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Abstract

We study excitation waves on a Newman—Watts small-world network model of coupled excitable
elements. Depending on the global coupling strength, we find differing resilience to the added long-
range links and different mechanisms of propagation failure. For high coupling strengths, we show
agreement between the network and a reaction-diffusion model with additional mean-field term.
Employing this approximation, we are able to estimate the critical density of long-range links for pro-
pagation failure.

1. Introduction

Excitable media are well-studied model systems in a variety of applications ranging from chemical [1] to
electronic systems [2] and lasers [3] and from heart muscle tissue [4] to neural systems [5, 6]. An excitable
system rests in a stable steady state, but after a sufficiently strong perturbation performs along excursion in
phase space; i.e., emits a spike before returning to the stable steady state again. Excitable media arise when
excitable elements are coupled spatially.

The spatial coupling facilitates an abundance of dynamical behavior comprising Turing patterns [7],
traveling waves [ 1], spots [8] and spiral waves [9], to name just a few. Wave-like spatio-temporal behavior is
particularly interesting from a neuroscientific point of view. It is observed in living neural tissue and considered
to play arole in neural information processing in different tasks [10, 11]. Traveling waves are a generic
phenomenon in cortical dynamics [ 12], and have successfully been used to describe features of cortical
spreading depolarization [13—15].

In recent years dynamical systems coupled in complex network architectures have attracted a lot of attention
[16-20]. These systems can also occur in a wide variety of applications ranging from power grids [21] to
biological networks [22]. In neuroscience, scenarios with excitable elements coupled in a chain-like one-
dimensional topology have been suggested as a mechanism for the occurrence of traveling waves of activity in the
visual cortex [11]. In related works, a one-dimensional network model of pyramidal cells and interneurons
produces saltatory propagation, and excitatory connections play a crucial role [12].

The topology of a network is a key factor influencing the dynamic behavior of the system. Network
topologies can range from well-ordered lattice systems, which resemble spatially extended systems, to random
topologies where the notion of space loses its meaning. A very interesting intermediate form are the so-called
small-world topologies [23, 24], in which strong local connectivity is combined with a few long-range
connections enabling short mean path lengths.

Small-world topologies are of interest for the description of anatomic and functional brain networks [25].
They are considered a powerful and versatile approach to the structure of those systems, and it is argued that within
the cerebral architecture, they are preferred as a trade-off between network efficiency and wiring cost [26].

On the dynamical side, wave and front propagation have been studied in network topologies such as trees,
where fronts can be pinned and waves cease to propagate [27, 28]. Small-world topologies have been shown to
make systems support sustained activity [29, 30].
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Regarding the influence of topology on the behavior of traveling waves, it has been shown that short-range
connections mediate traveling waves in phase oscillator models which are used as simple models for cortical
waves [31]. Also, additional long-range connections in a chain of locally coupled oscillators can be used to
generate traveling waves of different wavelengths [32].

A change of topology may occur in pathological states as, e.g., multiple sclerosis, which affects the most
expensive (long-range) links in the brain network [26]. Moreover, propagation failure of waves is an important
aspect in different areas of physiology [33, 34].

To the best of our knowledge, the combination of these relevant ingredients, i.e., generic excitable elements,
small-world topology and propagation failure, has not been addressed in a satisfactory way, except for very few
exemptions, e.g. [35]. We attempt to do so by using a generic model of excitability, the well-known FitzHugh—
Nagumo model [36, 37], combined with a Newman—Watts small-world architecture [17] as well as techniques
from spatially continuous systems to study the behavior of excitation waves.

The structure of the paper is as follows. In section 2, we introduce the dynamics and the network model. We
draw a connection between a ring network and a one-dimensional continuous reaction-diffusion system. We
discuss traveling wave solutions in both systems, in particular their spectral and stability properties, and we
elaborate on the difference between the dynamics of the network and the reaction-diffusion system. In section 3,
we consider a small-world topology. We highlight the different mechanisms leading to propagation failure in
different dynamical regimes. In section 4, we modify the continuous reaction-diffusion model in order to
incorporate the effect of the small-world topology. We give an estimate of the critical link density at which
excitation waves cease to exist in the small-world network. In section 5, we summarize our findings.

2. Model

2.1. Dynamics

As a generic model of excitable dynamics we use the FitzHugh—Nagumo model [36, 37] on an undirected,
unweighted network, where neighboring nodes are coupled by the difference in the activator concentrations.
Thus, the model reads

3 N
u;
iii=ui——l—Vi+DzAij(uj_”i) (1a)
3 st
'l}i=€(ui+ﬂ); i=l;--->N) (lb)

where u; is the activator, v; is the inhibitor at node i, Ajjis the adjacency matrix of the network, D > 0 is the
coupling strength, and ¢ («1) and f are the time-scale separation and the excitation threshold of the local
dynamics, respectively. The local dynamics of equation (1) (i.e., without the coupling term) possess a steady
stateatu* = —f, v* = —p + 3°/3.Foravalueof|| > 1, this steady state is stable. It undergoes a supercritical
Hopfbifurcation at|f| = 1. For the network equation (1) alinear stability analysis shows that the eigenvalues of

the linearization around the homogeneous steady state ;" = u*, v; = v* are given by

2
Iu]_-_i- — %(1 — w24+ D 1+ \/ (1 — w2 4+ D) j) — 4¢ ),Where/lj are the eigenvalues of the Laplacian matrix

Li=Aj— Z,il Aix6jj of the network, 1; < 0, with atleast one eigenvalue 4;= 0. For 4;= 0, . * are the
eigenvalues of the local dynamics. Comparing terms of ,uji, we note that the real part of the square root term is

always smaller than the absolute value of the term before the square root. Thus, when the former is negative, /4;—'

is also negative. This is always the case ifu* > 1and thus if the steady state of the local dynamics is stable. On the
other hand, if the term before the square root is positive, then u].+ > 0. A sufficient condition for thisisu* < 1
and 1; = 0,which, as there always existsa1; = 0, always happens if the steady state of the local dynamics is
unstable. Thus, we conclude that the homogeneous steady state inherits the stability of the local equations and

thus whenwu*, v* isstable, so is the homogeneous steady state u; = u*, v; = v*.

Fore < 1, thelocal dynamics of equation (1) are a prototypical example for a slow-fast system showing type
11 excitable behavior. Systems of type II excitability do not possess a constant threshold that separates
stimulations leading to a spike from those that do not. They are rather characterized by a ‘threshold trajectory’,
around which the system is very sensitive to the size of the stimulus. In the case of the FitzHugh—Nagumo system
one commonly chooses as the threshold trajectory the so-called ‘canard trajectory’ that goes through the v-
maximum of the u-nullcline. It is marked by a green solid line in figure 1(b). Also shown in this figure are one
trajectory with initial conditions slightly above this threshold trajectory and one slightly below it, leading to sub-
(blue dotted line) and super-threshold (blue dashed line) behavior, respectively. For a more detailed account of
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Figure 1. (a) Normalized (global) clustering coefficient C and average shortest path length L vs. number of additional random links n
for the Watts—Strogatz (WS) (red dashed-dotted and dotted lines) and Newman—Watts (NW) small-world model (blue solid and
dashed lines). Parameters: N = 1000 and R = 2. (b) Phase portrait of (1, v) in the FitzHugh—Nagumo system: nullclines (red solid line),
canard trajectory (green solid line) and two solutions with initial conditions slightly below (blue dotted line) and slightly above (blue
dashed line) the threshold given by the canard trajectory. The inset shows a blow-up near the steady state. Parameters: § = 1.1,

e = 0.04.

excitability in the FitzHugh—Nagumo system, see the supplementary material (section A, available at stacks.iop.
org/njp/17/023058/mmedia) and [5]. In the remainder of this work, we will fix the parameters ate = 0.04 and
p= 1.1, such that the model is in the excitable regime.

2.2. Traveling wave solutions
As a preliminary study, we will discuss the behavior of traveling wave solutions on a regular ring network.
Consider a ring topology with N nodes, where each node is coupled to its R neighbors to the left and its R
neighbors to the right, so that every node has degree 2R. Equation (1) on such a system reads
up S
u; = u; — ? —-v; + DZ(ui_r + Ujpr — 21/11‘) (2a)

r=1
1>,~=8(u,~+ﬂ>, (2b)

wherei = 1, ..., N and all indices are to be understood as modulo N.

Apart from the stable homogeneous steady state discussed above, this system also supports traveling wave
solutions. At this point, we are interested in traveling wave solutions on the ring network in which exactly one
region of excitation travels around the ring in either a clockwise or counter-clockwise direction. It turns out that
the coupling strength D in equation (2) has a significant influence on the existence, speed and stability of these
solutions. At high coupling strengths D, the system in equation (2) behaves much like a continuum reaction-
diffusion system, whereas at low coupling strengths D, the discrete nature of equation (2) becomes important. In
the following, we will briefly discuss the behavior of these traveling wave solutions with changing coupling
strength D. We start by introducing the limiting continuum system.

2.2.1. Traveling waves in the continuum limit.
To examine the behavior of traveling wave solutions of equation (2) at alarge coupling strength D, we define a
continuum limit. If we define a continuous spatial variable x and a distance h = % between two adjacent nodes

on the ring and assume that there is a function u(t, x) such thatu; (t) = u(t, %), equation (2a) can be expressed

as

3 R . .

_ u u(t, x —jh) + u(t, x + jh) — 2u(t, x)
dtu—u—?—v+z I . (3)
j=1
Now letting
. N
N,D - o with _D = L = const, (4)
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Figure 2. Dispersion relations for traveling wave solutions on the discrete ring network in equation (2a) for different network sizes N
and nearest neighbor numbers R. (a) Propagation speed c versus coupling strength D. (b) Propagation speed c versus (virtual) domain
size L. In (a) the limit points (saddle-node bifurcations) at D), for the same R but different N coincide. In (b) the destabilization
points at L, fall together for all networks. In (b) the dispersion relation for the continuous system in equation (6a) is shown in gray.
The curve for N= 500, R = 1 has been obtained by numerical integration. All other curves have been obtained by path continuation.
The insetin (b) shows a blow-up of the yellow rectangle. The filled dots denote limit points (LP), the asterisks denote torus
bifurcations (TR). Parameters: # = 1.1, & = 0.04.

equation (3) becomes
o = f(u) + q(R) 0, x € [0, L]

where
X 1
_ 22
q(R) = jzzlj = 6R(R + 1)(2R + 1). (5)

Byrescaling D — g (R) D, equation (2) finally becomes

3

6tu=u—%—v+axxu (6a)
dv=ce(u+p), (6b)
withx € [0, L]and periodic boundary conditionsu (¢, 0) = u (¢, L), v(¢t,0) = v(t, L),L = q(l\;)D.

By the limit of equation (4), the three parameters that determine the coupling and the topology of the ring
network, N, Rand D, are translated into one parameter L, while the number of parameters of the local dynamics
does not change. Any constant in front of the second derivative can be set to unity by rescaling the spatial variable
x. Note that due to equation (4), decreasing L in equation (6) has the same effect as increasing D in equation (2a).
Moreover, the information encoded in the parameter R is lost when the limit is taken as in equation (4).

With the parameter values being in the excitable regime (as are the parameters chosen here, f=1.1,¢€
=0.04), equation (6) is known to support traveling wave solutions. These solutions move at a constant speed ¢
and in a comoving frame they do not change their shape. At large domain sizes (L > 100), equation (6) has
exactly two branches of traveling wave solutions, namely stable ‘fast waves’ and unstable ‘slow waves’. The
domain size can become arbitrarily large without affecting the velocity and stability of these branches anymore.
When Lis decreased, these branches are connected, however, and together they form the dispersion relation (L, ¢
(L)). The dispersion relation is shown graphically in figure 2(b) as the grayline, the branch of stable solutions is
marked with a solid line and the branch of unstable solutions is dotted. At the chosen parameters of the local
dynamics (¢ = 0.04, f = 1.1), the stable branch loses its stability at a critical domain size L, = 30.756. This can
be understood as the result of the interaction of the traveling wave with its own tail due to the periodic boundary
condition. At this point, a torus bifurcation occurs, at which two conjugate complex points of the spectrum of
the linearization of the traveling wave simultaneously cross the imaginary axis. After this bifurcation, a complex
series of secondary bifurcations finally leaves the branch of unstable waves with one point of the spectrum in the
right half plane. For more details of the bifurcations involved in the destabilization and the methods used to
calculate the stability, we refer to the supplementary material (available at stacks.iop.org/njp/17/023058/
mmedia) and to [38—40].

For the discrete ring system in equation (2) with a given number of nodes N and coupling range R, the critical
domain size L, determines an upper bound of the coupling Dy;g, = N* / (g (R)L2) for the stable propagation of
waves by the limit of equation (4).
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2.2.2. Traveling waves on the ring network

In equation (6), L can be set arbitrarily large without changing the shape, speed and stability of the traveling wave
solutions. This manifests itself in figure 2(b) by the convergence of both the stable and unstable branch of the
dispersion relation of the continuum system (gray line) to a finite propagation speed c.

However, in equation (2), increasing L is equivalent to decreasing D. Atlow coupling strengths D, the
discrete structure of the underlying ring network in equation (2) becomes important. When the wave propagates
in a discrete system, as in equation (2), it cannot propagate at arbitrarily low coupling strengths [41, 42]. The
critical coupling strength D at which the wave ceases to propagate has been approximately calculated in [42]. We
will point out what happens to the dispersion relation at Dy, To the best of our knowledge this has not yet been
investigated.

We calculate the dispersion relation from equation (2) by choosing a certain number of nodes N and
performing a numerical continuation for the resulting full system of coupled ordinary differential equations,
using AUTO-07 p [43]. Due to the closed ring topology, a traveling wave solution on the ring is given by a
periodic orbit of the underlying 2N equations with period T. The propagation speed ¢ can easily be calculated as

c= IZIR)D . Using the transformed parameters cand L instead of D and T, we can compare the dispersion
q

relation of equation (2) with that of equation (6) in the regime of high coupling strength D or small (virtual)
domain size L, respectively. Dispersion relations obtained by continuation for N=40, R=1; N=80, R=2;and
N=120, R =3 are displayed together with the branch of stable solutions obtained using numerical integration of
equation (2) for N =500, R = 1 in the parameters c versus D in figure 2(a), and using the transformed parameter
L=N / Jq(R)D instead of D in figure 2(b). Additionally, in figure 2(b) the dispersion relation for the
continuous system of equation (6) is shown.

For high coupling strengths, we find the same behavior as expected by the dispersion relation of equation (6).
However, for decreasing coupling strength, the propagation speed of the wave solutions does not stay constant as
it does in the continuous system. For the unstable ‘slow waves’ it increases, whereas it decreases for the stable ‘fast
waves’ until both branches meet at the critical low coupling strength Dy, in a saddle-node bifurcation. The
coalescence of the branch of stable propagating waves and that of the unstable ones in a saddle-node bifurcation
at the destabilization point has to our knowledge not yet been reported. Because of this saddle-node bifurcation,
the dispersion relation of wave solutions on the discrete ring in equation (2) is given by a closed curve. The lower
boundary of the coupling strength D), is a genuine effect of the discreteness of equation (2) and does not
depend on Nbut does depend on R.

In figure 2(b), it is clearly visible that the smaller Lis (i.e. the larger D is), the closer the propagation velocity ¢
of the discrete system is to that of the continuum system. It depends on the size N and the coupling range R of the
network, above which value L (or below which value D) the propagation velocity c starts to deviate significantly.
For N = 500, R = 1, for example, thisis the case for L &~ 200 (D & 6.25). The reason for the deviation is that at
low coupling strengths in the discrete system of equation (2), the excitation ‘hops’ from node to node. This
mode of propagation is called saltatory propagation and is slower than the continuum-like propagation at higher
coupling strengths [42]. The reason for saltatory propagation and for saltatory propagation being slower is that
due to the low coupling strength the triggering of an excitation needs more time. The actual transition from rest
to excitation in contrast is fast, and thus one node reaches full excitation before the next one starts the transition.

We summarize that on the ring network of equation (2), there is alower bound of the coupling strength Dy,
for stable wave propagation which depends only on the coupling range R and not on the network size N. The
upper bound of the coupling strength for stable wave propagation Dy, in contrast is dependent on both Rand
Nand is connected to the critical length for stable wave propagation L, (see section 2.2.1 by
Drigh = N 2/(q(R) L2). The dispersion relation for traveling waves on a ring network is given by a closed curve,
where the branch of stable and the branch of unstable solutions meet twice.

3. Wave-like solutions on small-world networks

3.1. Setup
The network topology for our model is chosen to be a ring topology consisting of N nodes, where each node is
coupled to its R neighbors to the left and its R neighbors to the right, so that every node has degree 2R. We
perturb the topology by adding a certain number n of long-range links, where both ends of these links are chosen
randomly [17]. This is a small modification of the well-known Watts—Strogatz small-world model [24], where
the long-range links are replacing links of the regular ring network. For a certain range of # the Newman—Watts
model shows small-world behavior as well; i.e., a short average path length and high clustering coefficient; see
figure 1(a).

We are interested in the behavior of traveling waves on the ring, when the network topology is altered this
way. To this end, we numerically simulate a traveling wave solution of equation (1) on a ring network without
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additional links. Ata certain instant of time, we instantly add a number # of links at random positions to the
network and monitor the resulting behavior. The system can show two possible behaviors; it can either decay to
the homogeneous steady state or it can show ongoing activity in the form of perturbed traveling waves.

In order to describe the collective effect in dependence on the number of additional links 1, we consider the
ensemble of all Newman—Watts small-world networks parametrized by network size N, coupling range R and
number of additional links . We define f, (1, D; N, R)as the fraction of realizations of a Newman-Watts
small-world network that support sustained wave activity of equation (1) with coupling strength D. f_ is the
quantity we will be concerned with for the remainder of this work.

We determine f numerically by considering an ensemble of 200 Newman—Watts small-world networks
for every combination (N, R, ). For each examined value of the coupling strength D, we integrate the dynamics
with initial conditions as explained above for every element of this ensemble. The fraction of realizations in this
ensemble that support sustained wave activity gives our estimate of f_, (1, D; N, R). The number of additional
links is varied from nn =1 to n = NR. When n = NR there are as many additional links as links on the original ring
and we have not observed a single case in which there was sustained wave activity for such a high number of
additional links. Thus there is no need to raise # any further. Also, in order to keep the computational effort
feasible, we did not use every number 1 between 1 and NR. Instead we used about 50 values of n, distributed
logarithmically between 1 and NR. This is also justified by the fact that for large n the outcome for different, but
close-by, n hardly differs. In the following, we omit N and R from the argument of f, , writingjust £ (n, D), as
Nand R will be clear from the context and fixed when varying n and D. We do this for the full range of coupling
strengths that support stable traveling wave solutions of the ring network D € (D)o, Dhign) (see section 2.2.2)
and for rings of different sizes N and different nearest neighbor numbers R. For the numerics we use a Runge—
Kutta—Fehlberg method with adaptive timestep for fast simulation and reliability. The precision of the method is
setto 10™*, We simulate for 6000 time units, assuming that the wave is stable if no decay to the stable
homogeneous steady state has occurred within this time'.

3.2.Numerical observations

Generally we observe that the larger the number of additional links 7, the more realizations do not support
sustained wave activity. Thus f, ., always decreases with increasing #. Finally, if n becomes too large, no

= 0. We find that the transition takes place
within a small range of %; see figure 4. However, the point of transition varies considerably depending on (i) the

realizations with ongoing activity can be found anymoreand f__,
network size N, (ii) the nearest neighbor number R and (iii) the coupling strength D. Note that these parameters
can also be chosen such that already for n =1, f, , is considerably below 1.0 (e.g. N=250,R=2,D=7.0in

figure 4(b), leftmost point for those parameters).

In general, it is not possible to pinpoint the exact mechanism that causes propagation failure when multiple
additional links are present. For example there are different realizations with the same 7 that for the same
coupling strength D either support sustained wave activity or do not; see for example figure 3. On the other hand,
we can also find one realization that for one value of D supports ongoing activity and for a slightly different D
does not. In figure 3 it can also be seen that propagation failure is not caused by collision with another counter-
propagating wave. We have only observed pairwise generation of secondary waves; see, e.g., the (white) vertical
line in figure 3(b). As the mutual annihilation of counter-propagating waves also takes place only pairwise (see
the vertical line in figure 3(b, ii)), this mechanism cannot change the number of simultaneously occurring waves
from even to odd or vice versa and therefore cannot cause propagation failure. The example in figure 3(b) is
selected such that at the time of the snapshot, mutual annihilation of wave pairs and propagation failure occur
simultaneously. In figure 3(b, 1), the nodes’ states at the time of the snapshot are displayed and those groups of
nodes which undergo propagation failure or annihilation of a wave pair are marked by arrows in figure 3 (b, iv).
It can be seen in this plot that in decaying to the left branch of the u-nullcline, the group of nodes undergoing
propagation failure sweeps over a large section of the middle part of the u-nullcline. The group of nodes that
experience the mutual annihilation of a wave pair, in contrast, cross the middle part of the #-nullcline at a small
corridor.

For a systematic investigation, we examine the fraction f,_ (1, D) of realizations that support an ongoing

(
ust
activity. In figure 5, color density plots of f, ., (1, D) are shown for different N and R. We numerically calculate
the isolines (1195, Dy 5). These are defined by f_ (1105, Dos) = 0.5 and shown as blue dotted lines in figure 5.
When D approaches either Dy, or Dyigp, while fixing the number of additional links, foust 18 approaching

zero. This is seen as the transition to black at the bottom and top of figure 5. This behavior is expected from the

! Taking all solutions that actually decay within this timespan, the median time until decay is typically around 10 and always below 21. The
0.99-quantile is typically around 600 with one outlier (N = 1000, R = 4) where the 0.99-quantile is 3033. Thus it is safe to assume that almost
all solutions that have ‘survived’ the 6000 time unit threshold will survive further.
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Figure 3. Traveling wave solution on a Newman—Watts small-world network with N = 500, R = 3, n = 102. The coupling strength
is D =0.4.(a) Sustained wave activity and (b) propagation failure. The panels show (i) snapshot of the solution, u; (blue asterisks), v;
(red dots) versus node index i; (ii) space-time plot of activator variable u; (color-coded), vertical white line marks snapshot in panel
(1); (iii) scheme of the network. Nodes are color-coded according to their activator level at the time of snapshot (i). Indices ascending
counter-clockwise with i = 1 at the top; (iv) phase portrait of all nodes in the (1, v) plane (blue dots; snapshot), including all links of the
network (gray lines) and nullclines (red). Other parameters: e = 0.04, f = 1.1. Animated versions of these figures are available at
stacks.iop.org/njp/17/023058/mmedia.
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Figure 4. Fraction f,  of realizations (with # additional long-range links) that support sustained activity of a traveling wave solution.
(a) D=0.035 (b) D=7.0. Plots for ring networks of different sizes N and coupling ranges R. The values (N, R) are given in the legend.
Every data point has been calculated by simulating the dynamics on 200 realizations of the pertaining small-world network. Note that
for (a) networks with the same R show the same transition point, whereas in (b) the transition points of networks with the same R so
not coincide as well. Parameters: f = 1.1, & = 0.04.

results in section 2.2.2, as there are no stable traveling wave solutions beyond these values even on the
unperturbed ring. However, as the propagation of the unperturbed wave differs in the two regimes, so does the
sustained propagation or the propagation failure on the small-world network. As can be seen in figure 4(a),
when the coupling strength is low, the network size N does not play a role and networks with the same R show
the same transition point in n/(NR). When the coupling strength is higher, as in figure 4(b), the transition points
do not coincide as well.

3.2.1. Low D — discrete regime (figure 6)

In this regime of low D, the propagation of the excitation takes place in a saltatory fashion. By this, we mean that
the excitation ‘hops’ from node to node. More precisely, the state of one node reaches maximum excitation
before the next node starts becoming excited. This behavior can be seen clearly in the exemplary time series of
figure 6.

In addition to Dy, discussed in section 2.2.2, we find two more values D;, D, with Dy,,, < D; < D, at
which the effect which added links have changes suddenly. These values are independent of N, but they depend
onR.

If D < Djow, we find no stable traveling wave solutions whatsoever, even for n = 0. This is expected, as for
D < Dy, there are no stable traveling solutions even on the ring without additional links (see section 2.2.2 and
figure 2).
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Figure 5. Density plots of fraction of sustained wave activity f, . (color-coded) in the (1, D)-plane. (a) N=1000and R=1, (b)
N=1000and R=2, (c) N=1000and R =3, (d) N=200 and R = 2. The green line gives the location of the destabilizing bifurcation of
equation (7a), transformed back to nand D (see section 4.1). Note that the transitions in the discrete regime in (b) and (d) take place at
the same values of D, whereas the ones in the continuous regime take place at the same values of L. Parameters: f = 1.1, ¢ = 0.04.

If Dipw < D < Dy, one additional link will lead to propagation failure once the traveling wave reaches one of
the nodes which this link joins. When the node that is about to become excited has one end of the additional link,
the other end will point to a node that is in the rest state. This is because the propagation is saltatory and there is
only one node that is excited at one instance of time. In this range of D, this link is sufficient to prevent this node
from becoming excited, and thus the propagation is quenched. As a consequence, f,  (n > 0, D) = 0but
fiuse (n = 0, D) = linthis range of D. This behavior is illustrated in figure 6(a). There the exemplary network
has one additional link from node 246 to node 406. Propagation suppression by coupling back to an unexcited
node happens as soon as the wave reaches node 406.

If D) < D < D5, one additional link may lead to propagation failure, but it does not necessarily; see
figure 6(b). In this range of D, a traveling wave solution can pass one end of the additional link without being
suppressed. When the node at the first end of the additional link becomes excited, this excitation is also coupled
to the node at the remote end. Because of the coupling scheme of the ring, this node is coupled to more nodes in
the rest state than the successor node to the node at the first end of the link. As a consequence, the node at the first
end will be able to trigger a full excitation in its successor node but not in the node at the remote end. Here a sub-
threshold excitation is generated, which does not propagate further. However, this sub-threshold excitation
leads to an increased inhibitor level which takes a certain time to decay back to the steady state value. If the
remote end of the shortcut is reached by the traveling wave before the inhibitor level has sufficiently decayed, the
propagation will stop. This behavior leads to a decrease of f, , (1, D) for increasing # in the mentioned range of
D, because as n increases, the more likely it becomes that one of the additional links spans a short enough
distance. An exemplary time series for this behavior is shown in figure 6(b). There the exemplary network has
two additional links from node 60 to 176 and from 343 to 347. Propagation failure happens by the raised
inhibitor level at node 347 due to previous sub-threshold excitation mediated by the additional link.

If D > D,,atraveling wave solution can still pass one end of the additional link without becoming
suppressed. But now a full excitation leading to a pair of traveling waves with opposite propagation directions
will be generated at the remote end of the additional link. This can be seen very clearly in figure 6(c, ii), where
secondary wave pairs are generated at node 43 and at node 127. As traveling waves are only generated pairwise
and the annihilation also takes place in pairs, the mechanism for propagation failure must work differently. One
possible mechanism that we found and that can also be seen in figure 6(c) is that two or more additional links
end very close to each other (or even on the same node). Then, as can be seen in figure 6(c), (i) it might not be
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Figure 6. Exemplary behavior of traveling wave solutions in the regime of very low coupling strengths D. (a)—(c) Same as figure 3, with
(a) Diow < D = 0.0332 < Dy, n = 1, propagation suppression by backcoupling to an unexcited node and (b)

Dy < D = 0.0347 < D,, n = 2, propagation suppression by raised inhibitor level due to previous sub-threshold excitation mediated
byadditional linkand (c) D, < D = 0.0373, n = 4, excitation of secondary wave pairs possible, propagation suppression by two
additional links ending in node 142 and (d) fraction of sustained wave activity f, . versus coupling strength D for the discrete limit,
legend gives values of n. Parameters: # = 1.1, & = 0.04, N =500, R = 1. Animated versions available at stacks.iop.org/njp/17/
023058/mmedia.

possible to excite a secondary wave pair here, and also (ii) propagation can stop here due to the strong coupling
back to the rest state as in the regime below D;. Generally, as f, , is close to unity for small 2 in this regime,
propagation failure seems to be mostly caused by more complex mechanisms which need several additional
links. In the exemplary time series for figure 6(c) there are four additional links from node 90 to 127, 38 to 142,
142 t0 221 and 43 to 326. The propagation stops at node 142, where two additional links end. A secondary wave
pair is never excited at this node because the other additional link couples back this node to the rest state.

To summarize, for D < D), no traveling wave solutions exist for anyn > 0. For D),y < D < Dy, no stable
traveling wave solutions exist forn > 0.ForD; < D < D,, f, . decreases with increasing #, and no secondary
waves can be excited. For D > D,, the excitation of secondary waves is possible, leading to a sudden rise of f, ,
for intermediate .

The observed approximate values for Dy, Djand D, are given in table 1. We note that the values for Dy,
and D, (i) decrease with increasing coupling range R, as does (ii) the distance between the two. This is expected
as (1) increasing R has a similar effect as raising D on the ring and (ii) as the long-range links have the same weight
as the local links, they have less impact, if R becomes larger. D, on the contrary increases with increasing R. This
is also expected for the same reason as (ii). For R =3, D, is not even located in the regime of saltatory propagation
anymore.

3.2.2. High D — continuum regime (figure 7)
Athigh coupling strengths D, we do not find distinct values of D at which the overall behavior of ., changes
drastically as in the discrete regime. We observe the excitation of secondary waves in the entire continuum
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Table 1. Approximate transition values
Diow, Djand D, for different nearest neigh-
bor numbers R in the discrete limit.
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Figure 7. Fraction of sustained wave activity f, . in the continuum regime of D. n/L at L = 200, where L = ﬁ, legend gives values
(N,R). Other parameters: f = 1.1, ¢ = 0.04.

regime. Again, as the generation of secondary waves occurs only pairwise, this mechanism cannot lead to the
decay of all activity directly by pairwise annihilation of counter-propagating waves.

We find as the main mechanism for propagation failure again the distribution of too many ends of the
additional links in a small region, thus coupling back nodes that are in the excited state too strongly to nodes
having a low-activator concentration. This effect can be seen very clearly in the (u, v) diagrams in figure 3(b),
where all nodes that constitute the original wave are pulled over the middle part of the u-nullcline.

We also observe another notable effect: for nearest neighbor numbers higher than R = 1, there is a fixed
coupling strength (depending on R but not on N) at which f . starts to decrease already at lower numbers r of
additional links. This can be seen very well in figure 5(c) at D = 1. So far we have no explanation for the
mechanism behind this phenomenon.

If we are in the regime of high coupling strength D, f, . decreases with increasing D until D reaches the
maximum value Dy,;g, above which no traveling wave solutions are found even for 7 =0 (ring without additional

links); see section 2.2.2. Along these lines it turns out that the parameters L =

N_ando = 2" arebetter
a(R)D L

suited to describe the behavior of £, independently of the network size Nand (almost) independently of the
nearest neighbor number R. See section 4 for a derivation and discussion.

This is shown in figure 7, where the fraction of sustained wave activity f_ , is plotted versus #/L for various N
and R. The coupling strength D in this plot is adapted for each (N, R)so that L =200 is constant in that figure.
Note that the transition points from sustained wave activity to propagation suppression coincide better, the
lower R and the larger N. For higher R (R =2, 3) the networks with smaller N need to have (much) smaller D to
have the same L and thus are not well located in the continuum regime anymore. Thus in order to show that the
approximation works very well in that case, networks with N > 2000 would need to be simulated, which would
have been numerically too expensive within the scope of this work.

4. Analytic mean-field approximation

4.1. High D — continuum limit

In order to include the effect of the long-range links into the continuum limit description of section 2.2.1, we
split the adjacency matrix .A;; in equation (1) into two parts. A;; = R;j; + Sy, with R;; being all links of the
original ring network and S;; being the additional randomly added links. Thus the dynamics read
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N
= f(uj, v;) + D ZRl](u] - u;) + ZSU(MJ )

1 j=1

]:
R N

=f(ui, V,’)+DZ( 1+j+ui_j—2u,<)+D25ij(uj—ui)
j=1 j=1

D < p X
= f(u;, vi) W?( itj + Ui-j — 21/11‘) + ﬁgsij(uj - u;)

where in the last equality a rescaling D — D = Dq (R) (see section 2.2.2) has been used, and the tilde will be
dropped in the following.

The ring part of the coupling can be treated in the same way as in section 2.2.1. For the small-world part of
the coupling, we assume a large number of additional links and distribute the entries in Sj; equally over all entries
of the entire matrix Sj; which leaves S;; = % a constant. For easier readability, we consider only the small-world
part of the coupling term s;:

p
si= —— ) Sijuj—u;)

N
LN (- )

q(R) L? “Z\N?
1 2n ¢
=mFZ(”;‘_ui)

j=1

In performing the transition to the continuum description, we replace the sum Zj\f: , by the integral /0 dy and

1 2n L
()= WFU updy - [ u(x)dy)

1 2n

introduce the mean value i

The continuum limit including the additional long-range links reads

3

atu=%—u—v+6mu+o(ﬁ—u) (7a)
ov=¢e(u+p)
x €[0, L] and (u, v)(t, 0) = (u, v)(t, L), (7b)
. _ N _ 2n
withL = oD ando = JBL"

With this mean-field approximation, the four coupling parameters (N, R, D andn) reduce to two
parameters (L and o). This kind of global feedback coupling has also been studied for the Rinzel-Keller model
in [44].

4.2. Approximate boundary of wave propagation
Ifo = 0, equation (7) is the same as equation (6). Employing the same methods as in section 2.2.1, we examine
the change of the dispersion relation ¢(L) if o is increased; see figure 8.

If6 = 0, stable wave propagation is possible down to a minimum value of L., & 30.756 (see section 2.2.1). If
oisincreased, L, increases as well; i.e., the parameter range of L for stable propagation becomes smaller
(figure 8(b)). However, L, goes to infinity when o approaches 6,,,x & 0.247 from below, so that above 6.y, N0
stable propagation is possible at all.

Notethatato & 0.246, the mechanism of destabilization changes when the destabilizing torus bifurcation
coincides with a saddle-node bifurcation (limit point). The destabilizing torus bifurcation is indicated by blue
dashed lines in figure 8 and the destabilizing saddle-node bifurcation is indicated by a red solid line.

We display the loci of destabilization as a curve L, (¢) in figure 8(a). L., (¢) in (a) is connected with the
instability points of the dispersion relations shown in figure 8(b) as indicated by the vertical dotted lines.

This curve can be transformed to a curveny (N, R, D), yielding an approximation for the boundaryin n
above which no realizations of a small-world network will support stable traveling waves. It is shown as the green

solid line in the heatmap plots of f, . in figure 5. The transition in 7 to quenched wave activity happens at lower
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Figure 8. Dispersion relation for the mean-field approximation of equation (7). (a) Curve of the destabilizing torus bifurcation at L,
(blue dashed line) and of the saddle-node bifurcation (red solid line) in (L, o) space. The black dots indicate the (L, o) values of the
destabilization points in the dispersion relations shown in (b). (b) Propagation velocity c versus L: branches of stable (black solid line)
and unstable (black dotted line) traveling waves for different values of mean-field coupling strength o, curves of destabilizing torus
bifurcation (blue dashed line) and curve of the saddle-node bifurcation (red solid line) in (L, c) space. The inset shows a blow-up of the
yellow rectangle. Parameters: # = 1.1, & = 0.04.

values of n. This is expected, as a significant contribution by the coupling term arising through the long-range
links can only occur if the difference in activator concentration at both ends of the link is large. This is only the
case if the node at one end of the shortcut is in the excited state (wave peak). Thus the critical link density is only
important in part of the network. Of course, in a random network this is more likely to occur in an (arbitrary)
part than in the entire network. Also note that the approximation becomes worse for higher R. Moreover, there
is always an optimum coupling strength D where 7 can be highest without disturbing the propagation of the
wave. This optimum D is a result of the transition between the discrete and the continuum regime.

5. Conclusion

We have studied the propagation of a solitary pulse (or wave) on a ring network and the influence of small-world
perturbations of the topology upon the propagation. Already on the unperturbed ring topology, there are two
regimes. One regime corresponds to high coupling strength, in which the behavior of the system resembles that
of a continuous reaction-diffusion system with mean-field coupling. The other regime is associated with low
coupling strength, in which the discrete nature of the network is important and the behavior differs from that of
areaction-diffusion system.

In each regime, a too large number of long-range links leads to failure of wave propagation. However, the
mechanisms which lead to the suppression of the traveling wave differ in the two regimes.

We have identified three different subregimes of coupling strength in the weak coupling regime, which are
sharply separated from each other. In the first one (lowest coupling strength), one additional link, regardless of
the distance it spans, is enough to prevent propagation. In the second one, one additional link can be sufficient to
prevent propagation if the distance it spans is not too large. For coupling strengths above the second subregime,
secondary wave pairs can be created through the long-range links. For the latter coupling strengths, the
mechanism for the quenching of a traveling wave is similar to that in the continuum regime.

In the strong coupling regime, the main mechanism appears to be a too large number of additional links in
the excited part of the wave (high activator concentration). These links collectively ‘pull’ the excited part back
over the threshold trajectory of the system and thus lead to propagation failure. We have successfully
approximated this behavior in the continuum limit by including a mean-field coupling term in the equations of
the continuous reaction-diffusion system.
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