14,590 research outputs found

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    An Efficient Authentication Protocol for Smart Grid Communication Based on On-Chip-Error-Correcting Physical Unclonable Function

    Full text link
    Security has become a main concern for the smart grid to move from research and development to industry. The concept of security has usually referred to resistance to threats by an active or passive attacker. However, since smart meters (SMs) are often placed in unprotected areas, physical security has become one of the important security goals in the smart grid. Physical unclonable functions (PUFs) have been largely utilized for ensuring physical security in recent years, though their reliability has remained a major problem to be practically used in cryptographic applications. Although fuzzy extractors have been considered as a solution to solve the reliability problem of PUFs, they put a considerable computational cost to the resource-constrained SMs. To that end, we first propose an on-chip-error-correcting (OCEC) PUF that efficiently generates stable digits for the authentication process. Afterward, we introduce a lightweight authentication protocol between the SMs and neighborhood gateway (NG) based on the proposed PUF. The provable security analysis shows that not only the proposed protocol can stand secure in the Canetti-Krawczyk (CK) adversary model but also provides additional security features. Also, the performance evaluation demonstrates the significant improvement of the proposed scheme in comparison with the state-of-the-art

    Augmented Symbolic Execution for Information Flow in Hardware Designs

    Full text link
    We present SEIF, a methodology that combines static analysis with symbolic execution to verify and explicate information flow paths in a hardware design. SEIF begins with a statically built model of the information flow through a design and uses guided symbolic execution to recognize and eliminate non-flows with high precision or to find corresponding paths through the design state for true flows. We evaluate SEIF on two open-source CPUs, an AES core, and the AKER access control module. SEIF can exhaustively explore 10-12 clock cycles deep in 4-6 seconds on average, and can automatically account for 86-90% of the paths in the statically built model. Additionally, SEIF can be used to find multiple violating paths for security properties, providing a new angle for security verification

    A Design Science Research Approach to Smart and Collaborative Urban Supply Networks

    Get PDF
    Urban supply networks are facing increasing demands and challenges and thus constitute a relevant field for research and practical development. Supply chain management holds enormous potential and relevance for society and everyday life as the flow of goods and information are important economic functions. Being a heterogeneous field, the literature base of supply chain management research is difficult to manage and navigate. Disruptive digital technologies and the implementation of cross-network information analysis and sharing drive the need for new organisational and technological approaches. Practical issues are manifold and include mega trends such as digital transformation, urbanisation, and environmental awareness. A promising approach to solving these problems is the realisation of smart and collaborative supply networks. The growth of artificial intelligence applications in recent years has led to a wide range of applications in a variety of domains. However, the potential of artificial intelligence utilisation in supply chain management has not yet been fully exploited. Similarly, value creation increasingly takes place in networked value creation cycles that have become continuously more collaborative, complex, and dynamic as interactions in business processes involving information technologies have become more intense. Following a design science research approach this cumulative thesis comprises the development and discussion of four artefacts for the analysis and advancement of smart and collaborative urban supply networks. This thesis aims to highlight the potential of artificial intelligence-based supply networks, to advance data-driven inter-organisational collaboration, and to improve last mile supply network sustainability. Based on thorough machine learning and systematic literature reviews, reference and system dynamics modelling, simulation, and qualitative empirical research, the artefacts provide a valuable contribution to research and practice

    BRAMAC: Compute-in-BRAM Architectures for Multiply-Accumulate on FPGAs

    Full text link
    Deep neural network (DNN) inference using reduced integer precision has been shown to achieve significant improvements in memory utilization and compute throughput with little or no accuracy loss compared to full-precision floating-point. Modern FPGA-based DNN inference relies heavily on the on-chip block RAM (BRAM) for model storage and the digital signal processing (DSP) unit for implementing the multiply-accumulate (MAC) operation, a fundamental DNN primitive. In this paper, we enhance the existing BRAM to also compute MAC by proposing BRAMAC (Compute-in-BR‾\underline{\text{BR}}AM A‾\underline{\text{A}}rchitectures for M‾\underline{\text{M}}ultiply-Ac‾\underline{\text{Ac}}cumulate). BRAMAC supports 2's complement 2- to 8-bit MAC in a small dummy BRAM array using a hybrid bit-serial & bit-parallel data flow. Unlike previous compute-in-BRAM architectures, BRAMAC allows read/write access to the main BRAM array while computing in the dummy BRAM array, enabling both persistent and tiling-based DNN inference. We explore two BRAMAC variants: BRAMAC-2SA (with 2 synchronous dummy arrays) and BRAMAC-1DA (with 1 double-pumped dummy array). BRAMAC-2SA/BRAMAC-1DA can boost the peak MAC throughput of a large Arria-10 FPGA by 2.6×\times/2.1×\times, 2.3×\times/2.0×\times, and 1.9×\times/1.7×\times for 2-bit, 4-bit, and 8-bit precisions, respectively at the cost of 6.8%/3.4% increase in the FPGA core area. By adding BRAMAC-2SA/BRAMAC-1DA to a state-of-the-art tiling-based DNN accelerator, an average speedup of 2.05×\times/1.7×\times and 1.33×\times/1.52×\times can be achieved for AlexNet and ResNet-34, respectively across different model precisions.Comment: 11 pages, 13 figures, 3 tables, FCCM conference 202

    Electronic and photonic integrated circuits for millimeter wave-over-fiber

    No full text

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2020-21 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    CITIES: Energetic Efficiency, Sustainability; Infrastructures, Energy and the Environment; Mobility and IoT; Governance and Citizenship

    Get PDF
    This book collects important contributions on smart cities. This book was created in collaboration with the ICSC-CITIES2020, held in San José (Costa Rica) in 2020. This book collects articles on: energetic efficiency and sustainability; infrastructures, energy and the environment; mobility and IoT; governance and citizenship
    • …
    corecore