2,444 research outputs found

    Downlink Video Streaming for Users Non-Equidistant from Base Station

    Get PDF
    We consider multiuser video transmission for users that are non-equidistantly positioned from base station. We propose a greedy algorithm for video streaming in a wireless system with capacity achieving channel coding, that implements the cross-layer principle by partially separating the physical and the application layer. In such a system the parameters at the physical layer are dependent on the packet length and the conditions in the wireless channel and the parameters at the application layer are dependent on the reduction of the expected distortion assuming no packet errors in the system. We also address the fairness in the multiuser video system with non-equidistantly positioned users. Our fairness algorithm is based on modified opportunistic round robin scheduling. We evaluate the performance of the proposed algorithms by simulating the transmission of H.264/AVC video signals in a TDMA wireless system

    Scalable Video Streaming for Single-Hop Wireless Networks Using a Contention-Based Access MAC Protocol

    Get PDF
    Limited bandwidth and high packet loss rate pose a serious challenge for video streaming applications over wireless networks. Even when packet loss is not present, the bandwidth fluctuation, as a result of an arbitrary number of active flows in an IEEE 802.11 network, can significantly degrade the video quality. This paper aims to enhance the quality of video streaming applications in wireless home networks via a joint optimization of video layer-allocation technique, admission control algorithm, and medium access control (MAC) protocol. Using an Aloha-like MAC protocol, we propose a novel admission control framework, which can be viewed as an optimization problem that maximizes the average quality of admitted videos, given a specified minimum video quality for each flow. We present some hardness results for the optimization problem under various conditions and propose some heuristic algorithms for finding a good solution. In particular, we show that a simple greedy layer-allocation algorithm can perform reasonably well, although it is typically not optimal. Consequently, we present a more expensive heuristic algorithm that guarantees to approximate the optimal solution within a constant factor. Simulation results demonstrate that our proposed framework can improve the video quality up to 26% as compared to those of the existing approaches

    Medium access control protocol design for wireless communications and networks review

    Get PDF
    Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive number of antenna elements to improve both spectral efficiency and energy efficiency. On the other hand, the second research method (PD-NOMA) allows multiple non-orthogonal signals to share the same orthogonal resources by allocating different power level for each station. PD-NOMA has a better spectral efficiency over the orthogonal multiple access methods. A review of previous works regarding the MAC design for different wireless networks is classified based on different categories. The main contribution of this research work is to show the importance of the MAC design with added optimal functionalities to improve the spectral and energy efficiencies of the wireless networks
    corecore