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Abstract
We study excitationwaves on aNewman–Watts small-world networkmodel of coupled excitable
elements. Depending on the global coupling strength, wefind differing resilience to the added long-
range links and differentmechanisms of propagation failure. For high coupling strengths, we show
agreement between the network and a reaction-diffusionmodel with additionalmean-field term.
Employing this approximation, we are able to estimate the critical density of long-range links for pro-
pagation failure.

1. Introduction

Excitablemedia are well-studiedmodel systems in a variety of applications ranging from chemical [1] to
electronic systems [2] and lasers [3] and fromheartmuscle tissue [4] to neural systems [5, 6]. An excitable
system rests in a stable steady state, but after a sufficiently strong perturbation performs a long excursion in
phase space; i.e., emits a spike before returning to the stable steady state again. Excitablemedia arise when
excitable elements are coupled spatially.

The spatial coupling facilitates an abundance of dynamical behavior comprising Turing patterns [7],
travelingwaves [1], spots [8] and spiral waves [9], to name just a few.Wave-like spatio-temporal behavior is
particularly interesting from aneuroscientific point of view. It is observed in living neural tissue and considered
to play a role in neural information processing in different tasks [10, 11]. Travelingwaves are a generic
phenomenon in cortical dynamics [12], and have successfully been used to describe features of cortical
spreading depolarization [13–15].

In recent years dynamical systems coupled in complex network architectures have attracted a lot of attention
[16–20]. These systems can also occur in awide variety of applications ranging frompower grids [21] to
biological networks [22]. In neuroscience, scenarios with excitable elements coupled in a chain-like one-
dimensional topology have been suggested as amechanism for the occurrence of travelingwaves of activity in the
visual cortex [11]. In relatedworks, a one-dimensional networkmodel of pyramidal cells and interneurons
produces saltatory propagation, and excitatory connections play a crucial role [12].

The topology of a network is a key factor influencing the dynamic behavior of the system.Network
topologies can range fromwell-ordered lattice systems, which resemble spatially extended systems, to random
topologies where the notion of space loses itsmeaning. A very interesting intermediate form are the so-called
small-world topologies [23, 24], inwhich strong local connectivity is combinedwith a few long-range
connections enabling shortmean path lengths.

Small-world topologies are of interest for the description of anatomic and functional brainnetworks [25].
They are considered a powerful and versatile approach to the structure of those systems, and it is argued thatwithin
the cerebral architecture, they are preferred as a trade-off betweennetwork efficiency andwiring cost [26].

On the dynamical side, wave and front propagation have been studied in network topologies such as trees,
where fronts can be pinned andwaves cease to propagate [27, 28]. Small-world topologies have been shown to
make systems support sustained activity [29, 30].
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Regarding the influence of topology on the behavior of travelingwaves, it has been shown that short-range
connectionsmediate travelingwaves in phase oscillatormodels which are used as simplemodels for cortical
waves [31]. Also, additional long-range connections in a chain of locally coupled oscillators can be used to
generate travelingwaves of different wavelengths [32].

A change of topologymay occur in pathological states as, e.g., multiple sclerosis, which affects themost
expensive (long-range) links in the brain network [26].Moreover, propagation failure of waves is an important
aspect in different areas of physiology [33, 34].

To the best of our knowledge, the combination of these relevant ingredients, i.e., generic excitable elements,
small-world topology and propagation failure, has not been addressed in a satisfactoryway, except for very few
exemptions, e.g. [35].We attempt to do so by using a genericmodel of excitability, thewell-known FitzHugh–
Nagumomodel [36, 37], combinedwith aNewman–Watts small-world architecture [17] aswell as techniques
from spatially continuous systems to study the behavior of excitationwaves.

The structure of the paper is as follows. In section 2, we introduce the dynamics and the networkmodel.We
draw a connection between a ring network and a one-dimensional continuous reaction-diffusion system.We
discuss travelingwave solutions in both systems, in particular their spectral and stability properties, andwe
elaborate on the difference between the dynamics of the network and the reaction-diffusion system. In section 3,
we consider a small-world topology.We highlight the differentmechanisms leading to propagation failure in
different dynamical regimes. In section 4, wemodify the continuous reaction-diffusionmodel in order to
incorporate the effect of the small-world topology.We give an estimate of the critical link density at which
excitationwaves cease to exist in the small-world network. In section 5, we summarize our findings.

2.Model

2.1.Dynamics
As a genericmodel of excitable dynamics we use the FitzHugh–Nagumomodel [36, 37] on an undirected,
unweighted network, where neighboring nodes are coupled by the difference in the activator concentrations.
Thus, themodel reads

∑= − − + −
=
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v D u u a˙
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where ui is the activator, vi is the inhibitor at node i,ij is the adjacencymatrix of the network,D>0 is the
coupling strength, andε ≪( 1) and β are the time-scale separation and the excitation threshold of the local
dynamics, respectively. The local dynamics of equation (1) (i.e., without the coupling term) possess a steady

state at β β β= − = − +u v* , * 33 . For a value of β∣ ∣ > 1, this steady state is stable. It undergoes a supercritical
Hopf bifurcation at β∣ ∣ = 1. For the network equation (1) a linear stability analysis shows that the eigenvalues of

the linearization around the homogeneous steady state = =u u v v*, *i i
* * are given by
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ik ij1 of the network, λ ⩽ 0j , with at least one eigenvalue λi=0. For λi=0, μ ±
i are the

eigenvalues of the local dynamics. Comparing terms of μ ±
j , we note that the real part of the square root term is

always smaller than the absolute value of the termbefore the square root. Thus, when the former is negative, μ ±
j

is also negative. This is always the case if >u* 1and thus if the steady state of the local dynamics is stable. On the

other hand, if the termbefore the square root is positive, then μ >+ 0j . A sufficient condition for this is <u* 1

and λ = 0j , which, as there always exists a λ = 0j , always happens if the steady state of the local dynamics is
unstable. Thus, we conclude that the homogeneous steady state inherits the stability of the local equations and

thuswhenu v*, * is stable, so is the homogeneous steady state ≡ ≡u u v v*, *i i .
Forε ≪ 1, the local dynamics of equation (1) are a prototypical example for a slow-fast system showing type

II excitable behavior. Systems of type II excitability do not possess a constant threshold that separates
stimulations leading to a spike from those that do not. They are rather characterized by a ‘threshold trajectory’,
aroundwhich the system is very sensitive to the size of the stimulus. In the case of the FitzHugh–Nagumo system
one commonly chooses as the threshold trajectory the so-called ‘canard trajectory’ that goes through the v-
maximumof the u-nullcline. It ismarked by a green solid line infigure 1(b). Also shown in this figure are one
trajectorywith initial conditions slightly above this threshold trajectory and one slightly below it, leading to sub-
(blue dotted line) and super-threshold (blue dashed line) behavior, respectively. For amore detailed account of
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excitability in the FitzHugh–Nagumo system, see the supplementarymaterial (sectionA, available at stacks.iop.
org/njp/17/023058/mmedia) and [5]. In the remainder of this work, wewill fix the parameters at ε = 0.04 and
β=1.1, such that themodel is in the excitable regime.

2.2. Travelingwave solutions
As a preliminary study, wewill discuss the behavior of travelingwave solutions on a regular ring network.
Consider a ring topologywithNnodes, where each node is coupled to itsR neighbors to the left and itsR
neighbors to the right, so that every node has degree 2R. Equation (1) on such a system reads

∑= − − + + −
=

− +( )u u
u

v D u u u a˙
3

2 (2 )i i
i

i

r

R

i r i r i

3

1
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where = …i N1, , and all indices are to be understood asmoduloN.
Apart from the stable homogeneous steady state discussed above, this system also supports travelingwave

solutions. At this point, we are interested in travelingwave solutions on the ring network inwhich exactly one
region of excitation travels around the ring in either a clockwise or counter-clockwise direction. It turns out that
the coupling strengthD in equation (2) has a significant influence on the existence, speed and stability of these
solutions. At high coupling strengthsD, the system in equation (2) behavesmuch like a continuum reaction-
diffusion system,whereas at low coupling strengthsD, the discrete nature of equation (2) becomes important. In
the following, wewill briefly discuss the behavior of these travelingwave solutions with changing coupling
strengthD.We start by introducing the limiting continuum system.

2.2.1. Traveling waves in the continuum limit.
To examine the behavior of travelingwave solutions of equation (2) at a large coupling strengthD, we define a
continuum limit. If we define a continuous spatial variable x and a distance ≡h

D

1
between two adjacent nodes

on the ring and assume that there is a function u(t, x) such that ≡u t u t( ) ( , )i
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Figure 1. (a)Normalized (global) clustering coefficientC and average shortest path length L vs. number of additional random links n
for theWatts–Strogatz (WS) (red dashed-dotted and dotted lines) andNewman–Watts (NW) small-worldmodel (blue solid and
dashed lines). Parameters:N=1000 andR=2. (b) Phase portrait of (u, v) in the FitzHugh–Nagumo system: nullclines (red solid line),
canard trajectory (green solid line) and two solutions with initial conditions slightly below (blue dotted line) and slightly above (blue
dashed line) the threshold given by the canard trajectory. The inset shows a blow-up near the steady state. Parameters: β = 1.1,
ε = 0.04.
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equation (3) becomes

∂ = + ∂ ∈u f u q R u x L( ) ( ) , [0, ]t xx

where
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By rescaling →D q R D( ) , equation (2)finally becomes
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.

By the limit of equation (4), the three parameters that determine the coupling and the topology of the ring
network,N, R andD, are translated into one parameter L, while the number of parameters of the local dynamics
does not change. Any constant in front of the second derivative can be set to unity by rescaling the spatial variable
x. Note that due to equation (4), decreasing L in equation (6) has the same effect as increasingD in equation (2a).
Moreover, the information encoded in the parameterR is lost when the limit is taken as in equation (4).

With the parameter values being in the excitable regime (as are the parameters chosen here, β=1.1,ε
=0.04), equation (6) is known to support travelingwave solutions. These solutionsmove at a constant speed c
and in a comoving frame they do not change their shape. At large domain sizes (L>100), equation (6) has
exactly two branches of travelingwave solutions, namely stable ‘fast waves’ and unstable ‘slowwaves’. The
domain size can become arbitrarily largewithout affecting the velocity and stability of these branches anymore.
When L is decreased, these branches are connected, however, and together they form the dispersion relation (L, c
(L)). The dispersion relation is shown graphically in figure 2(b) as the gray line, the branch of stable solutions is
markedwith a solid line and the branch of unstable solutions is dotted. At the chosen parameters of the local
dynamics (ε β= =0.04, 1.1), the stable branch loses its stability at a critical domain size Lcr = 30.756. This can
be understood as the result of the interaction of the travelingwavewith its own tail due to the periodic boundary
condition. At this point, a torus bifurcation occurs, at which two conjugate complex points of the spectrumof
the linearization of the travelingwave simultaneously cross the imaginary axis. After this bifurcation, a complex
series of secondary bifurcationsfinally leaves the branch of unstable waveswith one point of the spectrum in the
right half plane. Formore details of the bifurcations involved in the destabilization and themethods used to
calculate the stability, we refer to the supplementarymaterial (available at stacks.iop.org/njp/17/023058/
mmedia) and to [38–40].

For the discrete ring system in equation (2)with a given number of nodesN and coupling rangeR, the critical
domain size Lcr determines an upper bound of the coupling =D N q R L( ( ) )high

2
cr
2 for the stable propagation of

waves by the limit of equation (4).

Figure 2.Dispersion relations for travelingwave solutions on the discrete ring network in equation (2a) for different network sizesN
and nearest neighbor numbersR. (a) Propagation speed c versus coupling strengthD. (b) Propagation speed c versus (virtual) domain
size L. In (a) the limit points (saddle-node bifurcations) atDlow for the sameR but differentN coincide. In (b) the destabilization
points atLcr fall together for all networks. In (b) the dispersion relation for the continuous system in equation (6a) is shown in gray.
The curve forN=500,R=1has been obtained by numerical integration. All other curves have been obtained by path continuation.
The inset in (b) shows a blow-up of the yellow rectangle. The filled dots denote limit points (LP), the asterisks denote torus
bifurcations (TR). Parameters: β ε= =1.1, 0.04.
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2.2.2. Traveling waves on the ring network
In equation (6), L can be set arbitrarily largewithout changing the shape, speed and stability of the travelingwave
solutions. Thismanifests itself infigure 2(b) by the convergence of both the stable and unstable branch of the
dispersion relation of the continuum system (gray line) to afinite propagation speed c.

However, in equation (2), increasing L is equivalent to decreasingD. At low coupling strengthsD, the
discrete structure of the underlying ring network in equation (2) becomes important.When thewave propagates
in a discrete system, as in equation (2), it cannot propagate at arbitrarily low coupling strengths [41, 42]. The
critical coupling strengthD at which thewave ceases to propagate has been approximately calculated in [42].We
will point outwhat happens to the dispersion relation atDlow. To the best of our knowledge this has not yet been
investigated.

We calculate the dispersion relation from equation (2) by choosing a certain number of nodesN and
performing a numerical continuation for the resulting full systemof coupled ordinary differential equations,
usingAUTO-07 p [43]. Due to the closed ring topology, a travelingwave solution on the ring is given by a
periodic orbit of the underlying 2N equations with periodT. The propagation speed c can easily be calculated as

=c N

T q R D( )
. Using the transformed parameters c and L instead ofD andT, we can compare the dispersion

relation of equation (2) with that of equation (6) in the regime of high coupling strengthD or small (virtual)
domain size L, respectively. Dispersion relations obtained by continuation forN=40, R=1;N=80, R=2; and
N=120, R= 3 are displayed together with the branch of stable solutions obtained using numerical integration of
equation (2) forN=500, R=1 in the parameters c versusD infigure 2(a), and using the transformed parameter

=L N q R D( ) instead ofD infigure 2(b). Additionally, infigure 2(b) the dispersion relation for the
continuous systemof equation (6) is shown.

For high coupling strengths, wefind the same behavior as expected by the dispersion relation of equation (6).
However, for decreasing coupling strength, the propagation speed of thewave solutions does not stay constant as
it does in the continuous system. For the unstable ‘slowwaves’ it increases, whereas it decreases for the stable ‘fast
waves’until both branchesmeet at the critical low coupling strengthDlow in a saddle-node bifurcation. The
coalescence of the branch of stable propagating waves and that of the unstable ones in a saddle-node bifurcation
at the destabilization point has to our knowledge not yet been reported. Because of this saddle-node bifurcation,
the dispersion relation of wave solutions on the discrete ring in equation (2) is given by a closed curve. The lower
boundary of the coupling strengthDlow is a genuine effect of the discreteness of equation (2) and does not
depend onN but does depend onR.

Infigure 2(b), it is clearly visible that the smaller L is (i.e. the largerD is), the closer the propagation velocity c
of the discrete system is to that of the continuum system. It depends on the sizeN and the coupling rangeR of the
network, abovewhich value L (or belowwhich valueD) the propagation velocity c starts to deviate significantly.
For = =N R500, 1, for example, this is the case for ≈L 200 ( ≈D 6.25). The reason for the deviation is that at
low coupling strengths in the discrete systemof equation (2), the excitation ‘hops’ fromnode to node. This
mode of propagation is called saltatory propagation and is slower than the continuum-like propagation at higher
coupling strengths [42]. The reason for saltatory propagation and for saltatory propagation being slower is that
due to the low coupling strength the triggering of an excitation needsmore time. The actual transition from rest
to excitation in contrast is fast, and thus one node reaches full excitation before the next one starts the transition.

We summarize that on the ring network of equation (2), there is a lower bound of the coupling strengthDlow

for stable wave propagationwhich depends only on the coupling rangeR and not on the network sizeN. The
upper bound of the coupling strength for stable wave propagationDhigh in contrast is dependent on bothR and
N and is connected to the critical length for stable wave propagationLcr (see section 2.2.1 by

=D N q R L( ( ) )high
2

cr
2 . The dispersion relation for travelingwaves on a ring network is given by a closed curve,

where the branch of stable and the branch of unstable solutionsmeet twice.

3.Wave-like solutions on small-world networks

3.1. Setup
The network topology for ourmodel is chosen to be a ring topology consisting ofN nodes, where each node is
coupled to itsR neighbors to the left and itsRneighbors to the right, so that every node has degree 2R.We
perturb the topology by adding a certain number n of long-range links, where both ends of these links are chosen
randomly [17]. This is a smallmodification of thewell-knownWatts–Strogatz small-worldmodel [24], where
the long-range links are replacing links of the regular ring network. For a certain range of n theNewman–Watts
model shows small-world behavior as well; i.e., a short average path length and high clustering coefficient; see
figure 1(a).

We are interested in the behavior of travelingwaves on the ring, when the network topology is altered this
way. To this end, we numerically simulate a travelingwave solution of equation (1) on a ring networkwithout
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additional links. At a certain instant of time, we instantly add a number n of links at randompositions to the
network andmonitor the resulting behavior. The system can show two possible behaviors; it can either decay to
the homogeneous steady state or it can showongoing activity in the formof perturbed travelingwaves.

In order to describe the collective effect in dependence on the number of additional links n, we consider the
ensemble of all Newman–Watts small-world networks parametrized by network sizeN, coupling rangeR and
number of additional links n.We define f n D N R( , ; , )sust as the fraction of realizations of aNewman–Watts

small-world network that support sustainedwave activity of equation (1)with coupling strengthD. fsust is the
quantity wewill be concernedwith for the remainder of this work.

We determine fsust numerically by considering an ensemble of 200Newman–Watts small-world networks
for every combination (N,R, n). For each examined value of the coupling strengthD, we integrate the dynamics
with initial conditions as explained above for every element of this ensemble. The fraction of realizations in this
ensemble that support sustainedwave activity gives our estimate of f n D N R( , ; , )sust . The number of additional
links is varied from n=1 to n=NR.When n=NR there are asmany additional links as links on the original ring
andwe have not observed a single case inwhich therewas sustainedwave activity for such a high number of
additional links. Thus there is no need to raise n any further. Also, in order to keep the computational effort
feasible, we did not use every number n between 1 andNR. Insteadwe used about 50 values of n, distributed
logarithmically between 1 andNR. This is also justified by the fact that for large n the outcome for different, but
close-by, n hardly differs. In the following, we omitN andR from the argument of fsust, writing just f n D( , )sust , as
N andRwill be clear from the context and fixedwhen varying n andD.We do this for the full range of coupling
strengths that support stable travelingwave solutions of the ring network ∈D D D( , )low high (see section 2.2.2)
and for rings of different sizesN and different nearest neighbor numbersR. For the numerics we use a Runge–
Kutta–Fehlbergmethodwith adaptive timestep for fast simulation and reliability. The precision of themethod is
set to 10−4.We simulate for 6000 time units, assuming that thewave is stable if no decay to the stable
homogeneous steady state has occurredwithin this time1.

3.2. Numerical observations
Generally we observe that the larger the number of additional links n, themore realizations do not support
sustainedwave activity. Thus fsust always decreases with increasing n. Finally, if n becomes too large, no

realizationswith ongoing activity can be found anymore and =f 0sust .Wefind that the transition takes place

within a small range of n

NR
; see figure 4.However, the point of transition varies considerably depending on (i) the

network sizeN, (ii) the nearest neighbor numberR and (iii) the coupling strengthD. Note that these parameters
can also be chosen such that already for n=1, fsust is considerably below 1.0 (e.g.N=250,R=2,D=7.0 in
figure 4(b), leftmost point for those parameters).

In general, it is not possible to pinpoint the exactmechanism that causes propagation failure whenmultiple
additional links are present. For example there are different realizationswith the same n that for the same
coupling strengthD either support sustainedwave activity or do not; see for example figure 3.On the other hand,
we can alsofind one realization that for one value ofD supports ongoing activity and for a slightly differentD
does not. Infigure 3 it can also be seen that propagation failure is not caused by collisionwith another counter-
propagatingwave.We have only observed pairwise generation of secondary waves; see, e.g., the (white) vertical
line infigure 3(b). As themutual annihilation of counter-propagating waves also takes place only pairwise (see
the vertical line infigure 3(b, ii)), thismechanism cannot change the number of simultaneously occurringwaves
from even to odd or vice versa and therefore cannot cause propagation failure. The example infigure 3(b) is
selected such that at the time of the snapshot,mutual annihilation of wave pairs and propagation failure occur
simultaneously. Infigure 3(b, i), the nodes’ states at the time of the snapshot are displayed and those groups of
nodes which undergo propagation failure or annihilation of awave pair aremarked by arrows in figure 3(b, iv).
It can be seen in this plot that in decaying to the left branch of the u-nullcline, the group of nodes undergoing
propagation failure sweeps over a large section of themiddle part of the u-nullcline. The group of nodes that
experience themutual annihilation of a wave pair, in contrast, cross themiddle part of the u-nullcline at a small
corridor.

For a systematic investigation, we examine the fraction f n D( , )sust of realizations that support an ongoing

activity. Infigure 5, color density plots of f n D( , )sust are shown for differentN andR.We numerically calculate

the isolines n D( , )0.5 0.5 . These are defined by =f n D( , ) 0.5sust 0.5 0.5 and shown as blue dotted lines infigure 5.
WhenD approaches eitherDlow orDhigh, whilefixing the number of additional links, fsust is approaching

zero. This is seen as the transition to black at the bottom and top offigure 5. This behavior is expected from the

1
Taking all solutions that actually decay within this timespan, themedian time until decay is typically around 10 and always below 21. The

0.99-quantile is typically around 600with one outlier (N=1000,R=4)where the 0.99-quantile is 3033. Thus it is safe to assume that almost
all solutions that have ‘survived’ the 6000 time unit threshold will survive further.
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results in section 2.2.2, as there are no stable travelingwave solutions beyond these values even on the
unperturbed ring.However, as the propagation of the unperturbedwave differs in the two regimes, so does the
sustained propagation or the propagation failure on the small-world network. As can be seen infigure 4(a),
when the coupling strength is low, the network sizeN does not play a role and networkswith the sameR show
the same transition point inn NR( ).When the coupling strength is higher, as infigure 4(b), the transition points
do not coincide aswell.

3.2.1. LowD— discrete regime (figure 6)
In this regime of lowD, the propagation of the excitation takes place in a saltatory fashion. By this, wemean that
the excitation ‘hops’ fromnode to node.More precisely, the state of one node reachesmaximum excitation
before the next node starts becoming excited. This behavior can be seen clearly in the exemplary time series of
figure 6.

In addition toDlow, discussed in section 2.2.2, wefind twomore valuesD D,1 2 with < <D D Dlow 1 2 at
which the effect which added links have changes suddenly. These values are independent ofN, but they depend
onR.

If <D Dlow, we find no stable travelingwave solutionswhatsoever, even for n=0. This is expected, as for
<D Dlow there are no stable traveling solutions even on the ringwithout additional links (see section 2.2.2 and

figure 2).

Figure 3.Traveling wave solution on aNewman–Watts small-world networkwith = = =N R n500, 3, 102. The coupling strength
isD=0.4.(a) Sustainedwave activity and (b) propagation failure. The panels show (i) snapshot of the solution, ui (blue asterisks), vi
(red dots) versus node index i; (ii) space-time plot of activator variable ui (color-coded), vertical white linemarks snapshot in panel
(i); (iii) scheme of the network. Nodes are color-coded according to their activator level at the time of snapshot (i). Indices ascending
counter-clockwise with i=1 at the top; (iv) phase portrait of all nodes in the (u, v) plane (blue dots; snapshot), including all links of the
network (gray lines) and nullclines (red). Other parameters: ε β= =0.04, 1.1. Animated versions of thesefigures are available at
stacks.iop.org/njp/17/023058/mmedia.

Figure 4. Fraction fsust of realizations (with n additional long-range links) that support sustained activity of a travelingwave solution.
(a)D=0.035 (b)D=7.0. Plots for ring networks of different sizesN and coupling rangesR. The values (N R, ) are given in the legend.
Every data point has been calculated by simulating the dynamics on 200 realizations of the pertaining small-world network. Note that
for (a) networks with the sameR show the same transition point, whereas in (b) the transition points of networks with the sameR so
not coincide aswell. Parameters: β ε= =1.1, 0.04.
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If < <D D Dlow 1, one additional linkwill lead to propagation failure once the travelingwave reaches one of
the nodeswhich this link joins.When the node that is about to become excited has one end of the additional link,
the other endwill point to a node that is in the rest state. This is because the propagation is saltatory and there is
only one node that is excited at one instance of time. In this range ofD, this link is sufficient to prevent this node
frombecoming excited, and thus the propagation is quenched. As a consequence, > =f n D( 0, ) 0sust but

= =f n D( 0, ) 1sust in this range ofD. This behavior is illustrated infigure 6(a). There the exemplary network
has one additional link fromnode 246 to node 406. Propagation suppression by coupling back to an unexcited
node happens as soon as thewave reaches node 406.

If < <D D D1 2, one additional linkmay lead to propagation failure, but it does not necessarily; see
figure 6(b). In this range ofD, a travelingwave solution can pass one end of the additional linkwithout being
suppressed.When the node at the first end of the additional link becomes excited, this excitation is also coupled
to the node at the remote end. Because of the coupling scheme of the ring, this node is coupled tomore nodes in
the rest state than the successor node to the node at thefirst end of the link. As a consequence, the node at thefirst
endwill be able to trigger a full excitation in its successor node but not in the node at the remote end.Here a sub-
threshold excitation is generated, which does not propagate further. However, this sub-threshold excitation
leads to an increased inhibitor level which takes a certain time to decay back to the steady state value. If the
remote end of the shortcut is reached by the travelingwave before the inhibitor level has sufficiently decayed, the
propagationwill stop. This behavior leads to a decrease of f n D( , )sust for increasing n in thementioned range of
D, because as n increases, themore likely it becomes that one of the additional links spans a short enough
distance. An exemplary time series for this behavior is shown infigure 6(b). There the exemplary network has
two additional links fromnode 60 to 176 and from343 to 347. Propagation failure happens by the raised
inhibitor level at node 347 due to previous sub-threshold excitationmediated by the additional link.

If >D D2, a travelingwave solution can still pass one end of the additional linkwithout becoming
suppressed. But now a full excitation leading to a pair of travelingwaves with opposite propagation directions
will be generated at the remote end of the additional link. This can be seen very clearly infigure 6(c, ii), where
secondarywave pairs are generated at node 43 and at node 127. As travelingwaves are only generated pairwise
and the annihilation also takes place in pairs, themechanism for propagation failuremust work differently. One
possiblemechanism thatwe found and that can also be seen infigure 6(c) is that two ormore additional links
end very close to each other (or even on the same node). Then, as can be seen infigure 6(c), (i) itmight not be

Figure 5.Density plots of fraction of sustainedwave activity fsust (color-coded) in the (n,D)-plane. (a)N=1000 andR=1, (b)
N=1000 andR=2, (c)N=1000 andR=3, (d)N=200 andR=2. The green line gives the location of the destabilizing bifurcation of
equation (7a), transformed back to n andD (see section 4.1). Note that the transitions in the discrete regime in (b) and (d) take place at
the same values ofD, whereas the ones in the continuous regime take place at the same values of L. Parameters: β ε= =1.1, 0.04.
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possible to excite a secondarywave pair here, and also (ii) propagation can stop here due to the strong coupling
back to the rest state as in the regime belowD1. Generally, as fsust is close to unity for small n in this regime,
propagation failure seems to bemostly caused bymore complexmechanismswhich need several additional
links. In the exemplary time series for figure 6(c) there are four additional links fromnode 90 to 127, 38 to 142,
142 to 221 and 43 to 326. The propagation stops at node 142, where two additional links end. A secondarywave
pair is never excited at this node because the other additional link couples back this node to the rest state.

To summarize, for <D Dlow, no travelingwave solutions exist for any ⩾n 0. For < <D D Dlow 1, no stable
travelingwave solutions exist for >n 0. For < <D D D1 2, fsust decreases with increasing n, and no secondary

waves can be excited. For >D D2, the excitation of secondarywaves is possible, leading to a sudden rise of fsust

for intermediate n.
The observed approximate values forD D,low 1 andD2 are given in table 1.We note that the values forDlow

andD1 (i) decrease with increasing coupling rangeR, as does (ii) the distance between the two. This is expected
as (i) increasingRhas a similar effect as raisingD on the ring and (ii) as the long-range links have the sameweight
as the local links, they have less impact, ifR becomes larger.D2 on the contrary increases with increasingR. This
is also expected for the same reason as (ii). ForR=3,D2 is not even located in the regime of saltatory propagation
anymore.

3.2.2. HighD— continuum regime (figure 7)
At high coupling strengthsD, we do notfind distinct values ofD at which the overall behavior of fsust changes
drastically as in the discrete regime.We observe the excitation of secondarywaves in the entire continuum

Figure 6.Exemplary behavior of travelingwave solutions in the regime of very low coupling strengthsD. (a)–(c) Same asfigure 3, with
(a) < ≈ < =D D D n0.0332 , 1low 1 , propagation suppression by backcoupling to an unexcited node and (b)

< ≈ < =D D D n0.0347 , 21 2 , propagation suppression by raised inhibitor level due to previous sub-threshold excitationmediated
by additional link and (c) < ≈ =D D n0.0373, 42 , excitation of secondarywave pairs possible, propagation suppression by two
additional links ending in node 142 and (d) fraction of sustainedwave activity fsust versus coupling strengthD for the discrete limit,
legend gives values of n. Parameters: β ε= = = =N R1.1, 0.04, 500, 1. Animated versions available at stacks.iop.org/njp/17/
023058/mmedia.
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regime. Again, as the generation of secondarywaves occurs only pairwise, thismechanism cannot lead to the
decay of all activity directly by pairwise annihilation of counter-propagating waves.

Wefind as themainmechanism for propagation failure again the distribution of toomany ends of the
additional links in a small region, thus coupling back nodes that are in the excited state too strongly to nodes
having a low-activator concentration. This effect can be seen very clearly in the (u, v) diagrams infigure 3(b),
where all nodes that constitute the original wave are pulled over themiddle part of the u-nullcline.

We also observe another notable effect: for nearest neighbor numbers higher thanR=1, there is afixed
coupling strength (depending onR but not onN) at which fsust starts to decrease already at lower numbers n of
additional links. This can be seen verywell infigure 5(c) at ≈D 1. So far we have no explanation for the
mechanismbehind this phenomenon.

If we are in the regime of high coupling strengthD, fsust decreases with increasingD untilD reaches the
maximumvalueDhigh abovewhich no travelingwave solutions are found even for n=0 (ringwithout additional

links); see section 2.2.2. Along these lines it turns out that the parameters =L N

q R D( )
andσ ≡ n

L

2 are better

suited to describe the behavior of fsust independently of the network sizeN and (almost) independently of the
nearest neighbor numberR. See section 4 for a derivation and discussion.

This is shown infigure 7, where the fraction of sustainedwave activity fsust is plotted versusn L for variousN
andR. The coupling strengthD in this plot is adapted for each (N R, ) so that L=200 is constant in thatfigure.
Note that the transition points from sustainedwave activity to propagation suppression coincide better, the
lowerR and the largerN. For higherR (R=2, 3) the networks with smallerNneed to have (much) smallerD to
have the same L and thus are not well located in the continuum regime anymore. Thus in order to show that the
approximationworks verywell in that case, networks with >N 2000would need to be simulated, whichwould
have been numerically too expensive within the scope of this work.

4. Analyticmean-field approximation

4.1.HighD— continuum limit
In order to include the effect of the long-range links into the continuum limit description of section 2.2.1, we
split the adjacencymatrixij in equation (1) into two parts.  ≡ +ij ij ij, withij being all links of the
original ring network andij being the additional randomly added links. Thus the dynamics read

Table 1.Approximate transition values
D D,low 1 andD2 for different nearest neigh-
bor numbersR in the discrete limit.

R Dlow D1 D2

1 ≈0.0324 ≈0.0339 ≈0.0359
2 ≈0.0233 ≈0.0235 ≈0.0481
3 ≈0.0169 ≈0.0170 ≈0.5890

Figure 7. Fraction of sustainedwave activity fsust in the continuum regime ofD.n L at =L 200, where =L N

q R D( )
, legend gives values

(N,R). Other parameters: β ε= =1.1, 0.04.
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dropped in the following.
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The continuum limit including the additional long-range links reads
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2

( )
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With thismean-field approximation, the four coupling parameters (N R D, , and n) reduce to two
parameters (L and σ). This kind of global feedback coupling has also been studied for the Rinzel–Kellermodel
in [44].

4.2. Approximate boundary ofwave propagation
Ifσ = 0, equation (7) is the same as equation (6). Employing the samemethods as in section 2.2.1, we examine
the change of the dispersion relation c(L) if σ is increased; see figure 8.

Ifσ = 0, stable wave propagation is possible down to aminimumvalue of ≈L 30.756cr (see section 2.2.1). If
σ is increased, Lcr increases as well; i.e., the parameter range of L for stable propagation becomes smaller
(figure 8(b)). However,Lcr goes to infinity when σ approachesσ ≈ 0.247max frombelow, so that aboveσmax, no
stable propagation is possible at all.

Note that atσ ≈ 0.246, themechanism of destabilization changes when the destabilizing torus bifurcation
coincides with a saddle-node bifurcation (limit point). The destabilizing torus bifurcation is indicated by blue
dashed lines infigure 8 and the destabilizing saddle-node bifurcation is indicated by a red solid line.

We display the loci of destabilization as a curve σL ( )cr infigure 8(a). σL ( )cr in (a) is connectedwith the
instability points of the dispersion relations shown infigure 8(b) as indicated by the vertical dotted lines.

This curve can be transformed to a curven N R D( , , )0 , yielding an approximation for the boundary in n
abovewhich no realizations of a small-world networkwill support stable travelingwaves. It is shown as the green
solid line in the heatmap plots of fsust infigure 5. The transition in n to quenchedwave activity happens at lower
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values of n. This is expected, as a significant contribution by the coupling term arising through the long-range
links can only occur if the difference in activator concentration at both ends of the link is large. This is only the
case if the node at one end of the shortcut is in the excited state (wave peak). Thus the critical link density is only
important in part of the network.Of course, in a randomnetwork this ismore likely to occur in an (arbitrary)
part than in the entire network. Also note that the approximation becomesworse for higherR.Moreover, there
is always an optimumcoupling strengthDwhere n can be highest without disturbing the propagation of the
wave. This optimumD is a result of the transition between the discrete and the continuum regime.

5. Conclusion

Wehave studied the propagation of a solitary pulse (orwave) on a ring network and the influence of small-world
perturbations of the topology upon the propagation. Already on the unperturbed ring topology, there are two
regimes. One regime corresponds to high coupling strength, inwhich the behavior of the system resembles that
of a continuous reaction-diffusion systemwithmean-field coupling. The other regime is associatedwith low
coupling strength, inwhich the discrete nature of the network is important and the behavior differs from that of
a reaction-diffusion system.

In each regime, a too large number of long-range links leads to failure of wave propagation. However, the
mechanismswhich lead to the suppression of the travelingwave differ in the two regimes.

We have identified three different subregimes of coupling strength in theweak coupling regime, which are
sharply separated from each other. In the first one (lowest coupling strength), one additional link, regardless of
the distance it spans, is enough to prevent propagation. In the second one, one additional link can be sufficient to
prevent propagation if the distance it spans is not too large. For coupling strengths above the second subregime,
secondarywave pairs can be created through the long-range links. For the latter coupling strengths, the
mechanism for the quenching of a travelingwave is similar to that in the continuum regime.

In the strong coupling regime, themainmechanism appears to be a too large number of additional links in
the excited part of thewave (high activator concentration). These links collectively ‘pull’ the excited part back
over the threshold trajectory of the system and thus lead to propagation failure.We have successfully
approximated this behavior in the continuum limit by including amean-field coupling term in the equations of
the continuous reaction-diffusion system.

Figure 8.Dispersion relation for themean-field approximation of equation (7). (a) Curve of the destabilizing torus bifurcation atLcr

(blue dashed line) and of the saddle-node bifurcation (red solid line) in σL( , ) space. The black dots indicate the σL( , ) values of the
destabilization points in the dispersion relations shown in (b). (b) Propagation velocity c versus L: branches of stable (black solid line)
and unstable (black dotted line) travelingwaves for different values ofmean-field coupling strength σ, curves of destabilizing torus
bifurcation (blue dashed line) and curve of the saddle-node bifurcation (red solid line) in (L, c) space. The inset shows a blow-up of the
yellow rectangle. Parameters: β ε= =1.1, 0.04.
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