17,838 research outputs found

    MIMO capacity for deterministic channel models: sublinear growth

    Full text link
    This is the second paper of the authors in a series concerned with the development of a deterministic model for the transfer matrix of a MIMO system. Starting from the Maxwell equations, we have described in \cite{BCFM} the generic structure of such a deterministic transfer matrix. In the current paper we apply the results of \cite{BCFM} in order to study the (Shannon-Foschini) capacity behavior of a MIMO system as a function of the deterministic spread function of the environment, and the number of transmitting and receiving antennas. The antennas are assumed to fill in a given, fixed volume. Under some generic assumptions, we prove that the capacity grows much more slowly than linearly with the number of antennas. These results reinforce previous heuristic results obtained from statistical models of the transfer matrix, which also predict a sublinear behavior.Comment: 12 pages, to appear in Math. Meth. Appl. Sc

    Disentangle the nature of resonances in coupled-channel models

    Full text link
    We present several possible hadronic states found in coupled-channel models within the on-shell approximation. The interaction potential is constructed as a sum of the tree-level Feynman diagrams calculated with the effective Lagrangians. Based on the recent empirical data, we illustrate the possible existence of several baryonic and mesonic states with definite quantum numbers in the model. We give their properties for the purpose of further study and discuss the potential of finding them in future experiments.Comment: values in table update

    Nucleon Resonances with Hidden Charm in Coupled-Channel Models

    Full text link
    The model dependence of the predictions of nucleon resonances with hidden charm is investigated. We consider several coupled-channel models which are derived from relativistic quantum field theory by using (1) a unitary transformation method, and (2) the three-dimensional reductions of Bethe-Salpeter Equation. With the same vector meson exchange mechanism, we find that all models give very narrow molecular-like nucleon resonances with hidden charm in the mass range of 4.3 GeV <MR< < M_R < 4.5 GeV, in consistent with the previous predictions.Comment: 17 pages, 3 figure

    RFI channels

    Get PDF
    A class of channel models is presented which exhibit varying burst error severity much like channels encountered in practice. An information-theoretic analysis of these channel models is made, and conclusions are drawn that may aid in the design of coded communication systems for realistic noisy channels

    Finite-State Channel Models for Signal Transduction in Neural Systems

    Full text link
    Information theory provides powerful tools for understanding communication systems. This analysis can be applied to intercellular signal transduction, which is a means of chemical communication among cells and microbes. We discuss how to apply information-theoretic analysis to ligand-receptor systems, which form the signal carrier and receiver in intercellular signal transduction channels. We also discuss the applications of these results to neuroscience.Comment: Accepted for publication in 2016 IEEE International Conference on Acoustics, Speech, and Signal Processing, Shanghai, Chin

    Monojet versus rest of the world I: t-channel Models

    Get PDF
    Monojet searches using Effective Field Theory (EFT) operators are usually interpreted as a robust and model independent constraint on direct detection (DD) scattering cross-sections. At the same time, a mediator particle must be present to produce the dark matter (DM) at the LHC. This mediator particle may be produced on shell, so that direct searches for the mediating particle can constrain the effective operator being applied to monojet constraints. In this first paper, we do a case study on t-channel models in monojet searches, where the (Standard Model singlet) DM is pair produced via a t-channel mediating particle, whose supersymmetric analogue is the squark. We compare monojet constraints to direct constraints on single or pair production of the mediator from multi-jets plus missing energy searches and we identify the regions where the latter dominate over the former. We show that computing bounds using supersymmetric simplified models and in the narrow width approximation, as done in previous work in the literature, misses important quantitative effects. We perform a full event simulation and statistical analysis, and we compute the effects of both on- and off-shell production of the mediating particle, showing that for both the monojet and multi-jets plus missing energy searches, previously derived bounds provided more conservative bounds than what can be extracted by including all relevant processes in the simulation. Monojets and searches for supersymmetry (SUSY) provide comparable bounds on a wide range of the parameter space, with SUSY searches usually providing stronger bounds, except in the regions where the DM particle and the mediator are very mass degenerate. The EFT approximation rarely is able to reproduce the actual limits. In a second paper to follow, we consider the case of s-channel mediators.Comment: 22 pages + appendices, 10 figure

    Channels with block interference

    Get PDF
    A new class of channel models with memory is presented in order to study various kinds of interference phenomena. It is shown, among other things, that when all other parameters are held fixed, channel capacity C is an increasing function of the memory length, while the cutoff rate R0 generally is a decreasing function. Calculations with various explicit coding schemes indicate that C is better than R0 as a performance measure for these channel models. As a partial resolution of this C versus R0 paradox, the conjecture is offered that R0 is more properly a measure of coding delay rather than of coding complexity
    corecore