time

t2l ; (7.A.4b) on page 365

�̊
ut2

l
FFFBS regressor block cell matrix at multirate level 2,

�̊
ut2

l
∈ KNe×Ny×(Ne+Nx)

at time t2l ; (7.A.3) on page 364

ut2l
regressor matrix at multirate level 2, ut2l

∈ KNe×M at time t2l ; (7.A.14) on
page 367

Ui regressor time-block matrix, Ui ∈ KK×M (Ui ∈ KKNe×M ); (8.6.9) on page 398

uκ
ι,−0 internal acoustic energy per unit mass associated with mode ι for species

κ [J ·kg−1 ]; (F.3.21) on page 635

�
um,l,m′(t2l ) filtered-reference signalat multirate level 2,

�
um,l,m′(t2l ) ∈ KFBS at time t2l ;

(7.2.10) on page 297

�

ul,m,j(t2l ) filtered-reference signal component, FFS at time t2j ; j refers to reference sensor;
l, m refer to the secondary path; (7.3.12) on page 306
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u(r, t) acoustical velocity [m · s−1 ]

uch(r, t) specific chemical bound internal energy [J · kg−1 ]; (F.3.15) on page 633

ue(r, t) specific electron internal energy [J · kg−1 ]; (F.3.15) on page 633

urot(r, t) specific rotational kinetic internal energy [J · kg−1 ]; (F.3.15) on page 633

utr(r, t) specific translational kinetic internal energy [J · kg−1 ]; (F.3.15) on page 633

uvib(r, t) specific vibrational kinetic internal energy [J · kg−1 ]; (F.3.15) on page 633

�̊
uw

m,l,m′,t2l
filtered-reference signal time-reversed buffer, FBS at time t2l ; m′ refers to refer-
ence sensor; l, m refer to the secondary path; (7.2.14) on page 297

�̊

uw
l,m,j,t2l

filtered-reference signal time-reversed buffer, FFS at time t2l ; j refers to reference
sensor; l, m refer to the secondary path; (7.3.15) on page 307

uΔw( · ) reference signal used for tap-weight update; section 6.2 on page 274

Vδ principal volume; (F.9.1) on page 675

VC control volume; Appendix H on page 719

V(r, t) stress-momentum-flux tensor [Pa ]; (F.3.95) on page 656

Vf volume (space) of fluid; subsection F.3.12 on page 656

Vf̌ linear sound field volume; (F.3.100) on page 658

Vi system noise signal time-block matrix, Vi ∈ KKNe×1(Vi ∈ KK×1); (9.2.3) on
page 424

V∞ all space R3; section F.7 on page 672

V y
l weight factor attributed to the l’th actuator; (8.3.15) on page 382

v̌r modified reduced specific volume[]; (F.3.8) on page 630

V (r, t) time-varying volume integration limits; (F.3.43) on page 641

V (r, t) volume integration limits of the mass element;(F.3.45)

Vs space spanned by all sources; section F.7 on page 672

Vv,Vx,Vd interior volumes of Sv,Sx,Sd; Figure 1.1 on page 7

Vv,Vx,Vd interior volumes of Sv,Sx,Sd; Figure 1.1 on page 7

W (r, t) stress energy function [J · m−3 ]; (F.4.9) on page 662

w(t) random colored noise signals, w(t) ∈ CNv×1; (3.3.1) on page 135

w̆iw̆
transformed weight vector, w̆iw̆

∈ KM×1(weight regularization); (8.6.14) on
page 399

w̌iB weight-update direction vector, w̌iB ∈ KM×1;(8.5.1) on page 389
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w(r, t) acoustic energy density [J · m−3 ]; (F.3.107) on page 659

w filter weights, w ∈ CM×1(tap-weight vector); (I.2.1) on page 731

wo mean, wo ∈ KM×1 optimal weight vector in LEM; section 9.2 on page 422

wig weight vector, wig ∈ KM×1 initial guess; (8.5.28) on page 396

wav weight vector obtained from some averaging procedure, wav ∈ KM×1; (8.5.28)
on page 396

wls weight vector, wls ∈ KM×1, last saved; (8.5.28) on page 396

wiB adaptive tap-weight vector, wiB ∈ KM×1; section 8.3.1 on page 375

wo
iB

optimal weight vector, wo
iB
∈ KM×1; (8.4.1) on page 386

WRD(ω) frequency-dependent weighting function; (8.3.7)

wa direct adaptive tap-weight vector, wa ∈ CMa×1 in IIR filter; (I.3.2) on page 734

wb recursive adaptive tap-weight vector, wb ∈ CMb×1 in IIR filter; (I.3.2) on page 734

w̄iw̄ point of attraction, w̄iw̄ ∈ KM×1(weight regularization); (8.3.21) on page 384

We error sensor weighting diagonal matrix, We ∈ RNe×Ne ; (8.3.3) on page 376

W p
k (f, t) frequency and generally time-variant weighting function applied to the k’th

performance sensor; (A.2.1)

�
wm′,l

t2B
adaptive tap-weights at multirate level 2 ,

�
wm′,l

t2B
∈ K�

Mm′,l

FBS linking the m’th

reference signal to the l’th control output signal at time t2B; Figure 7.1 on
page 293 and Figure 7.3 on page 315

�
©
wm′,l

t1B
adaptive tap-weights copy of

�
wm′,l

t2B
at multirate level 1 ,

�
©
wm′,l

t1B
∈ K�

Mm′,l

FBS

linking the m’th reference signal to the l’th control output signal at time t1B;
Figure 7.1 on page 293 and Figure 7.3 on page 315

�
wt2B

FBS adaptive tap-weight cell matrix,
�
wt2B

∈ KNe×Ny at multirate level 2 link-
ing the reference signals to the control output signals at time t2B; (7.A.2a) on
page 364

�̊
xt1l

FBS reference signal cell matrix,
�̊
xt1l
∈ KNy×Ne at multirate level 1 at time t1l ;

(7.A.7) on page 366

�

wj,l
t2B

adaptive tap-weights at multirate level 2 ,
�

wj,l
t2B
∈ K�

Mj,l

FFS linking the j’th

reference signal to the l’th control output signal at time t2B; Figure 7.1 on
page 293 and Figure 7.3 on page 315

�

©
wj,l

t1B
adaptive tap-weights copy of

�

wj,l
t2B

at multirate level 1 ,
�

©
wj,l

t1B
∈ K�

Mj,l

FFS linking

the m’th reference signal to the l’th control output signal at time t1B; Figure 7.1
on page 293 and Figure 7.3 on page 315
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�

wt2B
FFS adaptive tap-weight cell matrix,

�

wt2B
∈ KNx×Ny at multirate level 2 linking

the reference signals to the control output signals at time t2B; (7.A.2b) on
page 364

�̊

xt1l
FFS reference signal cell matrix,

�̊

xt1l
∈ KNy×Nx at multirate level 1 at time t1l ;

(7.A.8) on page 366

�
wt2B

FFFBS adaptive tap-weight cell matrix at multirate level 2,
�
wt2B

∈ K(Ne+Nx)×Ny

linking the reference signals to the control output signals at time t2B; (7.A.1)
on page 364

wkin(r, t) acoustic kinetic energy density [J ·m−3 ]; (F.3.109) on page 659

W e
m weight factor attributed to the m’th error sensor; (8.3.3) on page 376

W e,dB
m attenuation weight factor of m’th error sensordB-weighting ; (8.3.2) on page 375

�̃

wo(z) optimal feedforward steady-state tap-weights transfer function; (6.5.3) on page 280

Wy2(ω) frequency-dependent weighting function; (8.A.7)

wpot(r, t) acoustic potential energy density [J · m−3 ]; (F.3.108) on page 659

wt2B
adaptive tap-weight vector at multirate level 2, wt2B

∈ KM×1 linking the refer-
ence signals to the control output signals at time t2B; (7.A.9) on page 367

w̃PEF(z) transfer function of the PEF; (3.5.2) on page 207

We⊗K error sensor weighting block diagonal matrix, We⊗K ∈ R(KNe)×(NeK); (8.6.7)
on page 397

WEMSE WEMSE of the adaptive filter, WEMSE ∈ R+; (9.2.16) on page 426

WMSE w.m.s.e. of the adaptive filter, WMSE ∈ R+; (9.2.14) on page 426

X state space; subsection O.0.1 on page 807

�
xm′(t1m′) feedback reference signal at multirate level 1 ,

�
xm′(t1m′) ∈ K m′’th reference

sensor, FBS at time t1m; (7.2.4) on page 295

�
xm′(t2m′) feedback reference signal, m′’th reference sensor, FBS at time t2m; (7.2.7) on

page 296

�

x′
j(t

1
j ) reference signal (feedback perturbed), FFS at time t1j (7.3.6) on page 306

�

xj(t1j ) feedforward reference signal, j’th reference sensor, FFS at time t1j ; (7.3.8) on
page 306

xj(t1j ) reference signal, j’th reference sensor, FFS at time t1j ; (7.3.6) on page 306

�
xt1l

FFFBS reference signal cell matrix at multirate level 1,
�
xt1l

∈ KNy×(Ne+Nx);
(7.A.6) on page 366

Xi reference signal time-block matrix, Xi ∈ KK×M (Xi ∈ KKNy×M ); (8.6.9) on
page 398
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xt1l
reference signal vector, xt1l

∈ KNy×Ny(Ne+Nx)at multirate level 1 at time t1l ;
(7.A.17) on page 369

�̊
x

ĝey

m′,t2
m′

reference signal time-reversed buffer ,
�̊
x

ĝey

m′,t2
m′
∈ KMmax

ĝey , FBS at time t2m′ ;

(7.2.11) on page 297

�̊

x
ĝey

j,t2j
reference signal time-reversed buffer used in connection with the plant estimate

filtering, FFS at time t2j ; (7.3.13) on page 307

�
xĝl,m

ey (t1G) reference signal in connection with secondary path estimation (l’th secondary
source to m’th error sensor), FFFBICS at time t1G; (7.6.1) on page 328

�
xĝl,j

xy (t1G) reference signal in connection with feedback path estimation (l’th secondary
source to j’th reference sensor), FFFBICS at time t1G; (7.6.1) on page 328

�̊
x

ĝl
y

t1G
reference signal time-reversed buffer used in connection with plant estimates

involving the l’th secondary source, FFFBICS at time t1G; (7.6.2) on page 328

Ξ(c)
n (r) radial function in separated Helmholtz equation in spherical coordinates; (G.3.3)

on page 710

�̊
xw

m′,t1
m′

reference signal time-reversed buffer at multirate level 1 ,
�̊
xw

m′,t1
m′
∈ K�

Mmax
wm′ used

in connection with the tap-weights, FBS at time t1m′ ; (7.2.8) on page 296

�̊

xw
j,t1j

reference signal time-reversed buffer at multirate level 1 ,
�̊

xw
j,t1j

∈ K�

Mmax
wj used

in connection with the tap-weights, FFS at time t1j ; (7.3.10) on page 306

(xA, yA, zA) Cartesian coordinate system for AUT

(xP , yP , zP ) Cartesian coordinate probe

(xS , yS , zS) Cartesian coordinate system in space

Y output value space; subsection O.0.1 on page 807

yκ mole fraction of the κ’th constituent; (F.3.6) on page 629

�
yl(t1l ) control output signal, l’th secondary source, FBS at time t1l ; (7.2.21) on page 299

�

yl(t1l ) control output signal, l’th secondary source, FFS at time t1l ; (7.3.22) on page 308

�

yl(t1l + 1) control output signal, l’th secondary source, FFFBS at time t1l + 1; (7.4.11) on
page 317

�

yl(t1l + 1) control output signal, l’th secondary source, FFFBICS at time t1l + 1; (7.5.7) on
page 324

�

yĝl,m
ey (t1G + 1) secondary path system identification output signal(l’th secondary source to

m’th error sensor), FFFBICS at time t1G +1; (7.6.5) on page 330
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�

yĝl,j
xy (t1G + 1) feedback path system identification output signal(l’th secondary source to j’th

reference sensor), FFFBICS at time t1G +1; (7.6.6) on page 330

�
ẙ

ĝy

l,t1l +1
control output signal buffer, l’th secondary source, FBS at time t1l + 1; (7.2.22)
on page 299

�̊

y
ĝy

l,t1
l
+1

control output signal buffer, l’th secondary source, FFS at time t1l + 1; (7.3.23)
on page 308

Z compressibility factor; (F.3.3) on page 628

z−1 reciprocal of z (reflection of z about the uc and reflection of the result hereof
about the real axis); (3.2.3) on page 107

z−∗ conjugate-reciprocal of z (reflection of z about the uc); (3.2.3) on page 107

ZA
l acoustic impedance related to leakage, ZA

l = RA
l + KA

l

ıω in closed-back headset
system, (ZA

l = (1 + 2ωl

ıω )1.26e7 N · s ·m−5); (10.3.1) on page 472

ZA
m(eıω) acoustic impedance related to mass-spring-resistance of the earcup in closed-

back headset system; (11.4.3) on page 485



INDEX

active noise reduction (ANR)
hardware

analogue to digital converter (ADC),
240

analogue to digital converter, 239, 853
ADCs, 791
digital to analogue converter (DAC),

240
digital to analogue converter, 239, 853
DACs, 791

active control (AC), 239, 243, 276, 281, 283,
329, 374, 529, 732, 781

active noise control (ANC), 260, 269, 328,
333, 374, 379, 529, 530, 532, 805

active noise reduction (ANR), 18, 280, 281,
291, 320, 326, 328, 329, 532, 533,
547, 551, 556, 613, 791

affine projection algorithm (APA), 371, 396,
398

feedback system (FBS), ix, xi, 2–4, 6, 9, 11,
82, 106, 111, 137, 163, 173, 184,
192, 200, 231, 242, 281, 295, 303,
306, 309, 314, 334, 406, 407, 481,
529, 791, 803, 814, 819, 833, 834,
845, 847, 849, 853–858

feedforward active control system (FFACS),
533

feedforward-feedback integrated communica-
tion on-line system identification system
(FFFBICIDS), 291, 320, 328

feedforward-feedback integrated communica-
tion system (FFFBICS), 320, 322–
324, 326, 328, 833–835, 838, 845,
847, 850, 857, 858

feedforward-feedback system (FFFBS), 8, 314,
316, 317, 320, 324, 520, 833–835,
845, 847, 849, 857

feedforward system (FFS), ix, xi, 3, 10, 17,
111, 173, 184, 192, 200, 228, 231,
242, 244, 281, 291, 303, 305, 306,
313, 314, 405, 529, 533, 559, 583,
595, 833–835, 845, 847, 849, 853–

858
fast recursive least-squares array (Fast RLS Array),

751
filtered-x (Fx), 275, 300, 310, 317
integrated communication (IC), 11, 320, 520
least-mean-fourth (LMF), 395, 403
least-mean-mixed-norm (LMMN), 403
least-mean-squares (LMS), 273–275, 378, 395,

396, 402–404, 417, 425, 737, 781
multiple-channel-αγΠε-affine projection algorithm

(MC-αγΠε-APA), x, 11, 399, 404, 428
multiple-channel-αγΠε-NLMS (MC-αγΠε-NLMS),

404
minimum mean-square error (m.m.s.e.), 395,

775
normalized LMS (NLMS), 273, 396, 404
recursive least-squares (RLS), 273, 275, 276,

737–739, 742, 743, 751, 753–755,
757, 781

steepest descent (SD), 11, 372, 388, 394, 395
stochastic gradient (SG), 11, 372
Terma noise chamber (TNC), 558
Wiener Filter (WF), 372
αε-affine projection algorithm (αε-APA), 400
αγΠε-affine projection algorithm (αγΠε-APA),

371, 372
αγΠε-NLMS (αγΠε-NLMS), 372
ε-affine projection algorithm (ε-APA), 372, 400,

404
extended fast a priori error sequential technique

(eFAEST), 737
extended fast Kalman filter (eFKF), 737
extended fast transverse filter (eFTF), 737
ε-NLMS (ε-NLMS), 372, 396, 400, 402, 404
independent and identical distributed (i.i.d.),

530, 774
modified-filtered-x (mFx), 276, 293, 304, 305,

315, 316, 321–323, 327, 331
rms errors, 541
adaptive filter

topology
fast array recursive least-squares (FARLS),

859
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730
finite-duration impulse response (FIR),

9, 10, 20, 250, 252, 261, 269, 270,
283, 284, 292, 297–299, 307–310,
330, 333, 334, 386, 520, 521, 729,
730, 732, 733, 759, 760, 762, 765,
768

IIR, 20, 261, 269, 274, 281, 283, 284,
379, 730, 732–734, 760, 842, 855

adaptive filter , 729
cascade, 730
causal, 729
closed-loop, 729
direct form, 730
disturbance signal, 732
indirect form, 730
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bending waves, 668
bias errors, 540, 541
blue noise, 137
Bode sensitivity integral, 2
brown noise, 137
bulk modulus, 650
buoyancy frequency, 643

canonical spectral factors, 106
Cauchy distribution, 775
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Szegö formula, 233

tap-weights, 731, 733
tension, 643
theory of elasticity, 660
thermal equilibrium, 630, 631, 636
Thermal radiation, 652
thermal radiation, 630
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