5,445 research outputs found

    Stability and chaos in coupled two-dimensional maps on Gene Regulatory Network of bacterium E.Coli

    Full text link
    The collective dynamics of coupled two-dimensional chaotic maps on complex networks is known to exhibit a rich variety of emergent properties which crucially depend on the underlying network topology. We investigate the collective motion of Chirikov standard maps interacting with time delay through directed links of Gene Regulatory Network of bacterium Escherichia Coli. Departures from strongly chaotic behavior of the isolated maps are studied in relation to different coupling forms and strengths. At smaller coupling intensities the network induces stable and coherent emergent dynamics. The unstable behavior appearing with increase of coupling strength remains confined within a connected sub-network. For the appropriate coupling, network exhibits statistically robust self-organized dynamics in a weakly chaotic regime

    Discrete Dynamical Systems Embedded in Cantor Sets

    Full text link
    While the notion of chaos is well established for dynamical systems on manifolds, it is not so for dynamical systems over discrete spaces with N N variables, as binary neural networks and cellular automata. The main difficulty is the choice of a suitable topology to study the limit NN\to\infty. By embedding the discrete phase space into a Cantor set we provided a natural setting to define topological entropy and Lyapunov exponents through the concept of error-profile. We made explicit calculations both numerical and analytic for well known discrete dynamical models.Comment: 36 pages, 13 figures: minor text amendments in places, time running top to bottom in figures, to appear in J. Math. Phy

    Non-Markov stochastic dynamics of real epidemic process of respiratory infections

    Full text link
    The study of social networks and especially of the stochastic dynamics of the diseases spread in human population has recently attracted considerable attention in statistical physics. In this work we present a new statistical method of analyzing the spread of epidemic processes of grippe and acute respiratory track infections (ARTI) by means of the theory of discrete non-Markov stochastic processes. We use the results of our last theory (Phys. Rev. E 65, 046107 (2002)) to study statistical memory effects, long - range correlation and discreteness in real data series, describing the epidemic dynamics of human ARTI infections and grippe. We have carried out the comparative analysis of the data of the two infections (grippe and ARTI) in one of the industrial districts of Kazan, one of the largest cities of Russia. The experimental data are analyzed by the power spectra of the initial time correlation function and the memory functions of junior orders, the phase portraits of the four first dynamic variables, the three first points of the statistical non-Markov parameter and the locally averaged kinetic and relaxation parameters. The received results give an opportunity to provide strict quantitative description of the regular and stochastic components in epidemic dynamics of social networks taking into account their time discreteness and effects of statistical memory. They also allow to reveal the degree of randomness and predictability of the real epidemic process in the specific social network.Comment: 18 pages, 8figs, 1 table

    Follow the fugitive: an application of the method of images to open dynamical systems

    Full text link
    Borrowing and extending the method of images we introduce a theoretical framework that greatly simplifies analytical and numerical investigations of the escape rate in open dynamical systems. As an example, we explicitly derive the exact size- and position-dependent escape rate in a Markov case for holes of finite size. Moreover, a general relation between the transfer operators of closed and corresponding open systems, together with the generating function of the probability of return to the hole is derived. This relation is then used to compute the small hole asymptotic behavior, in terms of readily calculable quantities. As an example we derive logarithmic corrections in the second order term. Being valid for Markov systems, our framework can find application in information theory, network theory, quantum Weyl law and via Ulam's method can be used as an approximation method in more general dynamical systems.Comment: 9 pages, 1 figur

    Transition from regular to complex behaviour in a discrete deterministic asymmetric neural network model

    Full text link
    We study the long time behaviour of the transient before the collapse on the periodic attractors of a discrete deterministic asymmetric neural networks model. The system has a finite number of possible states so it is not possible to use the term chaos in the usual sense of sensitive dependence on the initial condition. Nevertheless, at varying the asymmetry parameter, kk, one observes a transition from ordered motion (i.e. short transients and short periods on the attractors) to a ``complex'' temporal behaviour. This transition takes place for the same value kck_{\rm c} at which one has a change for the mean transient length from a power law in the size of the system (NN) to an exponential law in NN. The ``complex'' behaviour during the transient shows strong analogies with the chaotic behaviour: decay of temporal correlations, positive Shannon entropy, non-constant Renyi entropies of different orders. Moreover the transition is very similar to that one for the intermittent transition in chaotic systems: scaling law for the Shannon entropy and strong fluctuations of the ``effective Shannon entropy'' along the transient, for k>kck > k_{\rm c}.Comment: 18 pages + 6 figures, TeX dialect: Plain TeX + IOP macros (included

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Effect of small-world topology on wave propagation on networks of excitable elements

    Get PDF
    We study excitation waves on a Newman-Watts small-world network model of coupled excitable elements. Depending on the global coupling strength, we find differing resilience to the added long-range links and different mechanisms of propagation failure. For high coupling strengths, we show agreement between the network and a reaction-diffusion model with additional mean-field term. Employing this approximation, we are able to estimate the critical density of long-range links for propagation failure.Comment: 19 pages, 8 figures and 5 pages supplementary materia
    corecore