170,400 research outputs found

    Pilot Decontamination in CMT-based Massive MIMO Networks

    Full text link
    Pilot contamination problem in massive MIMO networks operating in time-division duplex (TDD) mode can limit their expected capacity to a great extent. This paper addresses this problem in cosine modulated multitone (CMT) based massive MIMO networks; taking advantage of their so-called blind equalization property. We extend and apply the blind equalization technique from single antenna case to multi-cellular massive MIMO systems and show that it can remove the channel estimation errors (due to pilot contamination effect) without any need for cooperation between different cells or transmission of additional training information. Our numerical results advocate the efficacy of the proposed blind technique in improving the channel estimation accuracy and removal of the residual channel estimation errors caused by the users of the other cells.Comment: Accepted in ISWCS 201

    Performance limits for channelized cellular telephone systems

    Get PDF
    Studies the performance of channel assignment algorithms for “channelized” (e.g., FDMA or TDMA) cellular telephone systems, via mathematical models, each of which is characterized by a pair (H,p), where H is a hypergraph describing the channel reuse restrictions, and p is a probability vector describing the variation of traffic intensity from cell to cell. For a given channel assignment algorithm, the authors define T(r) to be the amount of carried traffic, as a function of the offered traffic, where both r and T(r) are measured in Erlangs per channel. They show that for a given H and p, there exists a function TH,p(r), which can be computed by linear programming, such that for every channel assignment algorithm, T(r) ≤ TH,p(r). Moreover, they show that there exist channel assignment algorithms whose performance approaches TH,p (r) arbitrarily closely as the number of channels increases. As a corollary, they show that for a given (H,p) there is a number r0 , which also can be computed by linear programming, such that if the offered traffic exceeds r0, then for any channel assignment algorithm, a positive fraction of all call requests must be blocked, whereas if the offered traffic is less than r0, all call requests can be honored, if the number of channels is sufficiently large. The authors call r0, whose units are Erlangs per channel, the capacity of the cellular system

    Frequency planning for clustered jointly processed cellular multiple access channel

    Get PDF
    Owing to limited resources, it is hard to guarantee minimum service levels to all users in conventional cellular systems. Although global cooperation of access points (APs) is considered promising, practical means of enhancing efficiency of cellular systems is by considering distributed or clustered jointly processed APs. The authors present a novel `quality of service (QoS) balancing scheme' to maximise sum rate as well as achieve cell-based fairness for clustered jointly processed cellular multiple access channel (referred to as CC-CMAC). Closed-form cell level QoS balancing function is derived. Maximisation of this function is proved as an NP hard problem. Hence, using power-frequency granularity, a modified genetic algorithm (GA) is proposed. For inter site distance (ISD) <; 500 m, results show that with no fairness considered, the upper bound of the capacity region is achievable. Applying hard fairness restraints on users transmitting in moderately dense AP system, 20% reduction in sum rate contribution increases fairness by upto 10%. The flexible QoS can be applied on a GA-based centralised dynamic frequency planner architecture

    System-Level Modelling and Beamforming Design for RIS-assisted Cellular Systems

    Full text link
    Reconfigurable intelligent surface (RIS) is considered as key technology for improving the coverage and network capacity of the next-generation cellular systems. By changing the phase shifters at RIS, the effective channel between the base station and user can be reconfigured to enhance the network capacity and coverage. However, the selection of phase shifters at RIS has a significant impact on the achievable gains. In this letter, we propose a beamforming design for the RIS-assisted cellular systems. We then present in detail the system-level modelling and formulate a 3-dimension channel model between the base station, RIS, and user, to carry out system-level evaluations. We evaluate the proposed beamforming design in the presence of ideal and discrete phase shifters at RIS and show that the proposed design achieves significant improvements as compared to the state-of-the-art algorithms

    Hypergraph Models for Cellular Mobile Communication Systems

    Get PDF
    Cellular systems have hitherto been modeled mostly by graphs for the purpose of channel assignment. However, hypergraph modeling of cellular systems offers a significant advantage over graph modeling in terms of the total traffic carried by the system. For example, we show that a 37-cell system when modeled by a hypergraph carries around 30% more traffic than when modeled by a graph. We study the performance of channelized cellular systems modeled by hypergraphs in comparison with those modeled by graphs. For this purpose, we have evaluated the capacities of these cellular networks defined [3]. Evaluation of the capacity necessitates generation of maximal independent sets of hypergraphs. We describe some new algorithms that we have developed for this purpose

    Impact of inter-cell interference on capacity in the joint multiple access (CDMA and SDMA) system

    Get PDF
    Spatial filtering using smart antenna has emerged as a promising technique to improve the performance of cellular systems. Cell splitting and sectorisation in CDMA systems could result in an increase in system capacity. In this paper, we investigate the impact of inter-cell interference on reverse link capacity in a joint multiple access system arising from the combination of CDMA and SDMA systems. The system capacity of CDMA and SDMA systems is reviewed individually. The co-channel and antenna side-lobes interferences in SDMA systems due to the randomly located mobile users in a non-uniform traffic cell are studied. Therefore, the most realistic reverse link capacity improvement of the joint multiple access system is presented here by taking into consideration both intra-sector and inter-sector interferences. The results are based on the system parameters of CDMA and SDMA systems
    corecore