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Hypergraph Models for Cellular Mobile Communication Systems

Abstract

Cellular systems have hitherto been modeled mostly by graphs for the purpose of channel assignment.
However, hypergraph modeling of cellular systems offers a significant advantage over graph modeling in terms
of the total traffic carried by the system. For example, we show that a 37-cell system when modeled by a
hypergraph carries around 30% more traffic than when modeled by a graph. We study the performance of
channelized cellular systems modeled by hypergraphs in comparison with those modeled by graphs. For this
purpose, we have evaluated the capacities of these cellular networks defined [3]. Evaluation of the capacity
necessitates generation of maximal independent sets of hypergraphs. We describe some new algorithms that
we have developed for this purpose.
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Hypergraph Models for Cellular
Mobile Communication Systems

Saswati Sarkar and Kumar N. Sivarajanember, IEEE

Abstract—Cellular systems have hitherto been modeled mostly 2 4 6
by graphs for the purpose of channel assignment. However, C P
hypergraph modeling of cellular systems offers a significant ooo
advantage over graph modeling in terms of the total traffic o
carried by the system. For example, we shall show that a 37- o o
cell system when modeled by a hypergraph carries around 30% o
more traffic than when modeled by a graph. We study the perfor- 1 3 5

mance of channelized cellular systems modeled by hypergraphs in

comparison with those modeled by graphs. For this purpose, we @) (b) ()

have evaluated the capacities of these cellular networks defined _ )

in [3]. Evaluation of the capacity necessitates generation of Fid: 1. (a) A 7-cell system. (b) Its graph representation with= 2. The

- - . circles represent the vertices and the straight lines the edges of the graph. Note
ggé:?ﬁr;'g?ﬁgtecvieﬂg\slgtzg\t:l)é%irgr%?':ﬁis\,\:)i?;:;:enbe some r]ewthat the vertices corresponding to the cells separated by a distance two or more,

e.g., two and five are not joined by edges. (c) Its hypergraph representation
with the reuse conditions given in Example 1.2. The circles represent the
vertices and the straight lines and the curved lines (ovals) the edges of the
I. INTRODUCTION hypergraph{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {1, 6}, {1, 7}, {2, 7},
. . . {3, 7} {4, 7}, {5, 7}, {6, 7}, {2, 4, 6}, and{1, 3, 5} are the edges. Note
HE TRAFFIC in cellular systems is usually too high tQhat {2, 4, 6} is an edge, but nof2, 4}.

allow the use of a channel for one call at a time—radio

channels must be used simultaneously for more than one
call. This is known aschannel reuseand the cells using 1) Each vertex represents a cell.
the same channel are termedchannel cells. Channel reuse 2) An edge exists between two vertices if and only if the
causes interference, which, in turn, degrades the transmission distance between the corresponding cells is less than the
quality. However, if the cells reusing the same chahnel reuse distancel).
simultaneously are far apart, then the interference produced
is low. Consequently the deterioration in transmission quali% Example 1.1
becomes tolerable.

The usual approach is to determine the least distabce Consider the seven-cell system in Fig. 1(a). With= 2,
between cochannel céllsuch that the transmission qualitythe graph representation is given in Fig. 1(b).
requirements such as the minimum signal-to-interference or!hus, a set of cells which can use a channel simultane-
carrier-to-interference ratio (S/l or C/l) are met in all cellsQusly forms an independent $ét the graph representing the
even if all cells at a mutual distance Bf or greater are using cellular system. For exampldz2, 5} forms an independent
the same channel simultaneously. This distafités known Set of the graph shown in Fig. 1(b). These cells can reuse
as thereuse distanceA cell can use a channel if no other cel® channel simultaneously since the distance between them

within distanceD is using the channel. IS 22-_ . _

The situation can be represented bygeaph model In In this context, we recall a simple and commonly used fixed
the graph representation of a cellular system, we have thannel allocation algorithm, which is designed for regular
following. hexagonal cellular systems. The required reuse distance given

by /k = /12 +ij + 52, wherei andj are some nonnegative
integers, is determined based on the S/I ratio requirements.

Manuscript received June 27, 1996; revised February 11, 1997. This weg called thereuse ratio.If n is the total number of channels
was supported in part by the Department of Electronics (Government of India) h | Il d h cell h that th h ' |
under the Education and Research Network (ERNET) Project. ”/“ channels are allocated to each cell such that the cochanne

The authors are with the Electrical Communication Engineering D&ells are separated by a distance of at le@8t2+, where
partment, Indian Institute of Science, Bangalore 560 012, India (e-mafy is the cell radius. The graph model is a generalization of
swati@ece.iisc.ernet.in; kumar@ece.iisc.ernet.in). . . .

Publisher Item Identifier S 0018-9545(98)03289-7. this scheme in as much as it allows any two cells to use

1These cells are called cochannel cells. the same channel only if they are separated by at least the

2Determination of the distance between hexagonal cells using hexagof@Hs€ distanceD, which is determined from the S/ ratio

coordinate system has been discussed in [5]. This distance depends on thereejuirements. The quantit)D2/3R turns out to have the
radius 12, which we shall assume to big/+/3, unless otherwise mentioned.

This is equivalent to assuming that the distance between adjacent cells i8An independent saif a graph is a set of vertices such that no two vertices
unity. of the set are joined by an edge.

0018-9545/98$10.001 1998 IEEE
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same value as: for regular hexagonal systems. However, 1) Interference produced in cell due to the use of the

the application of the graph model is not restricted to the  same channel i is d(u, v)~%, whered(u, v) is the

design of fixed channel allocation schemes. It may be used center-to-center distance between celland ».

for designing many channel allocation algorithms, including 2) Total interference produced in cell = interference

dynamic channel allocation algorithms, as we shall discuss produced by all other cells using the same changel

later. > vec d(u, v)™*, whereC is the set of cells using the
The weakness of the graph model can be brought out by same channel as, barring ». An additive model of

studying a regular hexagonal system. In the case of a regular interference is thus assumed.

hexagonal system, there can only be discrete distab¢esich 3) The cell radius is assumed to ki¢+/3. Hence, the

as1, V3,2, ---. The worst case transmission quality in the distance between adjacent cells is one.

system depends on the reuse distadt®nly. Hence, there 4) Let the required transmission quality be that the maxi-

can only be discrete values of the worst case transmission mum interference must bg1/5.

quality possible, and these are generally quite far apart. So,

if the required transmission quality falls between any two 2) Graph Model: D = /3 produces a maximum interfer-

discrete values, say; and 7, and say the correspondingence of 2/9, for example, if cells 2, 4, and 6 use the same

reuse distances ar®; and D,, then we have to settle for channel simultaneously.

the transmission quality better than that which is required,D = 2 produces a maximum interference of 1/16, for

and, hence, the greater of the two reuse distances. Thus, @kgmple, if cells 1 and 4 use the same channel simultaneously.

full potential for channel reuse offered by the system is not Since the maximum interference cannot exceed I/5; 2

realized. must be selected as the reuse distance. [Refer to Fig. 1(b).]
We shall study only regular hexagonal systems in all sub-So, cells numbered 2 and 4 caaveruse the same channel

sequent examples, but all our observations apply to irregugimultaneously.

systems as well—the graph model has the same weakness&) Hypergraph Model: A set of cells forms a forbidden set

with respect to the hypergraph model, which we discuss neittthey cannot use the same channel simultaneously, i.e., if the

for irregular systems as for regular systems. use of the same channel in all the cells violates the interference
Hypergraph modeling, introduced in [3], removes this wealkonstraint. Here, the interference produced in cell 4 due to the

ness. A hypergrapt is formally defined asH = (V, E), use of the same channel in 2 is 1/9 and similarly for cell

where V is the set of vertices and is the set of edges, 2. This is below the given interference threshold. So, cells

where each edge is a nonempty subset oF such that 2 and 4 do not form dorbiddenset, and, hence, they form

Uecge = V [1]. The main distinction between a graph ané@n independenset. [Refer to Fig. 1(c).] Thus, 2 and 4 can

a hypergraph is that in a graph an edge can have no mose the same channel at leastnetimesThe wordsometimes

than two vertices, but this restriction does not hold for bas been used because if 6 is using a channel, then both 2

hypergraph. Hypergraph modeling of cellular systems is asd 4 cannot use the same channel, as that would produce an

follows. interference of 2/9 in 4, and, thug2, 4, 6} is a forbidden

set. However, as stressed before, cells 2 and 4 rearer

1) Bach cell corresponds to a vertex. use the same channel together if the system is modeled by

2) A forbidden setis a group of cells all of which cannot
. - . a graph.
use a channel simultaneously.minimal forbidden set : . . .
. . RN : . It was proved under certain assumptions in [3] that if the
is a forbidden set which is minimal with respect to this . . . .
. . : offered traffic intensit{ » is less than or equal to a certain
property, i.e., no proper subset ofnainimal forbidden : .
; . . O . quantity ro, which depends on the cellular system and the
setis forbidden An edge is aminimal forbidden set traffic pattern, there exists a channel assignment algorithm
3) A set which is notforbiddenis independentA group P ' 9 9

. . which achieves arbitrarily low-blocking probabilities if the
of cells using the same channel cannot be forbidden. ; . .

. number of available channels is sufficiently large. For o,
Hence, any group of cells which may use the same

channel simultaneously forms dmdependent seaf the no channel assignment algorithm can produce zero blocking

underlying hypergraph. Anaximal independent sés for any number of channels:, has been termed thea-

. )_1 . . . .
an independent set which is maximal with respect to ﬂ%)eacny of the system.r, is given by the following linear

property of independence. program:
) M M
A. Advantage of Hypergraph Modeling min ZXJ': X; >0, ZXJ'“U >pi,,i=1, -, N
Hypergraph modeling of a cellular system offers much j=1 j=1
greater reuse of channels, while maintaining the required (LP1)
transmission quality. This can be explained through an ex-
ample. 4Offered traffic intensityn the system is defined as follows. 4; denotes

1) Example 1.2:Let us consider the seven-cell systen‘f‘e expected number of calls that would be in progress in:céflall call

h in Fig. 1 Th d del of i f requests in that cell could be honored, andenotes the number of channels
shown In Fig. (a) € assumed model of Interference dvailable to the system, then the intensity of the offered traffic in cél

as follows. r = A;/n Erlangs per channel.
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Here The straightforward algorithm starts from the set of all
vertices and generates the subsets in a recursive manner.

N number of cells in the system: Whenever a subset is generated, it checks whether it is

i fraction of total traffic offered in celi: an independent set or not. If so, none of its subsets are
J\;[ number of maximal independent se’és of the generated, and it is to be stored. Before any new storage, all
hypergraph representing the system the independent sets stored until that point are checked to

determine if any of the subsets of the independent set newly
generated are present. If any such is found, it is eliminated. If
the subset generated is not found to be an independent set, its
subsets are generated and checked in the same manner.
Checking for independence can be done by testing whether
any edge is a subset of the set being tested, if all the edges are
known, or by testing for any other criterium for independence.
Any subset of an independent set is clearly an independent
set, but never a maximal independent set. Since we are
interested in the generation of maximal independent sets,
once a subset has been found to be independent, its subsets
Thus, o is a measure of the performance of a cellularFeed not be generated. However, if a subset is found to be

system. The assumptions in deriving this result are as followid! independent set, we cannot b(_a sure that it is a maximal
Independent set because some of its supersets to be generated

1) A call _is either a_ccepted or blocked instantaneouslrélter may be found to be independent. Hence, storage and
There is no queuing. checking at each point is necessary.

2) The underlying model of offered traffic is independent The performance of the straightforward algorithm can be
from cell to cell, and, thus, for example, handoffs arg  mmarized as follows

not allowed. . . .
3) The underlying model of offered traffic satisfies the 1) Memory requirement grows exponentially with the num-
ber of nodes because at least all maximal independent

“asymptotic traffic property” (ATP), which states that X
sets have to be stored and the number of such maximal

maximal independent set

1, if the ¢th cell is in thejth
= {
0, otherwise

N; size of thejth maximal independent set;
X; the jth variable of the linear program.

lim C(k, n)/n = min(r, 1), where lim k/n =r. independent sets grows exponentially with the number
e e of vertices.

C(k, n) is the carried traffic in a one-cell system when 2) Speed is very slow. The time required to generate all
the offered traffic isk and the number of available the maximal independent sets grows exponentially with
channels isn. the number of vertices.

This paper is organized as follows. Section Il gives afhus, it has exponential complexity both in time and space.
algorithm for the generation of maximal independent sets of aAnother disadvantage of the straightforward algorithm is
hypergraph. Section Il shows that hypergraph modeling givésat all the maximal independent sets are generated at the end.
better performance than graph modeling for a cellular systeThus, even if we want only a few maximal independent sets,
The interference model we use in this section will conside¥e have to wait for the algorithm to terminate.
the effect of shadow fading, unlike the simple model we We will now describe an algorithm which is much faster
used in the seven-cell example above. Section IV gives soged whose memory requirement grows polynomially with
approximations for the capacity of the system. the number of nodes. This algorithm has been developed

It is worth mentioning at this point that, like the graptpy extending an algorithm for the generation of all maximal
model, the application of the hypergraph model is not restrictefiques of a graph given in [2].
to the design of any particular channel allocation scheme. AsThis algorithm generates the maximal independent sets of a
we shall point out later, hypergraph models can be used HPpergraph. It consists of three sets:
generate very efficient fixed channel allocation and dynamicl) compsub:
channel allocation schemes (which outperform those designe% candidates
using the graph model). 3) not .

The setcompsub is a set of vertices all of which form an

independent set. The sedindidates  is the set of all vertices

that are eligible to extendompsub, i.e., each of which forms
The evaluation ofrg requires generation of maximal in-an independent set witbtompsub.

dependent sets of a hypergraph for systems modeled byrhe senot is the set of all vertices which at an earlier stage

hypergraphs. No algorithm for this purpose could be fouralready served as an extension of the present configuration of

in the literature. This section describes an algorithm for thompsub and are now explicitly excluded.

problem. First, we shall discuss a simple algorithm which A recursively definecextensionoperator generates all ex-

readily comes to mind. We shall call this te&raightforward tensions of the given configuration ebmpsub that it can

algorithm. make with the given set ofandidates and that do not

Il. GENERATION OF MAXIMAL
INDEPENDENT SETS OF A HYPERGRAPH
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contain any vertex innot . All extensions of compsub
containing any vertex imot have already been generated.
The basic mechanism now consists of the following five steps.

1)
2)
3)

4)

5)

A. Performance of the New Algorithm

1)

2)

Selection of the first vertex inandidates

Adding the selected candidate compsub.

Creating a new satandidates from the old set by
removing each vertex which does not form an indepen-
dent set with the selected candidate aodnpsub and
forming a new senot in a similar manner from the
old setnot .

If both not and candidates sets are empty, no
further extension of the present configurationrcomp-
sub is possible, nor is there a larger independent set
including the present configuration afompsub in

the hypergraph sincaot is empty. Hencecompsub
contains a maximal independent set, which is generated.
If only candidates is empty, no further extension of
the present configuration afompsub is possible and
there exists a larger independent set including the present
configuration ofcompsub. This independent set has
been generated before. Thus, the algorithm backtrackig. 3. 37-cell example.
If candidates is nonempty (irrespective of whether

not is nonempty), theextensionoperator is called 0 3y aApgther advantage of this algorithm is that it generates

Fig. 2. 19-cell example.

operate on the sets just formed. , the maximal independent sets progressively. This is
Upon return, removal of the selected candidate from jike the straightforward algorithm, which can generate
compsub and its addition to the old setot . the maximal independent sets only at the end. It need not

wait until the end to generate at least the first few maxi-
mal independent sets. So, if a certain number of maximal
) ) ) ] ] independent sets are required for some application, the
The time required to list the maximal independent sets  qcedure can be terminated after that number has been

was 0.3 s for the 19-cell system shown in Fig. 2, gptained, and all the maximal independent sets need not
which is ten times faster than the straightforward al- be unnecessarily generated.

gorithm. The required transmission quality s that tth conclusion, this new algorithm gives a significant improve-
interference threshold should not exceed 0.375. The " . '
model of interference is the same as that of Exampﬂgent in performance.
1.2. For the 37-cell case (see Fig. 3) with the same
interference threshold, 330 s were required, whereas the
straightforward algorithm required more than two days.
In both cases, an IBM RS/6000 model 340 was used.In this section, we shall compare the performance of the
This is a vast improvement in speed. The improvemesaime cellular system with the same transmission quality (S/I)
in speed results mainly from the absence of any comequirements, modeled by hypergraphs and graphs. Our per-
parisons with previously generated independent sets. Tloemance measure will be the capacity of cellular systems. We
maintenance of theot set ensures that the independerghall point out that hypergraph modeling of cellular systems
set on output is a maximal independent set and removiesbetter than graph modeling in general because hypergraph
the necessity for storage and comparisons to eliminateodeling enables the user to exploit the reuse conditions
independent sets which are not maximal. However, thetter. The required transmission quality is that the worst case
worst case time complexity of this algorithm is als®/I ratio at the base station should be greater than a given
exponential in the number of vertices since the numb#ireshold, with a given probability. Reuse of channels causes
of maximal independent sets can grow exponentialipterference at the base station as well as at the mobiles.
with the number of vertices. Interference at the base station is produced by mobiles using
The memory requirement is obviously less than th#te same channel in the interfering cells. We assume that the
required by the straight forward algorithm since storageean interference power is proportional to the fourth power of
of independent sets is not necessary. The maximuhe distance between the interfering mobile in one cell and the
memory requirement i$> + NP, where P is the max- base station of another cell. Tirst caseS/I ratio occurs in
imum size of a maximal independent set and is a cell when the signal at the base station is the least, i.e., the
the number of nodesH < N). Hence, the memory mobile in the same cell is farthest from the base station, and the
requirement increases polynomially with the number afiterference is the greatest, i.e., when all the other cells which
vertices. are allowed to use the same channel do so simultaneously and

I1l. COMPARISON OF THEPERFORMANCE OFCELLULAR
SYSTEMS MODELED BY HYPERGRAPHS ANDGRAPHS
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Si The signal power transmitted from the interfering
f mobile in cell:: we assumes; = Sy for all 4.
& o? The variance associated with lognormal fading of

the interference produced by thith interfering
cell: o; = o for all 4.

nl In this notation, the received signal power at the base station

can be written as

Fig. 4. Nearest points of cells 10 (centgra_nd 6 (centep) from the center P,

of cell 16 (centero) arenl andn2, respectivelynl is the nearest corner, S =—

andn2 is not. This is because the segmenptis perpendicular to edgesand Ry

1 of cell 6. These cells belong to the 19-cell system shown in Fig. 2. 54 the received interference power at the base station can be
written as

the mobile in each is at the closest point from the base station = ZP‘/T‘W

of the cell being considered. The total interference produced - v

by mobiles in all the interfering cells is assumed to be the
sum of that produced by each. Shadow fading is assumediere the summation is over all the interfering cells. (All
be present and will be modeled by a lognormal distributiogummations in this example will be over all interfering cells.)
The base station is assumed to be at the center of each 8§ S/I ratio can thus be written as
and antennas are assumed to be omnidirectional. P,

Sli= 2= /> R/,

Since P, and P; are lognormal, in the above notation

A. Remarks

It can be shown using simple geometry thatiiindv are
two cells and ifo is the center of, andn is the nearest point In P, ~ N(Sp, 02)
of v from o, thenn is that corner ofy which is nearest from
o® in all cases except orfeThat case is the following. When
the straight line joining> and the center of is perpendicular
to an edgee of v, thenn is the point of intersection of the In P, ~ N(S;, 02), for all ¢
straight line joininge and the center of, with the edgez.’
Under the above assumptions, the S/l ratio at the base sta
of a cell can be computed. We first introduce some notatio
R The cell radius, which is also the maximum
distance traversed by the signal received at tITIe1
base station.

re N(m, o?) denotes the normal probability distribution
ith meanm and variancer?. This model for S/l is inspired
y [6] and [7].
Note thatS is a lognormal random variable. SinteS =
P, —4lnR andln P, ~ N(So, %), nS ~ N(So —
41n R, 02).

v ;I(-)T; path-loss exponent, which we assume to be Let I; be theith term in the summation that yields Just
C L . as .S is a lognormal random variable, so is In fact
P;/RY The signal power, which is received at the base 9 »
station. P; is assumed to have a lognormal distri- In I; ~ N(So— 4 In 7, 02). @
bution on account of shadow fading af the ) )
attenuation because of propagation. We assume that thd;'s are mutually independent. Since
So The signal power transmitted from the mobile. the sum of independent lognormal random variables can be
o2 The variance associated with the lognormal fadaPproximated by a lognormal random variable (refer to [8]),
ing of the signal. we can approximatd by a lognormal random variable, i.e.,
I The interference at the base station. InI is distributed asV(m;y, o7), where
i The distance between the center of the cell con-
cerned (at which we are computing the S/I ratio) ZT;S
and the closest point of théh interfering cell, 2y

0?2 =1In|e” +1

i.e., the distance traversed by the interfering sig- 2

nal from interfering cel. <Zri—4>
P;/r]  The interference power from interfering cell i

received at the base statidf. is assumed to have and

a lognormal distribution on account of shadow mr =50+ 02/2+In 27,;4 —o3/2.

fading. The factorr; appears on account of 2

attenuation due to propagation. ) o
(Refer to the Appendix for the determination @f andm;.)
5See Fig. 4 for an illustration in the case of the 19-cell system shown in Since the ratio of two independent lognormal random vari-
Fig. 2. . .
%See Fig. 4 ables is a lognormal random variable as\@nd. are mutually
"This straight line will also be perpendicular fy the edge parallel te, independent lognormal random variables, S/l is a lognormal

but we will consider the nearest of the two parallel edges. as random variableln(S/l) ~ N(So — 4 In R — my, 02 + o2).
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Let S/l = ¢4. Then
Z ~ N(msr, 0%1)
where

msy=Sg—4InR—my

and

2 2 2
O—SI:O— +O—I'

Then, the condition that the S/I ratio be greater than some
thresholdS 1, with probability p can be written as

P(e? > S1p) >p
P(e? < SIp)<1—p
P(Z<InSI) <1-p

e—(z—rns])z/Qo%‘I dz S 1- P

1 /~1HSI@
V2ot Joco

1 (InSIh—msi)/osr 2
E /_ 6_4 / dZ S 1 —-p

1 /Oo ey
e %dz <1 —p. (2
vV 2 (msr—InSIy)/osr

The last step holds ifn 51y < mgy, which is usually the case
since typicallyp > 0.5. The condition (2) can be written as

Q[(mS[ —1In SI())/O'SI] <l-p
or
msr —In SIy < o51Q (1 - p) 3)

where

Q(x)\/;_ﬂ/ e V2 gy,

Inequality (3) gives the independence condition in the
hypergraph model, i.e., a set is independent if and only if
inequality (3) is satisfied for each cell in the set. For the graph
model, the reuse distand2 is determined from inequality (3).

Let us consider the 37-cell system shown in Fig. 3. The
required transmission quality is that the minimum S/I ratio
in each cell should exceed a given threshold with 90%
probability. The variance associated with shadow fading is
assumed to be 1.0. We consider two cases: uniform and
nonuniform traffic.

A. Case 1. Uniform Traffic

In the first case, we assume the traffic is uniformly dis-
tributed amongst cells, i.ep; = p; for all ¢ and j. The
capacities«p) of this cellular system when modeled by a graph

and by a hypergraph are evaluated for various thresholds. Th%)

results are plotted in Fig. 5. The following observations can
be made.

1) The capacities of the cellular system modeled by a

graph increase in discrete steps at the S/I thresholds ) i
B. Case 2. Nonuniform Traffic

corresponding to discrete values 6f. So, if the S/l

2)

10 T T T T

hypergraph modelling —e— E
graph modelling ~+--

Capacity in Erlangs per channel

0 5 10 15 20 25
Signal to Interference threshold (dB)

Fig. 5 Capacity versus S/l threshold for a 37-cell system modeled by a
hypergraph and a graph. The necessary S/l threshold must be exceeded with
90% probability. Offered traffic is uniform.

corresponding to the immediately lower step. Since
the difference in capacities obtained for S/I thresholds
corresponding to consecutiv® values is significant,
this is a serious shortcoming of the graph model. The
hypergraph model shows a more continuous change in
capacity with the allowable S/I threshold. Thus, the
system can bdunedto our needs, and this model is
very effective in the intermediate region between two
jumps in the graph model. This tuning aspect can be
further illustrated by another set of data.

Tuning: The minimum S/I ratio attained versus the S/I
threshold specified has been plotted in Fig. 6 for the 37-
cell system and in Fig. 7 for the 19-cell system given
in Fig. 2 for both the hypergraph and graph models.
The curve for graph modeling has discrete steps or
jumps. This is fairly intuitive as the graph model cannot
achieve a continuous range of values of the S/l ratio. For
hypergraph modeling, the curve for the 19-cell system
has steps, but these are much smaller than for graph
modeling and the jumps are also much closer to each
other. For hypergraph modeling of the 37-cell system,
the curve is almost continuous. This throws light on the
fact that even the hypergraph model cannot achieve all
values of the S/I ratio. But the values of S/ ratio it
can achieve are closer to each other, and this proximity
increases as the number of cells increases. Hence, the
hypergraph model has a curve with smaller jumps.
However, the curve is almost continuous for the 37-cell
system and an actual system will have a large number
of cells. So, almost any S/l ratio value can be obtained
for an actual system. Thus, the hypergraph model can
be tunedto our needs.

For S/I thresholds corresponding to the discrete values
of D in the graph model, the performance of both the
graph and hypergraph models is more or less the same.

threshold is close to, but to the right of one of the jumps In the second case, we assume the traffic is higher in central
in Fig. 5, the capacity of the system remains at the valwells and less as we move toward the outskirts. The precise
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§ 4 hypergraph modelling —— 5‘
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0 1 1 i I .

0 5 10 15 20 25 0 5 10 15 20 25

Signal to Interference threshold (dB) Signal to Interference threshold (dB)

Fig. 6. Minimum S/I ratio in the system with 90% probability versus S/Fig. 8. Capacity versus S/l threshold for hypergraph and graph modeling of

threshold for the 37-cell system. the 37-cell system. Offered traffic is nonuniform. The necessary S/I threshold
must be exceeded with 90% probability.

25 T T Y T
C. Discussion

g 20 F 4 The difference in the observations for the two cases dis-
3 cussed above can be explained as follows.
g sk | Refer to the linear program LP1. Each variabtg cor-
° responds to a maximal independent set, and each cell cor-
- responds to a constraint. Thus, there can be a¥kpasis
a 0 . variables, andV is generally much less thai/.° Thus, at
g most NV, maximal independent set variables need to be given
;é 5 - hypergraph modelling — ] nonzero values. Thes¥ will be selected out of\ in such a
= graph modemng _____ manner as to satisfy the constraints, assigning as low values

0 . N . . to X;'s as possible. Now, if the maximal independent sets

0 5 10 15 20 25 of the hypergraph model corresponding to the variables that

Signal to Interference threshold (dB) are assigned nonzero values are present in the graph model

Fig. 7. Minimum S/l ratio in the system with 90% probability versus S/PS well}® then the graph and hypergraph model will show
threshold for the 19-cell system. no difference in performance. This is precisely the case for
the uniform traffic model at S/l thresholds corresponding
to the discreteD values in the graph model. In the 37-
cell system of Fig. 3, at a S/l threshold of 0.831345 dB
(D = 2.0 in the graph model), only four maximal inde-
pendent sets{(1, 12, 15, 16, 28, 31, 32}, {2, 6, 9, 13, 17,
) 21, 25, 29, 33, 37}, {3, 4, 7, 8, 19, 22, 23, 26, 27, 35}, and
o — normalizing constant so thgf," p; = 1, ¢; — fing {1, 5, 10, 14, 18, 20, 24, 30, 34, 36)) are assigned nonzero
number of cell, e.g.g; = 1 for the cell at the center, i.e., cellyalues by the linear program. These maximal independent
28 in the 37-cell systemy; = 2 for cells in the next ring, i.e., sets are those of the graph model as well because the mutual
cells 22, 29, 30, etc. distance between any two cells in the same set is greater than
or equal to 2.0.

model of traffié is

pz:a/(hv L:17277N

1/50, i€ {1,2, ---, 10,17, 18

26, 27, 33, 34, 36, 37}

In the uniform traffic case, the linear program in both the
graph and hypergraph models tends to assign nonzero values

i = 2/75, 1€{11,12,---,16,19, 24 to the variables corresponding to those maximal independent
25, 31, 32, 35} sets which contain the largest number of cells. The approach

1/25, i€ {20, 21, 22, 23, 29, 30} of the linear program will not be the same for nonuniform

2/25, i=28. traffic. It will tend to assign nonzero values to maximal

independent sets which include cells with large traffic values.

The capacities of the 37-cell cellular system f_or b_oth the gragtye hypergraph model offers a wider choice in this respect.
and hypergraph models have been plotted in Fig. 8. Clearfyyr 5 3| threshold of 0.831 345 dB, the hypergraph model has

the hypergraph model outperforms the graph model in al{aximal independent sets which include the cell at the center,
cases.
9N and M have the same significance as before.
10Any maximal independent set of the graph model will always be an
8Unless otherwise mentioned, nonuniform traffic will refer to this distribuindependent set of the hypergraph model for the same transmission quality
tion of traffic in the rest of the paper. (S/) threshold.
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with some at distance/3 and some at distance 2.0 from it. 03 T

These are cells with more traffic than cells at the periphery. .

The graph model foiD = 2.0 has no maximal independent £ 025} .

set that includes the central cell and another at distafige &

from it. Hence, the hypergraph model does significantly better "2& 02} .

than the graph model, even for the interference thresholds =

corresponding to the discrefe values of the graph model. g 015 y
It was shown in [3] that aX -fixed algorithm! maximizes E

the total traffic carried in any system and, hence, minimizes = 01T T

the average blocking probability, when the number of channels §

(n) is very large f — oc) and the assumptions stated above 2 005F i

hold. The average blocking probability obtained in the 37- AN

cell system when modeled by a hypergraph and using the 02 25 3 35 4 45 5 55 6 65

X -fixed algorithm for an arbitrarily large number of channels Offered Traffic Intensity (Erlangs/channel)

and also for finite numbers of Channe}s# 1200 and 3000) Fig. 9. Blocking probability obtained with thé-fixed algorithm in the

is plotted in Figs. 9 and 10. The average blocking probability/-cell system with the required transmission quality being that the minimum
obtained in the same system for the same numbers of ch&firatio must exceed 12.5 dB with a probability of 0.9. Offered traffic intensity

; e same in all the cells (uniform distribution of traffic). g1, g2, and g3 are
nels when the system is modeled by a graph has also bﬁiee} locking probability curves for the system modeled by a graph. gl is the

plotted. These figures clearly bring out the superiority of th&rve for 1200 channels, g2 for 3000 channels, and g3 for an arbitrarily large
hypergraph model over the graph model. Let us consider sommberfof chhannelsn(ﬁ og)-l Pél,th. é;ﬂd h3 ari thhe bloctliing prob?bility

: ; jrves for the system modeled by a hypergraph. hl is the curve for 1200
performance_flgureS_When the number O_f channels ava"aplé:cE nnels, h2 for 3000 channels, and h3 for an arbitrarily large number of
1200. If traffic is uniform, the system yields a 5% blockinghannels # — o).
probability when the offered traffic is 4503 Erlangs when

modeled by a hypergraph and 3474 Erlangs when modeled

by a graph. In this case, hypergraph modeling gives almost 03 '
a 30% increase in carried traffic over graph modeling for the g 02s |
same blocking probability. For nonuniform traffic, the figures >
are 3286 and 2486 Erlangs, respectively, for hypergraph 2 o2l
and graph modeling. It turns out that hypergraph model- i
ing yields a 32% improvement over graph modeling in this g 0.15
case. 2
The system always performs worse for a finite number of i 0.1
channels compared to the infinite channel case both for graph E
and hypergraph modeling. 8 005
The X -fixed algorithm performs better when the system is - i
0 e

modeled by a hypergraph than when it is modeled by a graph -

) 1 15 2 25 3 35 4 45 5
because the hypergraph model offers a much greater choice Offered Traffic Intensity (Erlangs/channel)
of cochannel cell for the same S/l ratio requirements. For

=i in Fig. 10. Blocking probability obtained with th& -fixed algorithm in the
example, the set of cellgl, 2, 24, 25} is a cochannel set in 37-cell system with required transmission quality being that the minimum S/I

the 37-cell system of Fig. 3 when the required transmissi®fio must exceed 12.5 dB with a probability of 0.9. Offered traffic intensity
quality is that the minimum S/I ratio must exceed 12.5 dB nonuniformly distributed amongst the cells. g1, g2, g3, h1, h2, and h3 have

with a probability of 0.9 when the system is modeled by Re same interpretation as in Fig. 9.

hypergraph, but is not so in the graph model. Thefixed

algorithm atr = 3.89 Erlangs/channel allocates a certaifip design some dynamic channel allocation (DCA) schemes,

number of channels to each cell in this cochannel set when {hgich yield considerably lower blocking probabilities than

system is modeled by hypergraph, but it cannot do so for tien the graph model is used.

graph model. This feature of hypergraph models can be utilizedf the DCA takes the decision whether or not to assign a
1The X -fixed algorithm allocategz;»| channels to theth cell, where channel tQ anew ?a” base_d on the current measured value of

n is the total number of channels available and = ' Xja,;, the S/l ratio, then in effect it allows a set of cells to reuse the

where the X,’s constitute an optimal solution to the Iine\E}r programsame channel only if it is an independent set of the hypergraph

{max YN (DM, Njai; —2): X;20,5=1,2,-, M, ¥, X; = modeling the system. However, many DCA's, for reasons

o , = of implementation complexity or inability to make real-time
Lozi 2 0,300 Ny = 2 < pir o= 1,2-, N} The X-fixed o0 rements, take this decision based on the knowledge
algorithmis a fixed channel allocation algorithm for fixedout the allocation ’ . 1 . . g
of channels is load dependent. of cochannel sets computeal priori. In this situation, the

12The maximal independent sets of the hypergraph/graph models of thgpergraph model is at an advantage over the graph model
system are the cochannel cells, in as much as all cells of a maxi ply because it allows a wider choice of cochannel cells.
independent set can use the same channel simultaneously. Also, all s . . . .
of no proper superset of a maximal independent set can use a chan & simulation results bear testimony to this fact. We have

simultaneously. presented the simulation results for the 19-cell system of Fig. 2
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Uniform Traffic Pattern 10 T T T T
z 02 " ' ' 7 3 olw Actual Capacit
B hypergraph — o 2 N ctu apac;‘ )ll
g 015 . g 5,
2 graph £ s |
£ o1} . %
o g TF
£ o0o0s | . B
e B 6Ff
m 0 1 Ly %‘ 5k
0 0.5 1 1.5 2 2.5 =
Offered Traffic Intensity (Erlangs/channel) 8 4}
8
g 3r
5
[=} 2 F
Nonuniform Traffic Pattern m
2 0.2 T T T T 1 1 1 1 1
E hypergraph a 0 5 10 15 20
g 0.15 VP ggf;},h < Signal to Interference threshold (dB)
‘i 0.1 7 Fig. 12. Approximations to the capacity of the system. Both upper and lower
E 005 b bounds on the capacity have been shown. A 37-cell system with uniform traffic
2 7 is studied. The required transmission quality is that a given S/I threshold must
=) 0 ) 1 be exceeded with 90% probability. L1, L2, and L3 are lower bounds on the

0 0.4 08 vl.z 1.6 2 capacity. U1, U2, and U3 are upper bounds on the capacity.
Offered Traffic Intensity (Erlangs/channel)

Fig. 11. DCA simulation results for a 19-cell system. The minimum S/l ratid\. Lower Bound on Capacity
must exceed 12.5 dB with a probability of 0.9. 120 channels are available. . . . .
In the case of nonuniform traffic, the pattern is similar to that for the 37-cell If the linear program LP1 is run with some of the maximal

system. Maximum traffic is offered in the central cell (cell 10), half of thijndependent sets instead of all the maximal independent sets,
traffic is offered in each cell in the next ring (cells 5, 6, 9, 11, 14, and 15{2t . . : )
and the offered traffic in any other cell is one third of the traffic offered i IS same as forcmg some Vanabl@éﬂ to zero. So, the

the central cell. The probability that the true blocking probabilities lie withisolutiont> will not be optimal, but greater than the optimal and
the error bars around the estimated blocking probabilities is 0.9. the reciprocal of it will give a lower bound ory. Actually,
as discussed before, only out of M (N « M) variables

in Fig. 11. We have simulated a DCA which accepts a cdieed to have nonzero values. So, if the linear program is run
whenever it is possible to do so without any rearrangemenfdth only thosex variables, the solution will be optimal, but

satisfying the reuse constraints. It takes decisions based orp|fic€ We do not know beforehand whigh variables will be
knowledge of cochannel cells computadriori. basis variables, we need to run the linear program witid/all

variables, to get the optimal solution.
The linear program was run with different numbers of
maximal independent sets for various S/l thresholds. The
IV. APPROXIMATIONS TO THE CAPACITY results have been plotted in Fig. 12 for the 37-cell system
Although, in general, hypergraph modeling outperfornﬁlodebd by a hypergraph, with uniform traffic distribution.
graph modeling, the performance of the system when modelBae solid line gives the actual capacity. The curves below the
by a graph closely approaches the performance of the hypaetual line give the lower bounds.
graph model at some values of the offered load (see Figs. 51) L1 was obtained with 1/4th of the total number of maxi-
and 8). Thus, before the system designer decides whether to mal independent sets. It is very close to the actual curve.
design his channel allocation scheme based on the hypergraph However, if generation of all the maximal independent
model or on the graph model, he may like to estimate the extent sets has exponential complexity, generation of 1/4 of
of the superiority of the more complex hypergraph model at  the total number of maximal independent sets also has
the load at which he would like to operate. He can do so  exponential complexity. So, it is not a good idea to use
by comparing the capacities. However, he has to compute this approximation.
the maximal independent sets of the hypergraph/graph model2) The next lower bound L2 was obtained with aroun&v20
of the system for this purpose. The number of maximal maximal independent sets, i.e., 1000 maximal indepen-
independent sets of the underlying graph/hypergraph model dent sets for a 37-cell system. The lower bound thus
increases exponentially with the number of cells. Hence, the  obtained is fairly close to the actual curve. Generation
complexity of generation of these maximal independent sets  of 20V maximal independent sets has a complexity that
also increases exponentially with the number of cells. In areal increases polynomially with the number of cel&s
system, there will be a large number of cells. Hence, evaluation3) L3 was obtained with around AMmaximal independent
of the capacity will be difficult in a real system, unless very sets, i.e., precisely 400 maximal independent sets for a
powerful computing resources are available. Thus, the need 37-cell system. As expected, this is not very close to the
arises for finding good and easily computable approximations actual curve.
to the capacity. If easily computable upper and lower boundS-BA feasible solution may not exist. This will happen if the maximal

on the capacityro (?an _be Tound _and these are close to ea(ﬁhjependent sets are so chosen that one or more cells does not occur in any
other, then our objective is achieved. maximal independent set. This case has to be avoided.
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The same curves were obtained for the same system with
nonuniform traffic. The lower bound computed using 25% of
the maximal independent sets (L1) almost coincides with the
actual curve (the solid one). The lower bouldsbtained in
the other cases are also fairly close to the actual curve at most
places. But there are gaps at a few places. This shows tha3)
the procedure may not always be reliable. The proximity of
the lower bounds to the actual capacity curve in most cases
indicates that a channel assignment algorithm may do quite
well, even if it uses only some of the cochannel sets generated
by the hypergraph model.

B. Upper Bound on Capacity

Let us consider the dual of the linear program LP1 for the
computation ofrj*

N N
{maxzygpi: Yi20,) Yia; <1.j=1 -, M}.

=1 =1
(LP2)

aij, M, N, andp; have the same significance as befdrgs
are the variables of the linear program.

Here, each cell corresponds to a variabjeand each max-
imal independent set to a constraint. The following strategy
can be adopted.

If some cell variables are forced to zero, the linear program
will yield a solution'® less than the optimal, and the reciprocal
of that will thus be greater than,, and, hence, an upper
bound onry. If ¢’ is the set of cell variables to be forced to
zero andH’ is the hypergraph underlying the system forme
by removing the cells inC” from the original system (the
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at distance\/7 from the central cell, i.e., 25 cells only
were considered. The number of maximal independent
sets varies from 63 to 1486, whereas in the actual system
the range is from 217 to 33536. This curve is also fairly
close to the actual curve.

In both the cases above, cells were removed only from
the outskirts of the system. Now, we compute the same
curve after removing the central cell (cell 28) and five
others from the next ring (i.e., at distance 1 from the
central cell). The result is the curve farthest from the
solid curve, i.e., U3 in Fig. 12. The approximation we
get in this case is very poor even though only six
cells have been removed. So, the choice of the cells
to be removed is crucial in order to get a good upper
bound. This is intuitive. Removal of a cell amounts to
not allocating any channel to that cell, while keeping
the traffic in the remaining cells unchanged. The total
number of available channels is also unchanged. Hence,
the remaining cells can use a greater number of channels.
The calls attempted in the cells removed are not consid-
ered to be blocked either. Now, a channel allocated to a
cell in the central part of the system prevents a greater
number of cells in the system from using it as compared
to that allocated to a cell in the outskirts. Hence, the
removal of a cell in the central part gives a greater
upper bound than that obtained by removing a cell in
the outskirts.

The same strategy was tried with the 37-cell system with
nonuniform traffic. The results are plotted in Fig. 13. The solid

urve gives the actual curve. Ul, U2, and U3 were obtained
In the same manner as for the uniform traffic case. U1 and U2

. o - ) . re both quite close to the actual curve with U2 being slightl
fraction of traffic in the remaining cells is not mcreaseda R g signty

e p's in these remain the same). then generating all tWorse (as expected), but easier to compute. While U3 uses the
S Pis , ), en g 9 r%Gélme number of cells as U1, its performance is considerably
maximal independent sets @&’ and running linear program

S ) worse. This is not only due to the reasons explained in the
LP2 on them will yield the same result as forcing som y P

variables corresponding to the cells of the original svstem niform traffic case (channels allocated to central cells are
: P 9 . : 9 Y Yevented from being reused in a greater number of cells), but
zero. Since the number of maximal independent sets increa;

exponentially with the number of cells. removal of even f&d because the nonuniform traffic is such that cells closer to
P y N X fhe center of the system need many more channels than those
small number of cells from the original system will reduce .
. ; . n the periphery.

the number of maximal independent sets considerably. For
example, removal of only six cells from the outermost ring
from the 37-cell system reduces the number of maximal
independent sets by about a factor of 3/4 when the S/i
threshold is such that the number of maximal independ

sets is large.

V. CONCLUSION

The numerical results presented clearly demonstrate the
eéﬁperiority of hypergraph modeling of cellular systems over

This technique was tried with the system of 37 cells witﬂraph modeling. Although we have mostly dealt with infinite

. , o hannel systems, the numerical results obtained for the finite
uniform traffic. The results have been plotted in Fig. 12. Th&ﬁannel case (refer to Figs. 9 and 10) sufficiently illustrate

solid curve, as mentioned before, glves_the actual capa%% superiority of hypergraph modeling over graph modeling.
versus S/l thresholds. The curves above it gre upper boun_ sually, the number of channels available is large, so that the

1) The closest upper bound U1 was obtained by removingy,a| carried traffic and blocking probability obtained with
six cells at distance 3 from the central cell. This is venypy aigorithm are close to those obtained with the infinite
close to the actual curve. channel assumption. This is also brought out by Figs. 9 and

2) The next higher curve U2 was obtained by removing sig_ Also, it was shown in [3] that the capacity of a system
cells at distance 3 from the central cell and six othegges not change when the assumption that the offered traffic is
independent from cell to cell is relaxed. Thus, our results hold

for mobile cellular networks with handovers and intercell calls.
However, the computational complexity is high for hypergraph

142 with 20N maximal independent sets and L3 with XOmaximal
independent sets.

15A feasible solution will always exist in this case.
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parameters of, i.e.,m; andoy, can be determined in various

1 l T T T T
S 10k Actual Capacity ] ways. The method which gives the closest approximation
g oL depends on the expected range of values occupied by the
g random variable [8]. For simplicity, we select the method
g 81 which determines the parameters such thaas the same first
g and second moments for all ranges. Lletl = N(my, o).
2 6r From [8]
Q
<]
a. 5t V2
=]
2
E 4} 0'12111(?4‘1) (6)
ki 3r mr=1Inn—o2/2 (7)
& 2f
1 . . . ' where
0 5 10 15 20
Signal to Interference threshold (dB) V2 = Zvar(li)
@
Fig. 13. Approximations to the capacity of the system. Both upper and lower N 2 2
bounds on the capacity have been shown. A 37-cell system with nonuniform = 262(50_4 In ri)t+o (e = 1)
traffic is studied. The required transmission quality is that a given S/I threshold P
must be exceeded with 90% probability. L1, L2, and L3 are lower bounds ;
the capacity. U1, U2, and U3 are upper bounds on the capacity. Tﬂsmg (1) and (5)] 5 5
25 —8
= (7 —1)e*™ > r, (8)
modeling, but in most cases the bounds discussed above are ’
very close to the actual results, and these are also easy to n :ZE(L‘)
evaluate. i
_ So—4 In 1’7-—1—02/2
=2 c ©)
APPENDIX @

[using (1) and (4)]

— Sota?/2 27,;4
i
2
2 —
= p? =2oote <Z7Z 4) .

%

ESTIMATION OF THE PARAMETERS OF [

Note that I, the total received interference power, is a
random variable which is the sum of mutually independent
lognormal random variables. First, we give expressions for
the mean and variance of a lognormal random variable.

A. Mean of a Lognormal Random Variable Hence

Let X be a lognormal random variable, X ~ N(m, o?).
Let Y = In X. Hence,Y ~ N(m, o?). Since X = eY,
E(X) = E(cY), which is the characteristic function of a o2
N(m, ¢*) random variable. Thus

—8
2

a?—1 i
2 +1

[substituting (8) and (10) into (6) and cancelling the common

terms] and
Let X be a lognormal random variable. As before, let

Y = InX. Hence,2Y ~ N(2m, 40?). Since X = &Y,

E(X?) = E(e?Y), which is the characteristic function of a

N(2m, 40?) random variable. Thus

=In |e

E(X) ="t/ 4)
B. Variance of a Lognormal Random Variable

my = So+ 02 /2 11127’;4 —07/2
[substituting (9) into (7)].

2
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