109,717 research outputs found

    Avoiding Unnecessary Information Loss: Correct and Efficient Model Synchronization Based on Triple Graph Grammars

    Full text link
    Model synchronization, i.e., the task of restoring consistency between two interrelated models after a model change, is a challenging task. Triple Graph Grammars (TGGs) specify model consistency by means of rules that describe how to create consistent pairs of models. These rules can be used to automatically derive further rules, which describe how to propagate changes from one model to the other or how to change one model in such a way that propagation is guaranteed to be possible. Restricting model synchronization to these derived rules, however, may lead to unnecessary deletion and recreation of model elements during change propagation. This is inefficient and may cause unnecessary information loss, i.e., when deleted elements contain information that is not represented in the second model, this information cannot be recovered easily. Short-cut rules have recently been developed to avoid unnecessary information loss by reusing existing model elements. In this paper, we show how to automatically derive (short-cut) repair rules from short-cut rules to propagate changes such that information loss is avoided and model synchronization is accelerated. The key ingredients of our rule-based model synchronization process are these repair rules and an incremental pattern matcher informing about suitable applications of them. We prove the termination and the correctness of this synchronization process and discuss its completeness. As a proof of concept, we have implemented this synchronization process in eMoflon, a state-of-the-art model transformation tool with inherent support of bidirectionality. Our evaluation shows that repair processes based on (short-cut) repair rules have considerably decreased information loss and improved performance compared to former model synchronization processes based on TGGs.Comment: 33 pages, 20 figures, 3 table

    Type Annotation for Adaptive Systems

    Get PDF
    We introduce type annotations as a flexible typing mechanism for graph systems and discuss their advantages with respect to classical typing based on graph morphisms. In this approach the type system is incorporated with the graph and elements can adapt to changes in context by changing their type annotations. We discuss some case studies in which this mechanism is relevant.Comment: In Proceedings GaM 2016, arXiv:1612.0105

    Towards a Model of Life and Cognition

    Get PDF
    What should be the ontology of the world such that life and cognition are possible? In this essay, I undertake to outline an alternative ontological foundation which makes biological and cognitive phenomena possible. The foundation is built by defining a model, which is presented in the form of a description of a hypothetical but a logically possible world with a defined ontological base. Biology rests today on quite a few not so well connected foundations: molecular biology based on the genetic dogma; evolutionary biology based on neo-Darwinian model; ecology based on systems view; developmental biology by morphogenetic models; connectionist models for neurophysiology and cognitive biology; pervasive teleonomic explanations for the goal-directed behavior across the discipline; etc. Can there be an underlying connecting theme or a model which could make these seemingly disparate domains interconnected? I shall atempt to answer this question. By following the semantic view of scientific theories, I tend to believe that the models employed by the present physical sciences are not rich enough to capture biological (and some of the non-biological) systems. A richer theory that could capture biological reality could also capture physical and chemical phenomena as limiting cases, but not vice versa

    Evolutionary dynamics of adult stem cells: Comparison of random and immortal strand segregation mechanisms

    Full text link
    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) Random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell. (2) ``Immortal DNA strand'' co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by Cairns (J. Cairns, {\it Nature} {\bf 255}, 197 (1975)), by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age-dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.Comment: 9 pages, 3 figure

    SPEECH PLANNINGS IN THE STUDENTS’ CONVERSATION (A CASE STUDY OF FOURTH SEMESTER STUDENTS OF ENGLISH DEPARTMENT, DIAN NUSWANTORO UNIVERSITY)

    Get PDF
    This study is aimed at describing the speech plannings employed by the fourth semester students of English Department, Dian Nuswantoro University in making conversation with their friends. The data was collected by recording the students’ conversation. The conversation lasted for about 30 minutes. The data, then, was transcribed into the written form. In analyzing the data, the writer used the framework proposed by Faerch and Kasper (1983:214). The result showed that the speech plannings the students usually attempted in making conversation are: temporal variables such as pause (filled), drawls ; hesitation phenomena such as filled pause, repetition, and correction; and other phenomena like slip, switch, uptake signal, and interjection. From the kinds of speech plannings mentioned above it can be said that pauses (filled) were the most attempted by the students so they could gain time for execution. In general, the speech plannings attempted by the students indicate that the students’ speaking readiness is low. In other words, they often find problems in their conversation

    Certifying and removing disparate impact

    Full text link
    What does it mean for an algorithm to be biased? In U.S. law, unintentional bias is encoded via disparate impact, which occurs when a selection process has widely different outcomes for different groups, even as it appears to be neutral. This legal determination hinges on a definition of a protected class (ethnicity, gender, religious practice) and an explicit description of the process. When the process is implemented using computers, determining disparate impact (and hence bias) is harder. It might not be possible to disclose the process. In addition, even if the process is open, it might be hard to elucidate in a legal setting how the algorithm makes its decisions. Instead of requiring access to the algorithm, we propose making inferences based on the data the algorithm uses. We make four contributions to this problem. First, we link the legal notion of disparate impact to a measure of classification accuracy that while known, has received relatively little attention. Second, we propose a test for disparate impact based on analyzing the information leakage of the protected class from the other data attributes. Third, we describe methods by which data might be made unbiased. Finally, we present empirical evidence supporting the effectiveness of our test for disparate impact and our approach for both masking bias and preserving relevant information in the data. Interestingly, our approach resembles some actual selection practices that have recently received legal scrutiny.Comment: Extended version of paper accepted at 2015 ACM SIGKDD Conference on Knowledge Discovery and Data Minin
    • …
    corecore