110,505 research outputs found

    Change Mining in Adaptive Process Management Systems

    Get PDF
    The wide-spread adoption of process-aware information systems has resulted in a bulk of computerized information about real-world processes. This data can be utilized for process performance analysis as well as for process improvement. In this context process mining offers promising perspectives. So far, existing mining techniques have been applied to operational processes, i.e., knowledge is extracted from execution logs (process discovery), or execution logs are compared with some a-priori process model (conformance checking). However, execution logs only constitute one kind of data gathered during process enactment. In particular, adaptive processes provide additional information about process changes (e.g., ad-hoc changes of single process instances) which can be used to enable organizational learning. In this paper we present an approach for mining change logs in adaptive process management systems. The change process discovered through process mining provides an aggregated overview of all changes that happened so far. This, in turn, can serve as basis for all kinds of process improvement actions, e.g., it may trigger process redesign or better control mechanisms

    On Representing, Purging, and Utilizing Change Logs in Process Management Systems

    Get PDF
    In recent years adaptive process management technolgy has emerged in order to increase the flexibility of business process implementations and to support process changes at different levels. Usually, respective systems log comprehensive information about changes, which can then be used for different purposes including process traceability, change reuse and process recovery. Therefore the adequate and efficient representation of change logs is a crucial task for adaptive process management systems. In this paper we show which information has to be (minimally) captured in process change logs and how it should be represented in a generic and efficient way. We discuss different design alternatives and show how to deal with noise in process change logs. Finally, we present an elegant and efficient implementation approach, which we applied in the ADEPT2 process management system. Altogether the presented concepts provide an important pillar for adaptive process management technology and emerging fields (e.g., process change mining)

    Using process mining to learn from process changes in evolutionary systems

    Get PDF
    Abstract. Traditional information systems struggle with the requirement to provide flexibility and process support while still enforcing some degree of control. Accordingly, adaptive process management systems (PMSs) have emerged that provide some flexibility by enabling dynamic process changes during runtime. Based on the assumption that these process changes are recorded explicitly, we present two techniques for mining change logs in adaptive PMSs; i.e., we do not only analyze the execution logs of the operational processes, but also consider the adaptations made at the process instance level. The change processes discovered through process mining provide an aggregated overview of all changes that happened so far. This, in turn, can serve as basis for integrating the extrinsic drivers of process change (i.e., the stimuli for flexibility) with existing process adaptation approaches (i.e., the intrinsic change mechanisms). Using process mining as an analysis tool we show in this paper how better support can be provided for truly flexible processes by understanding when and why process changes become necessary

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    ADEPT2 - Next Generation Process Management Technology

    Get PDF
    If current process management systems shall be applied to a broad spectrum of applications, they will have to be significantly improved with respect to their technological capabilities. In particular, in dynamic environments it must be possible to quickly implement and deploy new processes, to enable ad-hoc modifications of single process instances at runtime (e.g., to add, delete or shift process steps), and to support process schema evolution with instance migration, i.e., to propagate process schema changes to already running instances. These requirements must be met without affecting process consistency and by preserving the robustness of the process management system. In this paper we describe how these challenges have been addressed and solved in the ADEPT2 Process Management System. Our overall vision is to provide a next generation process management technology which can be used in a variety of application domains

    Issues in Process Variants Mining

    Get PDF
    In today's dynamic business world economic success of an enterprise increasingly depends on its ability to react to internal and external changes in a quick and flexible way. In response to this need, process-aware information systems (PAIS) emerged, which support the modeling, orchestration and monitoring of business processes and services respectively. Recently, a new generation of flexible PAIS was introduced, which additionally allows for dynamic process and service changes. This, in turn, will lead to a large number of process variants, which are created from the same original process model, but might slightly differ from each other. This paper deals with issues related to the mining of such process variant collections. Our overall goal is to learn from process changes and to merge the resulting model variants into a generic process model in the best possible way. By adopting this generic process model in the PAIS, future cost of process change and need for process adaptations will decrease. Finally, we compare our approach with existing process mining techniques, and show that process variants mining is additionally needed to learn from process changes

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    Utilising ontology-based modelling for learning content management

    Get PDF
    Learning content management needs to support a variety of open, multi-format Web-based software applications. We propose multidimensional, model-based semantic annotation as a way to support the management of access to and change of learning content. We introduce an information architecture model as the central contribution that supports multi-layered learning content structures. We discuss interactive query access, but also change management for multi-layered learning content management. An ontology-enhanced traceability approach is the solution
    • 

    corecore