977 research outputs found

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN

    A survey of symbiotic radio: Methodologies, applications, and future directions

    Get PDF
    The sixth generation (6G) wireless technology aims to achieve global connectivity with environmentally sustainable networks to improve the overall quality of life. The driving force behind these networks is the rapid evolution of the Internet of Things (IoT), which has led to a proliferation of wireless applications across various domains through the massive deployment of IoT devices. The major challenge is to support these devices with limited radio spectrum and energy-efficient communication. Symbiotic radio (SRad) technology is a promising solution that enables cooperative resource-sharing among radio systems through symbiotic relationships. By fostering mutualistic and competitive resource sharing, SRad technology enables the achievement of both common and individual objectives among the different systems. It is a cutting-edge approach that allows for the creation of new paradigms and efficient resource sharing and management. In this article, we present a detailed survey of SRad with the goal of offering valuable insights for future research and applications. To achieve this, we delve into the fundamental concepts of SRad technology, including radio symbiosis and its symbiotic relationships for coexistence and resource sharing among radio systems. We then review the state-of-the-art methodologies in-depth and introduce potential applications. Finally, we identify and discuss the open challenges and future research directions in this field

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    RIScatter: unifying backscatter communication and reconfigurable intelligent surface

    Get PDF
    Backscatter Communication (BackCom) nodes harvest energy from and modulate information over an external electromagnetic wave. Reconfigurable Intelligent Surface (RIS) adapts its phase shift response to enhance or attenuate channel strength in specific directions. In this paper, we show how those two seemingly different technologies (and their derivatives) can be unified to leverage their benefits simultaneously into a single architecture called RIScatter. RIScatter consists of multiple dispersed or co-located scatter nodes, whose reflection states can be adapted to partially engineer the wireless channel of the existing link and partially modulate their own information onto the scattered wave. This contrasts with BackCom (resp. RIS) where the reflection pattern is exclusively a function of the information symbol (resp. Channel State Information (CSI)). The key principle in RIScatter is to render the probability distribution of reflection states (i.e., backscatter channel input) as a joint function of the information source, CSI, and Quality of Service (QoS) of the coexisting active primary and passive backscatter links. This enables RIScatter to softly bridge, generalize, and outperform BackCom and RIS; boil down to either under specific input distribution; or evolve in a mixed form for heterogeneous traffic control and universal hardware design. For a single-user multi-node RIScatter network, we characterize the achievable primary-(total-)backscatter rate region by optimizing the input distribution at the nodes, the active beamforming at the Access Point (AP), and the backscatter detection regions at the user. Simulation results demonstrate RIScatter nodes can exploit the additional propagation paths to smoothly transition between backscatter modulation and passive beamforming

    Towards 6G-Enabled Internet of Things with IRS-Empowered Backscatter-Assisted WPCNs

    Get PDF
    Wireless powered communication networks (WPCNs) are expected to play a key role in the forthcoming 6G systems. However, they have not yet found their way to large-scale practical implementations due to their inherent shortcomings such as the low efficiency of energy transfer and information transmission. In this thesis, we aim to study the integration of WPCNs with other novel technologies of backscatter communication and intelligent reflecting surface (IRS) to enhance the performance and improve the efficiency of these networks so as to prepare them for being seamlessly fitted into the 6G ecosystem. We first study the incorporation of backscatter communication into conventional WPCNs and investigate the performance of backscatter-assisted WPCNs (BS-WPCNs). We then study the inclusion of IRS into the WPCN environment, where an IRS is used for improving the performance of energy transfer and information transmission in WPCNs. After that, the simultaneous integration of backscatter communication and IRS technologies into WPCNs is investigated, where the analyses show the significant performance gains that can be achieved by this integration
    corecore