21,899 research outputs found

    Channels as Objects in Concurrent Object-Oriented Programming

    Full text link
    There is often a sort of a protocol associated to each class, stating when and how certain methods should be called. Given that this protocol is, if at all, described in the documentation accompanying the class, current mainstream object-oriented languages cannot provide for the verification of client code adherence against the sought class behaviour. We have defined a class-based concurrent object-oriented language that formalises such protocols in the form of usage types. Usage types are attached to class definitions, allowing for the specification of (1) the available methods, (2) the tests clients must perform on the result of methods, and (3) the object status - linear or shared - all of which depend on the object's state. Our work extends the recent approach on modular session types by eliminating channel operations, and defining the method call as the single communication primitive in both sequential and concurrent settings. In contrast to previous works, we define a single category for objects, instead of distinct categories for linear and for shared objects, and let linear objects evolve into shared ones. We introduce a standard sync qualifier to prevent thread interference in certain operations on shared objects. We formalise the language syntax, the operational semantics, and a type system that enforces by static typing that methods are called only when available, and by a single client if so specified in the usage type. We illustrate the language via a complete example.Comment: In Proceedings PLACES 2010, arXiv:1110.385

    Session Types in Concurrent Calculi: Higher-Order Processes and Objects

    No full text
    This dissertation investigates different formalisms, in the form of programming language calculi, that are aimed at providing a theoretical foundation for structured concurrent programming based on session types. The structure of a session type is essentially a process-algebraic style description of the behaviour of a single program identifier serving as a communication medium (and usually referred to as a channel): the types incorporate typed inputs, outputs, and choices which can be composed to form larger protocol descriptions. The effectiveness of session typing can be attributed to the linear treatment of channels and session types, and to the use of tractable methods such as syntactic duality to decide if the types of two connected channels are compatible. Linearity is ensured when accumulating the uses of a channel into a composite type that describes also the order of those actions. Duality provides a tractable and intuitive method for deciding when two connected channels can interact and exchange values in a statically determined type-safe way. We present our contributions to the theory of sessions, distilled into two families of programming calculi, the first based on higher-order processes and the second based on objects. Our work unifies, improves and extends, in manifold ways, the session primitives and typing systems for the Lambda-calculus, the Pi-calculus, the Object-calculus, and their combinations in multi-paradigm languages. Of particular interest are: the treatment of infinite interactions expressed with recursive sessions; the capacity to encapsulate channels in higher-order structures which can be exchanged and kept suspended, i.e., the use of code as data; the integration of protocol structure directly into the description of objects, providing a powerful and uniformly extensible set of implementation abstractions; finally, the introduction of asynchronous subtyping, which enables controlled reordering of actions on either side of a session. Our work on higher-order processes and on object calculi for session-based concurrent programming provides a theoretical foundation for programming language design integrating functional, process, and object-oriented features

    A distributed Real-Time Java system based on CSP

    Get PDF
    CSP is a fundamental concept for developing software for distributed real time systems. The CSP paradigm constitutes a natural addition to object orientation and offers higher order multithreading constructs. The CSP channel concept that has been implemented in Java deals with single- and multi-processor environments and also takes care of the real time priority scheduling requirements. For this, the notion of priority and scheduling has been carefully examined and as a result it was reasoned that priority scheduling should be attached to the communicating channels rather than to the processes. In association with channels, a priority based parallel construct is developed for composing processes: hiding threads and priority indexing from the user. This approach simplifies the use of priorities for the object oriented paradigm. Moreover, in the proposed system, the notion of scheduling is no longer connected to the operating system but has become part of the application instead

    Communicating Java Threads

    Get PDF
    The incorporation of multithreading in Java may be considered a significant part of the Java language, because it provides udimentary facilities for concurrent programming. However, we belief that the use of channels is a fundamental concept for concurrent programming. The channel approach as described in this paper is a realization of a systematic design method for concurrent programming in Java based on the CSP paradigm. CSP requires the availability of a Channel class and the addition of composition constructs for sequential, parallel and alternative processes. The Channel class and the constructs have been implemented in Java in compliance with the definitions in CSP. As a result, implementing communication between processes is facilitated, enabling the programmer to avoid deadlock more easily, and freeing the programmer from synchronization and scheduling constructs. The use of the Channel class and the additional constructs is illustrated in a simple application

    Life of occam-Pi

    Get PDF
    This paper considers some questions prompted by a brief review of the history of computing. Why is programming so hard? Why is concurrency considered an “advanced” subject? What’s the matter with Objects? Where did all the Maths go? In searching for answers, the paper looks at some concerns over fundamental ideas within object orientation (as represented by modern programming languages), before focussing on the concurrency model of communicating processes and its particular expression in the occam family of languages. In that focus, it looks at the history of occam, its underlying philosophy (Ockham’s Razor), its semantic foundation on Hoare’s CSP, its principles of process oriented design and its development over almost three decades into occam-? (which blends in the concurrency dynamics of Milner’s ?-calculus). Also presented will be an urgent need for rationalisation – occam-? is an experiment that has demonstrated significant results, but now needs time to be spent on careful review and implementing the conclusions of that review. Finally, the future is considered. In particular, is there a future

    Graphical modelling language for spycifying concurrency based on CSP

    Get PDF
    Introduced in this (shortened) paper is a graphical modelling language for specifying concurrency in software designs. The language notations are derived from CSP and the resulting designs form CSP diagrams. The notations reflect both data-flow and control-flow aspects of concurrent software architectures. These designs can automatically be described by CSP algebraic expressions that can be used for formal analysis. The designer does not have to be aware of the underlying mathematics. The techniques and rules presented provide guidance to the development of concurrent software architectures. One can detect and reason about compositional conflicts (errors in design), potential deadlocks (errors at run-time), and priority inversion problems (performance burden) at a high level of abstraction. The CSP diagram collaborates with objectoriented modelling languages and structured methods
    corecore