

Using process mining to learn from process changes in
evolutionary systems
Citation for published version (APA):
Günther, C. W., Rinderle-Ma, S., Reichert, M., Aalst, van der, W. M. P., & Recker, J. (2006). Using process
mining to learn from process changes in evolutionary systems. (BETA publicatie : working papers; Vol. 192).
Eindhoven: Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 02. Jul. 2019

https://research.tue.nl/en/publications/using-process-mining-to-learn-from-process-changes-in-evolutionary-systems(a6605b47-d402-4959-9c59-caef9e11e17d).html

Using Process Mining to Learn from Process

Changes in Evolutionary Systems

Christian W. Günther1, Stefanie Rinderle2,
Manfred Reichert3, Wil van der Aalst1,4, Jan Recker4

1 Eindhoven University of Technology, The Netherlands
{c.w.gunther, w.m.p.v.d.aalst}@tm.tue.nl

2 University of Ulm, Germany
stefanie.rinderle@uni-ulm.de

3 University of Twente, The Netherlands
m.u.reichert@ewi.utwente.nl

4 Queensland University of Technology, Australia
j.recker@qut.edu.au

Abstract. Traditional information systems struggle with the require-
ment to provide flexibility and process support while still enforcing some
degree of control. Accordingly, adaptive process management systems
(PMSs) have emerged that provide some flexibility by enabling dynamic
process changes during runtime. Based on the assumption that these
process changes are recorded explicitly, we present two techniques for
mining change logs in adaptive PMSs; i.e., we do not only analyze the
execution logs of the operational processes, but also consider the adapta-
tions made at the process instance level. The change processes discovered
through process mining provide an aggregated overview of all changes
that happened so far. This, in turn, can serve as basis for integrating
the extrinsic drivers of process change (i.e., the stimuli for flexibility)
with existing process adaptation approaches (i.e., the intrinsic change
mechanisms). Using process mining as an analysis tool we show in this
paper how better support can be provided for truly flexible processes by
understanding when and why process changes become necessary.

1 Introduction

The notion of flexibility has emerged as a pivotal research topic in Business
Process Management (BPM) over the last years [7, 8, 34, 48]. The need for more
flexibility, in general, stems from the observation that organisations often face
continuous and unprecedented changes in their business environment [32, 51].
Such disturbances and perturbations of business routines need to be reflected
within the business processes, in the sense that these processes as well as their
supporting information systems need to be quickly adaptable to environmental
changes.

In this context, business process flexibility denotes the capability to reflect
externally triggered change by modifying only those aspects of a process that

need to be changed, while keeping the other parts stable; i.e., the ability to
change or evolve the process without completely replacing it [33]. In particular,
we have to deal with the essential requirement for maintaining a close “fit”
between the real-world business processes and the workflows as supported by
Process Management Systems (PMSs), the current generation of which is known
under the label of Process-aware Information Systems (PAISs) [20]. As real-world
processes are continuously subjected to disruptions, deviations and changes, their
supporting systems should provide sufficient flexibility and quick adaptability in
order to cope with process changes [48, 8].

1.1 Problem Statement

Recently, many efforts have been undertaken to make PAISs more flexible and
several approaches for adaptive process management have emerged (for an over-
view see [38]), resulting in more flexible PAISs (like ADEPT [34], CBRFlow
[55] or WASA [57]). The basic idea behind these approaches is to enable users
to dynamically evolve or adapt process schemas such that they fit to changed
real-world situations. More precisely, adaptive PMSs support dynamic changes
of different process aspects (e.g., control and data flow) at different levels (e.g.,
the process instance and the process type level). In particular, ad-hoc changes
conducted at the process instance level (e.g., to add, delete or move process steps
during runtime) allow to flexibly adapt single process instances to exceptional or
changing situations [34]. Usually, such ad-hoc deviations are recorded in change
logs (see [39]), which results in more meaningful log information when compared
to traditional PAISs.5

So far, adaptive process management technology has not addressed the fun-
damental question what we can learn from the additional log information (e.g.,
how to derive an optimized process schema from a collection of individually
adapted process instances [52]). In principle, process mining techniques [2] of-
fer promising perspectives for this. However, current process mining algorithms
have not been designed with adaptive processes in mind, but have focused on the
analysis of pure execution logs instead (i.e., taking a behavioral and operational
perspective).

Obviously, mining ad-hoc changes in adaptive PMSs offers promising per-
spectives as well. By enhancing adaptive processes with advanced mining tech-
niques we aim at a PMS framework, which enables full process life cycle support.
However, the practical implementation of such a framework in a coherent archi-
tecture, let alone the integration of process mining and adaptive processes is far
from trivial. In particular, we have to deal with the following challenges: First,
we have to determine which runtime information about ad-hoc deviations has
to be logged and how this information should be represented in order to achieve

5 PAIS which do not provide support for ad-hoc changes are usually bypassed in
exceptional situations (e.g., by executing unplanned activities outside the scope of
the PAIS). Consequently, the PAIS is unaware of the performed deviations and thus
unable to log (let alone analyze) information about them.

optimal mining results. Second, we have to develop advanced mining techniques
that utilize change logs in addition to pure execution logs. The concurrent con-
sideration of execution logs and change logs in the context of change mining
facilitates learning more about the context and the reasons of a change. Third,
we have to integrate the new mining techniques with existing adaptive process
management technology. This requires the provision of integrated tool support
allowing us to evaluate our framework and to compare different mining variants.

1.2 Contribution

In our previous work, with ADEPT [34] and ProM [19] we have developed two
separate frameworks for adaptive processes and for process mining respectively.
While ADEPT has focused on the support of dynamic process changes at dif-
ferent levels, ProM has offered a wide variety of process mining techniques, e.g.,
for discovering a Petri Net model or an Event Process Chain (EPC) describing
the behavior observed in an execution log. However, so far no specific ProM
extension has been developed to mine for process changes.

This paper contributes new techniques for the mining of ad-hoc process
changes in adaptive PMSs and discusses the challenges arising in this context. We
first describe what constitutes a process change, how process change information
can be represented in respective logs, and how these change logs have to be mined
to deliver insights into the scope and context of changes. This enables us, for
example, to better understand how users deviate from predefined processes. We
import change logs from adaptive PMSs like ADEPT and introduce two mining
approaches for discovering change knowledge from these logs. As result, we ob-
tain an abstract change process represented as a Petri Net model. This abstract
process reflects all changes applied to the instances of a particular process type
so far. More precisely, a change process comprises change operations (as process
steps) and the causal relations between them. We introduce two different mining
approaches which are based on different assumptions and techniques. The first
approach uses multi–phase mining, but utilizes further information about the se-
mantics of change operations (i.e., commutativity) in order to optimize results.
The second approach maps change logs to labeled state transition systems, and
then constructs a compact Petri Net model from it.

We additionally incorporate in this paper information about process context
in order to better understand why process changes occur and what causes them
(i.e., the semantic reasons for a change). Simply put, context is the relevant
subset of the entire situation of a business process that requires it to adapt to
potential changes. We introduce a basic notion of context and show how con-
text information can be analyzed using machine learning techniques. Altogether,
the developed mining techniques provide valuable knowledge about the process
changes happened so far, which serves as basis for deriving process optimizations.

The remainder of this paper is organized as follows: Section 2 provides back-
ground information on process mining and adaptive process management. In
Section 3 we present a general framework for integrating these two technologies.
Section 4 deals with the representation of process changes and corresponding

change logs. Based on these considerations, Section 5 introduces a format for
representing change logs, and discusses to which degree existing mining tech-
niques can be applied to these logs and which limitations exist in this context.
In Section 6 we introduce two new techniques for mining change logs along a run-
ning example and give a comparison of them. Section 7 discusses how learning
mechanisms can be devised based on a comprehensive understanding of the con-
text of business processes. In Section 8 we present details of our proof-of-concept
implementation and show which tool support is provided. Section 9 discusses re-
lated work and Section 10 concludes with a summary and an outlook.

2 Background Information

The ideas and approaches presented in this paper are based on the applica-
tion and integration of existing technologies, namely process mining analysis
techniques and adaptive process management. In order to understand the impli-
cations and leverages of their combination, it is helpful to gain a basic under-
standing. Section 2.1 introduces process mining, followed by an introduction to
adaptive process management in Section 2.2.

2.1 Process Mining

Although the focus of this paper is on analyzing change processes in the context
of adaptive process management systems, process mining is applicable to a much
wider range of information systems. There are different kinds of Process-Aware
Information Systems (PAISs) that produce event logs recording events. Exam-
ples are classical workflow management systems (e.g. Staffware), ERP systems
(e.g. SAP), case handling systems (e.g. FLOWer), PDM systems (e.g. Wind-
chill), CRM systems (e.g. Microsoft Dynamics CRM), middleware (e.g. IBM’s
WebSphere), hospital information systems (e.g. Chipsoft), etc. These systems all
provide very detailed information about the activities that have been executed.
The goal of process mining is to extract information (e.g., process models, or
schemas) from these logs, i.e., process mining describes a family of a-posteriori
analysis techniques exploiting the information recorded in event logs. Typically,
respective approaches assume that it is possible to sequentially record events
such that each event refers to an activity (i.e., a well-defined step in the process)
and is related to a particular case (i.e., a process instance). Furthermore, there
are other mining techniques using additional information such as the performer
or originator of the event (i.e., the person / resource executing or initiating the
activity), the timestamp of the event, or data elements recorded with the event
(e.g., the size of an order).

Process mining addresses the problem that most “process owners” have very
limited information about what is actually happening in their organization. In
practice there is often a significant gap between what is predefined or supposed
to happen, and what actually happens. Only a concise assessment of the orga-
nizational reality, which process mining strives to deliver, can help in verifying
process schemas, and ultimately be used in a process redesign effort.

models

analyzes

records

events, e.g.,

messages,

transactions,

etc.

specifies

configures

implements

analyzes

supports/

controls

people machines

organizations

components

business processes

Fig. 1. Overview showing three types of process mining: (1) Discovery, (2) Confor-
mance, and (3) Extension.

The idea of process mining is to discover, monitor and improve real processes
(i.e., not assumed processes) by extracting knowledge from event logs. Clearly
process mining is relevant in a setting where much flexibility is allowed and/or
needed and therefore this is an important topic in this paper. The more ways
in which people and organizations can deviate, the more variability and the
more interesting it is to observe and analyze processes as they are executed. We
consider three basic types of process mining (cf. Figure 1):

– Discovery: There is no a-priori process schema, i.e., based on an event
log some schema is constructed. For example, using the alpha algorithm a
process schema can be discovered based on low-level events.

– Conformance: There is an a-priori process schema. This schema is used
to check if reality conforms to the schema. For example, there may be a
process schema indicating that purchase orders of more than one million
Euro require two checks. Another example is the checking of the four-eyes
principle. Conformance checking may be used to detect deviations, to locate
and explain these deviations, and to measure the severity of these deviations.

– Extension: There is an a-priori process schema. This schema is extended
with a new aspect or perspective, i.e., the goal is not to check conformance
but to enrich the schema. An example is the extension of a process schema
with performance data, i.e., some a-priori process schema is used to project
the bottlenecks on.

Traditionally, process mining has been focusing on discovery, i.e., deriving in-
formation about the original process schema, the organizational context, and
execution properties from enactment logs. An example of a technique address-
ing the control flow perspective is the alpha algorithm [2], which can construct
a Petri net model [15] describing the behavior observed in the event log. The

multi-phase mining approach [17] can be used to construct an Event-driven Pro-
cess Chain (EPC) based on similar information. However, process mining is not
limited to process schemas (i.e., control flow) and recent process mining tech-
niques are more and more focusing on other perspectives, e.g., the organizational
perspective or the data perspective. For example, there are approaches to extract
social networks from event logs and analyze them using social network analysis
[1]. This allows organizations to monitor how people and groups are working
together.

Conformance checking compares an a-priori schema with the observed behav-
ior as recorded in the log. In [43] it is shown how a process schema (e.g., a Petri
net) can be evaluated in the context of a log using metrics such as “fitness” (Is
the observed behavior possible according to the schema?) and “appropriateness”
(Is the schema “typical” for the observed behavior?). However, it is also possible
to check conformance based on organizational models, predefined business rules,
temporal formula’s, Quality of Service (QoS) definitions, etc.

There are different ways to extend a given process schema with additional
perspectives based on event logs. For this paper, decision mining [44] is the
most interesting technique. Decision mining, also referred to as decision point
analysis, aims at the detection of data dependencies that affect the routing of
a case. Starting from a process schema, one can analyze how data attributes
influence the choices made in the process based on past process executions.
Classical data mining techniques such as decision trees can be leveraged for this
purpose. The machine learning technique for inducing a decision tree from data
is called decision tree learning. A leaf node in the decision tree corresponds to
taking specific path, i.e, the equivalent of a decision in a process schema. The
splits in the decision tree are based on data values in the log, e.g., the values
appearing in all events of a case before the decision point is reached. Similarly,
the process schema can be extended with timing information (e.g., bottleneck
analysis).

At this point in time there are mature tools such as the ProM framework,
featuring an extensive set of analysis techniques which can be applied to real
process enactments while covering the whole spectrum depicted in Figure 1 [19].
Any of the analysis techniques of ProM can be applied to change logs (i.e., event
logs in the context of adaptive process management systems). Moreover, this
paper also presents two new process mining techniques exploiting the particu-
larities of change logs.

2.2 Adaptive Process Management

A key requirement for BPM technology becoming more and more important in
practice is (runtime) adaptivity; i.e., the ability of the PMS to support (dy-
namic) changes at the process type as well as the process instance level. Sev-
eral approaches have been discussed in literature (e.g. [57, 34, 9, 22, 38]), and a
number of prototypes demonstrating the high potential of adaptive PMS have
emerged [36, 57]. With the introduction of such adaptive PMSs we obtain addi-
tional runtime information about process executions not explicitly captured in

current execution logs. This information can be useful in different context and
is usually managed in respective change logs. Change log entries may contain
information about the type of a change, the applied change operations and their
parameterizations, the time the change happened, etc.

Basically, process changes can take place at the type as well as the instance
level: Changes of single process instances may have to be carried out in an ad-hoc
manner (e.g., to deal with an exceptional situation) and must not affect system
robustness and consistency. Process type changes, in turn, must be quickly ac-
complished in order to adapt the PAIS to business process changes. The latter
could be triggered, for example, by analyzing the changes which were individu-
ally applied to a collection of process instances. In the context of long-running
business processes, process type changes may additionally require the migration
of thousands of instances to the new process schema. Important requirements
are to perform respective migrations on-the-fly, to preserve correctness, and to
avoid performance penalties.

PMS frameworks like ADEPT [34, 36] support both ad-hoc changes of sin-
gle process instances and the propagation of process type changes to running
instances. Examples of ad-hoc deviations from the prescribed process schema in-
clude the insertion, deletion, movement, or replacement of activities. In ADEPT,
such ad-hoc changes do not lead to an unstable system behavior, i.e., none of
the system guarantees achieved by formal checks at buildtime are violated due
to the dynamic change. ADEPT offers a complete set of operations for defining
instance changes at a high semantic level and ensures correctness by introducing
pre-/post-conditions for these operations. Finally, all complexity associated with
the adaptation of instance states, the remapping of activity parameters, or the
problem of missing data (e.g., due to activity deletions) is hidden from users.
In order to deal with business process changes ADEPT also enables quick and
efficient schema adaptations at the process type level. In particular, it is possible
to propagate type changes to running instances (of this type). In this context,
comprehensive correctness criteria are provided for deciding on the compliance
of process instances with a modified process type schema. ADEPT enables effi-
cient compliance checks and allows to quickly and correctly adapt the states of
instance when migrating them to the new schema.

3 A Framework for Integrating Process Mining and

Adaptive Process Management

Both process mining and adaptive process management address fundamental
issues that are widely prevalent in the current practice of BPM implementations.
These problems stem from the fact that the design, enactment, and analysis
of a business process are commonly interpreted, and implemented, as detached
phases.

Although both techniques are valuable on their own, we argue that their full
potential can only be harnessed by tight integration. While process mining can
deliver concrete and reliable information about how process schemas need to be

changed, adaptive PMSs provide the tools to safely and conveniently implement
these changes. Thus, we propose the development of process mining techniques,
integrated into adaptive PMSs as a feedback cycle. On the other side, adaptive
PMSs need to be equipped with functionality to exploit this feedback informa-
tion.

Adaptive Workflow

Process Mining

Context-aligned
changes / variants

Process Models <
refers to>

Process
Instantiation

Case
(data)

Context-
aware

adaptation
Enactment

Process
modelling

Continuous
adaptation

data
updates

Ad-hoc
adaptation

Enactment LogsChange Logs

Change analysis

Integrated analysis

Enactment analysis

Fig. 2. Integration of Process Mining and Adaptive Process Management

The framework depicted in Figure 2 illustrates how such an integration could
look like. Adaptive PMSs, visualized in the upper part of this model, operate on
pre-defined process schemas. The evolution of these schemas over time spawns
a set of process changes, i.e., results in multiple process variants. Like in every
PAIS, enactment logs are created, which record the sequence of activities ex-
ecuted for each case. On top of that, adaptive PMSs can additionally log the
sequence of change operations imposed on a process schema for every executed
case, producing a set of change logs. Process mining techniques that integrate
into such system in form of a feedback cycle may be positioned in one of three
major categories:

Change analysis: Process mining techniques from this category make use of
change log information, besides the original process schemas and their vari-
ants. One goal is to determine common and popular variants for each process
schema, which may be promoted to replace the original schema. Possible

ways to pursue this goal are through statistical analysis of changes or their
abstraction to higher-level schemas. From the initially used process schema
and a sequence of changes, it is possible to trace the evolution of a process
schema for each case. Based on this information, change analysis techniques
can derive abstract and aggregate representations of changes in a system.
These are valuable input for analysis and monitoring, and they can serve
as starting point for more involved analysis (e.g., determining the circum-
stances in which particular classes of change occur, and thus reasoning about
the driving forces for change).

Integrated analysis: This analysis uses both change and enactment logs in
a combined fashion. Possible applications in this category could perform a
context-aware categorization of changes as follows. Change process instances,
as found in the change logs, are first clustered into coherent groups, e.g. based
on the similarity of changes performed, or their environment. Subsequently,
change analysis techniques may be used to derive aggregate representations
of each cluster. Each choice in an aggregate change representation can then
be analyzed by comparing it with the state of each clustered case, i.e. the
values of case data objects at the time of change, as known from the original
process schema and the enactment logs. A decision-tree analysis of these
change clusters provides an excellent basis for guiding users in future process
adaptations, based on the peculiarities of their specific case.

Enactment analysis: Based solely on the inspection of enactment logs, tech-
niques in this category can pinpoint parts of a process schema which need to
be changed, e.g. paths having become obsolete. Traditional process mining
techniques like control flow mining and conformance checking can be adapted
with relative ease to provide valuable information in this context. For exam-
ple, conformance checking, i.e. determining the “fit” of the originally defined
process schema and the recorded enactment log, can show when a specific
alternative of a process schema has never been executed. Consequently, the
original process schema may be simplified by removing that part. Statistical
analysis of process enactment can also highlight process definitions, or vari-
ants thereof, which have been rarely used in practice. These often clutter the
user interface, by providing too many options, and they can become a main-
tenance burden over time. Removing (or hiding) them after a human review
can significantly improve the efficiency of a process management system.

These examples give only directions in which the development of suitable
process mining techniques may proceed. Of course, their concrete realization
depends on the nature of the system at hand. For example, it may be prefer-
able to present highlighted process schemas to a specialist before their deletion
or change, rather than having the system perform these tasks autonomously.
Also, some users may find it useful to have the system provide active assistance
in adapting a process definition, while others would prefer the system not to
intervene without their explicit request.

In every case, the change feedback cycle should provide and store extensive
history information, i.e. an explicit log of actions performed in the feedback

cycle, and their intermediate results. This enables users and administrators to
trace the motivation for a change, and thereby to understand the system. Also,
in the long run it allows both administration staff to supervise the progress of
autonomous adaption in the system, and enable the system itself to monitor its
own performance.

When such feedback cycle is designed and implemented consistently, the re-
sulting system is able to provide user guidance and autonomous administration
to an unprecedented degree. Moreover, the tight integration of adaptive PMSs
and process mining technologies provides a powerful foundation, on which a new
generation of truly intelligent and increasingly autonomous PAISs can be built.

4 Anatomy of Change

Adaptive PMSs do not only create process enactment logs, but they also log
the sequence of changes applied to a process schema. This section introduces
the basics of these change logs. We first discuss the nature of changes and then
introduce MXML as general format for event logs. Based on this we show how
change logs can be mapped onto the MXML format. MXML-based log files
constitute the basic input for the mining approaches described in Section 6.

Logically, a process change is accomplished by applying a sequence of change
operations to the respective process schema [34]. The question is how to represent
this change information within change logs. In principle, the information to be
logged can be represented in different ways. The goal must be to find an adequate
representation and appropriate analysis techniques to support the three cases
described in the previous section.

Independent from the applied (high-level) change operations (e.g., adding,
deleting or moving activities), for example, we could translate the change into
a set of basic change primitives (i.e., basic graph primitives like addNode or
deleteEdge). This still would enable us to restore process structures, but also
result in a loss of information about change semantics and therefore limit trace-
ability and change analysis. As an alternative we can explicitly store the applied
high-level change operations, which combine basic primitives in a certain way.

High-level change operations are based on formal pre-/post-conditions. This
enables the PMS to guarantee schema correctness when changes are applied. Fur-
ther, high-level change operations can be combined to change transactions. This
becomes necessary, for example, if the application of a high-level change opera-
tion leads to an incorrect process schema and this can be overcome by conducting
concomitant changes. Generally, during runtime several change transactions may
be applied to a particular process instance. All change transactions related to a
process instance are stored in the respective change process instance (for details
see [37]).

Change operations modify a process schema, either by altering the set of
activities or by changing their ordering relations. Thus, each application of a
change operation to a process schema results in another, different schema. Pro-
cess schemas can be defined in a number of different notations, e.g. EPCs, YAWL,

BPEL, BPMN, UML Activity Diagrams, or proprietary notations for systems
like Staffware and FLOWer. In this paper we use a simplified notation borrowed
from the ADEPT system and assume a transition system for formalization and
expressing semantics. However, it is important to point out that the properties
and approaches introduced in this paper are applicable to any process modelling
notation. Also, tools like ProM can be used to handle a large number of different
process modelling notations and translate between them.

A process schema can be described formally without selecting a particular
notation, i.e., we abstract from the concrete operators of the process modeling
language and only describe the set of activities and possible behavior.

Definition 1 (Process Schema). A process schema is a tuple PS = (A, TS)
where

– A is a set of activities
– TS = (S, T, sstart, send) is a labeled transition system, where S is the set of

reachable states, T ⊆ S × (A∪ {τ})× S is the transition relation, sstart ∈ S

is the initial state, and send ∈ S is the final state.

P is the set of all process schemas.

The behavior of a process is described in terms of a transition system TS

with some initial state sstart and some final state send. Note that any process
modeling language can be mapped onto a labeled transition system. The transi-
tion system does not only define the set of possible traces (i.e., execution orders);
it also captures the moment of choice. Moreover, it allows for “silent steps”. A
silent step, denoted by τ , is an activity within the system which changes the
state of the process, but is not observable in the execution logs. This way we
can distinguish between different types of choices (internal/external or control-
lable/uncontrollable) [14]. Note that send denotes the correct, and thus desirable,
final state of a process. If the process schema is incorrectly specified or executed,
there may be further possible final states. However, we take the correctness of
process schemas as precondition, and therefore the assumption of a single fi-
nal state is valid. A simple example of a process schema is shown in Figure 3,
consisting of a sequence of five activities (Enter Order, Inform Patient, Prepare
Patient, Examine Patient, and Deliver Report).

Change logs can now be formally defined as follows:

Definition 2 (Change Log). Let P be the set of possible process schemas and
C the set of possible process changes, i.e., any process change ∆ is an element
of C. A change log instance σ is a sequence of process changes performed on
some initial process schema PS, i.e., σ ∈ C∗ (where C∗ is the powerset of C). A
change log L is a set of change log instances, i.e., L ⊆ C∗.

Note that a change log is defined as a set of instances. It would be more
natural to think of a log as a multi-set (i.e., bag) of instances because the same
sequence of changes may appear multiple times in a log. We abstract from the
number of times the same sequence occurs in the change log for the sake of

simplicity, because in this paper we only consider the presence of changes and
not their frequency. Note that in tools like ProM the frequency definitely plays
a role and is used to deal with noise and to calculate probabilities.

Figure 3 shows an example of a change log in column b), which is composed
of nine change log instances clI1 – clI9. The first change log instance clI1, for
example, consists of two consecutive change operations op1 and op2.

Changes can be characterized as operations, which are transforming one pro-
cess schema into another one. The same holds for sequences of change operations,
i.e. change log instances. This can be formalized as follows:

Definition 3 (Change in Process Schemas). Let PS, PS′ ∈ P be two pro-
cess schemas, let ∆ ∈ C be a process change, and σ = 〈∆1, ∆2, . . .∆n〉 ∈ C∗ be a
change log instance.

– PS[∆〉 if and only if ∆ is applicable to PS, i.e., ∆ is possible in PS.
– PS[∆〉PS′ if and only if ∆ is applicable to PS (i.e., PS[∆〉) and PS′ is the

process schema resulting from the application of ∆ to PS.
– PS[σ〉PS′ if and only if there are process schemas PS1, PS2, . . . PSn+1 ∈ P

with PS = PS1, PS′ = PSn+1, and for all 1 ≤ i ≤ n: PSi[σ〉PSi+1.
– PS[σ〉 if and only if there is a PS′ ∈ P such that PS[σ〉PS′.

The applicability of a change operation to a specific process schema is defined
in Table 1, and is largely dictated by common sense. For example, an activity
X can only be inserted into a schema PS, between the node sets A and B, if
these node sets are indeed contained in PS and the activity X is not already
contained in PS. Note that we do not allow duplicate tasks, i.e. an activity can
be contained only once in a process schema.

For an example, consider the first process instance I1, and its associated
change log instance cLI1, in Figure 3 . The first change performed, op1, is insert-
ing a new activity “Lab test” between activities “Examine patient” and “Deliver
report”. Obviously, this change is applicable to the original process schema (the
horizontal sequence of five activities), the resulting process schema being a se-
quence of six activities including “Lab test”. The second change operation, op2,
moves the second activity “Inform Patient” one position to the right, between
activities “Prepare patient” and “Examine patient”. This change is applicable
to the process schema resulting from change operation op1, which in turn makes
the sequence cLI1 applicable to the original process schema.

Any change log refers to a specific process schema, which has been the subject
of change. Thus, whether a specific change log is valid can only be determined
by also taking into account the original process schema:

Definition 4 (Valid Change Log). Let PS ∈ P be a process schema and
L ⊆ C∗ a change log for PS. L is valid with respect to PS if for all σ ∈ L:
PS[σ〉.

Figure 3 shows an example for a valid change log in column b), consisting of
nine change log instances cLI1 – cLI9, which are all applicable to the original
process schema.

a) Process Instances b) Change Log Instances

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I1 : Lab test

Enter
order

cLI1 = (
op1:=insert(PS, Lab test, Examine Patient, Deliver report),
op2:=move(PS, Inform Patient, Prepare Patient, Examine Patient))

cLI2 = (
op3:=insert(PS, xRay, Inform Patient, Prepare Patient),
op4:=delete(PS, xRay),
op5:=delete(PS, Inform Patient),
op6:=insert(PS, Inform Patient, Examine Patient, Deliver Report),
op2 =move(PS, Inform Patient, Prepare Patient, Examine Patient),
op1 =insert(PS, Lab Test, Examine Patient, Deliver Report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I2 :

Enter
order

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I3 : Lab test

Enter
order

cLI3 = (
op2 =move(PS, Inform Patient, Prepare Patient, Examine Patient),
op1 =insert(PS, Lab test, Examine Patient, Deliver report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I4 : Lab test

Enter
order

cLI4 = (
op1 =insert(PS, Lab test, Examine Patient, Deliver report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I5:

Enter
order

cLI5 = (
op1 =insert(PS, Lab test, Examine Patient, Deliver report,
op7:=delete(PS, Deliver report))

Lab test

Lab test

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I6 : Lab test

Enter
order

cLI6 = (
op1 =insert(PS, Lab test, Examine Patient, Deliver report),
op2 =move(PS, Inform Patient, Prepare Patient, Examine

Patient),
op7 =delete(PS, Deliver report))

cLI7 = (
op8:= insert(PS, xRay, Examine Patient, Deliver report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I7 :

Enter
order

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I8 : Lab test

Enter
order

cLI8 = (
op2 =move(PS, Inform Patient, Prepare Patient, Examine Patient),
op8 =insert(PS, xRay, Examine patient, Deliver report),
op9:=insert(PS, Lab test, xRay, Deliver report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I9: Lab test

Enter
order

cLI9 = (
op1 =insert(PS, Lab test, Examine Patient, Deliver report),
op10:=insert(PS, xRay, Examine patient, Lab test))

xRay

xRay

xRay

Fig. 3. Modified Process Instances and Associated Change Log Instances

In the following we represent change log entries by means of high-level change
operations since we want to exploit their semantical content (see Figure 3 for
an example). However, basically, the mining approaches introduced later can be
adapted to change primitives as well. Table 1 presents examples of high-level

change operations on process schemas which can be used at the process type
as well as at the process instance level to create or modify process schemas.
Although the change operations are exemplarily defined on the ADEPT meta
model (see [34] for details) they are generic in the sense that they can be easily
transferred to other meta models as well (e.g. [35]).

Table 1. Examples of High-Level Change Operations on Process Schemas

Change Operation opType subject paramList
∆ Applied to S

insert(PS, X, A, B, [sc]) insert X PS, A, B, [sc]
Effects on PS: inserts activity X between node sets A and B
(it is a conditional insert if sc is specified)
Preconditions: node sets A and B must exist in PS, and X must not be contained
in PS yet (i.e., no duplicate activities!)

delete(PS, X) delete X PS
Effects on PS: deletes activity X from PS
Preconditions: activity X must be contained exactly once in PS

move(PS, X, A, B, [sc]) move X PS, A, B, [sc]
Effects on PS: moves activity X from its original position between node sets A and B
(it is a conditional insert if sc is specified)
Preconditions: activity X and node sets A and B must be contained exactly once in PS

replace(PS, X, Y) replace X Y
Effects on PS: replaces activity X by activity Y
Preconditions: activity X must be contained exactly once in PS, and activities X and Y
must be of the same type (e.g., have the same input / output parameters)

5 Applying Existing Process Mining Techniques

Change logs bear a strong structural resemblance to regular process enactment
logs. They are essentially also sequences of events which have occurred in the
realm of a process, and in a specific case. As shown in Figure 4, mining the meta-
process of change in an adaptive PMS is also strikingly similar to traditional
process mining. Both start from comparably structured log files and strive to
derive a model describing the causal relations between observed activities.

This similarity between traditional process mining (i.e. focusing on the execu-
tion control flow) and change mining raises the question of whether well-known
process mining techniques can be applied to change logs, and if so, how mean-
ingful the results yielded by them are in this context.

Section 5.1 introduces the MXML format for storing event logs, and defines
a mapping of change logs to MXML. Once mapped to MXML, change logs can
be analyzed by regular process mining techniques. Thus, Section 5.2 investigates

Adaptive PMS

Enactment

Logs

Change

Logs

Process Mining

Change Mining

Process

Schema

Change

Process

Schema

Execution

Change

Fig. 4. Traditional Process Mining and Change Mining

the usefulness of traditional control flow mining techniques in the context of
change logs.

5.1 Change Logs

The MXML Format for Process Event Logs MXML is an XML-based
format for representing and storing event log data, which is supported by the
largest subset of process mining tools, such as ProM. While focusing on the
core information needed for process mining, the format reserves generic fields
for extra information potentially provided by a PAIS. Due to its outstanding
tool support and extensibility, the MXML format has been selected for storing
change log information in our approach.

The root node of a MXML document is a WorkflowLog. It represents a log
file, i.e. a logical collection of events having been derived from one system. Ev-
ery workflow log can potentially contain one Source element, which is used to
describe that system the log has been imported from. Apart from the source
descriptor, a workflow log can contain an arbitrary number of Processes as child
elements, each grouping events that occurred during the execution of a specific
process definition. The single executions of a process are represented by child
elements of type ProcessInstance, each representing one case in the system.

Finally, process instances each group an arbitrary number of AuditTrailEn-
try elements as child elements. Each of these child elements refers to one specific
event which has occurred in the system. Every audit trail entry must contain at
least two child elements: The WorkflowModelElement describes the abstract pro-
cess definition element to which the event refers, e.g. the name of the activity
that was executed. The second mandatory element is the EventType, describ-
ing the nature of the event, e.g. whether a task was scheduled, completed, etc.
The optional child elements of an audit trail entry are the Timestamp and the
Originator. The timestamp holds the exact date and time of when the event
has occurred, while the originator identifies the resource, e.g. person, which has
triggered the event.

To enable the flexible extension of this format with extra information, all
mentioned elements (except the child elements of AuditTrailEntry) can also have
a generic Data child element. The data element groups an arbitrary number of
Attributes, which are key-value pairs of strings. The following subsection de-
scribes the mapping of change log information to MXML, which is heavily based
on using custom attributes of this sort.

Mapping Change Log Information to MXML With respect to an adaptive
PAIS, change log information can be structured on a number of different levels.
Most of all, change events can be grouped by the process definition they address.
As we are focusing on changes applied to cases, i.e. executed instances of a
process definition, the change events referring to one process can be further
subdivided with respect to the specific case in which they were applied (i.e. into
change process instances). Finally, groups of change events on a case level are
naturally sorted by the order of their occurrence.

The described structure of change logs fits well into the common organiza-
tion of enactment logs, with instance traces then corresponding to consecutive
changes of a process schema, in contrast to its execution. Thus, change logs can
be mapped to the MXML format with minor modifications. Listing 1 shows an
MXML audit trail entry describing the insertion of a task “Lab Test” into a
process schema, as e.g. seen for Instance I1 in Figure 3.

<AuditTrailEntry>

<Data>
<Attribute name="CHANGE.postset">Deliver_report</Attribute>
<Attribute name="CHANGE.type">INSERT</Attribute>

<Attribute name="CHANGE.subject">Lab_test</Attribute>
<Attribute name="CHANGE.rationale">Ensure that blood values

are within specs.</Attribute>
<Attribute name="CHANGE.preset">Examine_patient</Attribute>

</Data>

<WorkflowModelElement>INSERT.Lab_test</WorkflowModelElement>
<EventType>complete</EventType>

<Originator>N.E.Body</Originator>
</AuditTrailEntry>

Listing 1: Example of a change event in MXML.

Change operations are characterized by the type (e.g., “INSERT”) of change,
the subject which has been primarily affected (e.g., the inserted task), and the
syntactical context of the change. This syntactical context contains the change
operation’s pre- and post-set, referring to adjacent process schema elements that
are either directly preceding or following the change subject in the process defi-
nition. These specific change operation properties are not covered by the MXML
format, therefore they are stored as attributes in the “Data” field. The set of
attributes for a change event is further extended by an optional rationale field,
storing a human-readable reason, or incentive, for this particular change opera-
tion.

The originator field is used for the person having applied the respective
change, while the timestamp field obviously describes the concise date and time
of occurrence. Change events have the event type “complete” by default, be-
cause they can be interpreted as atomic operations. In order to retain backward
compatibility of MXML change logs with traditional process mining algorithms,
the workflow model element needs to be specified for each change event. As the
change process does not follow a predefined process schema, this information is

not available. Thus, a concatenation of change type and subject is used for the
workflow model element field.

Once the change log information is mapped and converted to MXML, it
can be readily mined by any process mining algorithm in the ProM framework.
The next section investigates the appropriateness of traditional process mining
algorithms in the context of change logs.

5.2 Evaluation of Existing Mining Techniques

As discussed in the previous section, mapping process change logs to the existing
MXML format for execution logs enables the use of existing mining techniques,
such as those implemented within the ProM framework, also for mining change
logs. The question is how “well” these algorithms perform when being applied
to change logs. We have evaluated a selection of mining algorithms implemented
within ProM with respect to change log mining.

First of all, we extended the ADEPT demonstrator by automatic generation
and export of change logs [53]. When generating change logs, users can specify
how many process instances are to be modified and how often single change
operations or change sequences shall occur6. The evaluation itself was carried
out based on two sample processes of different complexity [53].

To be able to compare the resulting change processes produced by the differ-
ent mining algorithms afterwards we need to specify respective quality criteria:
The most important criterion is how ”well” the change process reflects the actual
dependencies between change operations. As for process instance I2 depicted in
Figure 3, for example, change operation op4 depends on previous change opera-
tion op3. This dependency should be reflected as a sequence op3 −→ op3 within
the change process. Contrary, non-existing dependencies between change opera-
tions should not be reflected as sequences, i.e., changes which do not depend on
each other should be ordered in parallel within the change process.

α Algorithm: When mostly similar changes are applied to the process instances
(i.e., low variation within the applied change operations) the α algorithm is
able to detect actually existing dependencies between changes. However, the α

algorithm also generates dependencies between changes which do not exist in
reality. This is caused by their order within the change logs. If more and more
different change operations are applied, the resulting change process becomes
less meaningful, i.e., no conclusions about dependencies between changes can be
drawn anymore.

Multi-Phase Miner: This algorithm first represents the change operations
which have been observed for each process instance separately. However, at this
instance level the Multi-Phase Miner only produces change sequences. Within
the aggregated workflow graph the annotations reflecting the frequency of the
change operations may be helpful to find actual dependencies between the change
operations. As for the α algorithm, with increasing complexity of the changes

6 Within the evaluation we focused on insert, delete, and move operations.

and the processes the number of dependencies between changes which are not
existent in reality increases as well.

Heuristics Miner: The Heuristic Miner annotates the resulting change process
model with observation frequencies as well. Contrary to Multi Phase Mining, the
Heuristic Miner only displays the most frequent edges within the change process
such that it is less likely to include unnecessary dependencies. Furthermore, if
change operations are correctly detected as being independent they are displayed
in parallel. However, even the Heuristics Miner still produces unnecessary de-
pendencies between change operations. Furthermore, the detection of actually
existing dependencies based on frequencies can be expensive and even wrong.

The fundamental problem is that change is an activity far less observed in
an adaptive PMS than regular execution. Therefore, the completeness of change
logs, i.e. their property to record independent (i.e. parallel) activities in any
possible order, cannot be taken for granted due to their limited availability. This
has been simulated by using an incomplete subset of change logs, as can be
expected in a real-life situation.

Our experiments with applying existing process mining algorithms to change
logs have shown that their suitability in this context is limited. In the following
section, we explore the nature of change in an adaptive system and the associated
logs in more detail to find a more suitable means for detecting whether an
observed ordering relation is actually necessary.

6 Change Mining

In this section we describe novel approaches for analyzing change log informa-
tion, as found in adaptive PMSs. First, we explore the nature of change logs
in more detail. This is followed by an introduction to the concept of commu-
tativity between change operations in Section 6.2. This commutativity relation
provides the foundation for our first mining algorithm for change processes, as
introduced in Section 6.3. A second algorithm for mining change processes based
on the theory of regions is presented in Section 6.4. Finally, Section 6.5 compares
both approaches.

6.1 Motivation: Characterization of Change Logs

Change logs, in contrast to regular enactment logs, do not describe the execution
of a defined process. This is obvious from the fact that, if the set of potential
changes would have been known in advance, then these changes could have al-
ready been incorporated in the process schema (making dynamic change obso-
lete). Thus, change logs must be interpreted as emerging sequences of activities
which are taken from a set of change operations.

In Section 5.1 it has been defined that each change operation refers to the
original process schema through three associations, namely the subject, pre-, and
post-set of the change. As all these three associations can theoretically be bound

to any subset from the original process schema’s set of activities7, the set of
possible change operations grows exponentially with the number of activities
in the original process schema. This situation is fairly different from mining a
regular process schema, where the number of activities is usually rather limited
(e.g., up to 50–100 activities). Hence, the mining of change processes poses an
interesting challenge.

Summarizing the above characteristics, we can describe the meta-process of
changing a process schema as a highly unstructured process, potentially involving
a large number of distinct activities. These properties, when faced by a process
mining algorithm, typically lead to overly precise and confusing “spaghetti-like”
models. In order to come to a more compact representation of change processes, it
is helpful to abstract from a certain subset of ordering relations between change
operations.

When performing process mining on enactment logs (i.e., the classical appli-
cation domain of process mining), the actual state of the mined process is treated
like a “black box”. This is a result of the nature of enactment logs, which typ-
ically only indicate transitions in the process, i.e. the execution of activities.
However, the information contained in change logs allows to trace the state of
the change process, which is indeed defined by the process schema that is sub-
ject to change. Moreover, one can compare the effects of different (sequences of)
change operations. From that, it becomes possible to explicitly detect whether
two consecutive change operations can also be executed in the reverse order
without changing the resulting state.

The next section introduces the concept of commutativity between change
operations, which is used to reduce the number of ordering relations by taking
into account the semantic implications of change events. Since the order of com-
mutative change operations does not matter, we can abstract from the actually
observed sequences thus simplifying the resulting model.

6.2 Commutative and Dependent Change Operations

When traditional process mining algorithms are applied to change logs, they
often return very unstructured, “spaghetti-like” models of the change process
(cf. Section 5.2). This problem is due to a large number of ordering relations
which do not reflect actual dependencies between change operations. The concept
of commutativity is an effective tool for determining, whether there indeed exists
a causal relation between two consecutive change operations.

As it has been introduced in Section 4 (cf. Definition 3), change operations
(and sequences thereof) can be characterized as transforming one process schema
into another one. Thus, in order to compare sequences of change operations, and
to derive ordering relations between these changes, it is helpful to define an
equivalence relation for process schemas.

7 Here we assume that the subset describing the subject field is limited to a size of
one.

Definition 5 (Equivalent Process Schemas). Let ≡ be some equivalence
relation. For PS1, PS2 ∈ P : PS1 ≡ PS2 if and only if PS1 and PS2 are
considered to be equivalent.

There exist many notions of process equivalence. The weakest notion of equiv-
alence is trace equivalence [23, 27, 38], which regards two process schemas as
equivalent if the sets of observable traces they can execute are identical. Since
the number of traces a process schema can generate may be infinite, such com-
parison may be complicated. Moreover, since trace equivalence is limited to com-
paring traces, it fails to correctly capture the moment at which choice occurs in
a process. For example, two process schemas may generate the same set of two
traces {ABC, ABD}. However, the process may be very different with respect
to the moment of choice, i.e. the first process may already have a choice after A

to execute either BC or BD, while the second process has a choice between C

and D just after B.

Branching bisimilarity is one example of an equivalence, which can correctly
capture this moment of choice. For a comparison of branching bisimilarity and
further equivalences the reader is referred to [24]. In the context of this paper,
we abstract from a concrete notion of equivalence, as the approach described
can be combined with different process modeling notations and different notions
of equivalence.

Based on the notion of process equivalence we can now define the concept of
commutativity between change operations.

Definition 6 (Commutativity of Changes). Let PS ∈ P be a process schema,
and let ∆1 and ∆2 be two process changes. ∆1 and ∆2 are commutative in PS

if and only if:

– There exist PS1, PS2 ∈ P such that PS[∆1〉PS1 and PS1[∆2〉PS2,

– There exist PS3, PS4 ∈ P such that PS[∆2〉PS3 and PS3[∆1〉PS4,

– PS2 ≡ PS4.

Two change operations are commutative if they have exactly the same effect
on a process schema, regardless of the order in which they are applied. If two
change operations are not commutative, we regard them as dependent, i.e., the
effect of the second change depends on the first one. The concept of commuta-
tivity effectively captures the ordering relation between two consecutive change
operations. If two change operations are commutative according to Definition 6
they can be applied in any given order, therefore there exists no ordering relation
between them.

In the next subsection we demonstrate that existing process mining algo-
rithms can be enhanced with the concept of commutativity, thereby abstracting
from ordering relations that are irrelevant from a semantical point of view (i.e.,
their order does not influence the resulting process schema).

6.3 Approach 1: Enhancing Multi-phase Mining with
Commutativity

Mining change processes is to a large degree identical to mining regular processes
from enactment logs. Therefore, we have chosen not to develop an entirely new
algorithm, but rather to base our first approach on an existing process mining
technique. Among the available algorithms, the multi-phase algorithm [17, 18]
has been selected, which is very robust in handling fuzzy branching situations
(i.e., it can employ the “OR” semantics to split and join nodes, in cases where
neither “AND” nor “XOR” are suitable). Although we illustrate our approach
using a particular algorithm, it is important to note that any process mining
algorithm based on explicitly detecting causalities can be extended in this way
(e.g., also the different variants of the α-algorithm).

The multi-phase mining algorithm is able to construct basic workflow graphs,
Petri nets, and EPC models from the causality relations derived from the log. For
an in-depth description of this algorithm, the reader is referred to [17, 18]. The
basic idea of the multi-phase mining algorithm is to discover the process schema
in two steps. First a model is generated for each individual process instance.
Since there are no choices in a single instance, the model only needs to capture
causal dependencies. Using causality relations derived from observed execution
orders and the commutativity of specific change operations, it is relatively easy
to construct such instance models. In the second step these instance models are
aggregated to obtain an overall model for the entire set of change logs.

The causal relations for the multi-phase algorithm [17, 18] are derived from
the change log as follows. If a change operation A is followed by another change
B in at least one process instance, and no instance contains B followed by A,
the algorithm assumes a possible causal relation from A to B (i.e., “A may cause
B”). In the example log introduced in Figure 3, instance I2 features a change
operation deleting “Inform Patient” followed by another change, inserting the
same activity again. As no other instance contains these changes in reverse order,
a causal relation is established between them.

Figure 5 shows a Petri net model [15] of the change process mined from the
example change log instances in Figure 3. The detected causal relation between
deleting and inserting “Inform patient” is shown as a directed link between
these activities. Note that in order to give the change process explicit start and
end points, respective artificial activities have been added. Although the model
contains only seven activities, up to three of them can be executed concurrently.
Note further that the process is very flexible, i.e. all activities can potentially
be skipped. From the very small data basis given in Figure 3, where change log
instances hardly have common subsequences, this model delivers a high degree
of abstraction.

When two change operations are found to appear in both orders in the log, it
is assumed that they can be executed in any order, i.e. concurrently. An example
for this is inserting “xRay” and inserting “Lab Test”, which appear in this order
in instance I8, and in reverse order in instance I9. As a result, there is no causal

start

INSERT LabTest
(op1)

DELETE Deliver report
(op7)

end

INSERT xRay
(op3)

DELETE xRay
(op4)

DELETE Inform patient
(op5)

INSERT Inform patient
(op6)

MOVE Inform patient
(op2)

Fig. 5. Mined Example Process (Petri net notation)

relation, and thus no direct link between these change operations in the model
shown in Figure 5.

Apart from observed concurrency, as described above, we can introduce the
concept of commutativity-induced concurrency, using the notion of commuta-
tivity introduced in the previous subsection (cf. Definition 6). From the set of
observed causal relations, we can exclude causal relations between change oper-
ations that are commutative. For example, instance I2 features deleting activity
“xRay” directly followed by deleting “Inform Patient”. As no other process in-
stance contains these change operations in reverse order, a regular process mining
algorithm would establish a causal relation between them.

However, it is obvious that it makes no difference in which order two ac-
tivities are removed from a process schema. As the resulting process schemas
are identical, these two changes are commutative. Thus, we can safely discard a
causal relation between deleting “xRay” and deleting “Inform Patient”, which
is why there is no link in the resulting change process shown in Figure 5.

Commutativity-induced concurrency removes unnecessary causal relations,
i.e. those causal relations that do not reflect actual dependencies between change
operations. Extending the multi-phase mining algorithm with this concept sig-
nificantly improves the clarity and quality of the mined change process. If it
were not for commutativity-induced concurrency, every two change operations
would need to be observed in both orders to find them concurrent. This is espe-
cially significant in the context of change logs, since one can expect changes to

a process schema to happen far less frequently than the actual execution of the
schema, resulting in less log data.

6.4 Approach 2: Mining Change Processes with Regions

The second approach towards mining change logs uses an approach based on the
theory of regions [13] and exploits the fact that a sequence of changes defines a
state, i.e., the application of a sequence of changes to some initial process schema
results in another process schema. The observation that a sequence of changes
uniquely defines a state and the assumption that changes are “memoryless” (i.e.,
the process schema resulting after the change is assumed to capture all relevant
information) are used to build a transition system. Using the theory or regions,
this transition system can be mapped onto a process model (e.g., a Petri net)
describing the change process. To explain our second approach we first define
what a transition system is.

Definition 7 (Transition System). A (labeled) transition system is a tuple
TS = (S, E, T, si) where S is the set of states, E is the set of events, T ⊆
S × E × S is the transition relation, and si ∈ S is the initial state.

A example of a simple transition system is TS = (S, E, T, si) with S =
{a, b, c} (three states), E = {x, y, z} (three events), T = {(a, x, a), (a, y, b),
(b, z, a), (b, y, c), (c, z, b), (c, y, c)} (six transitions), and si = a. Figure 6 shows
this transition system graphically. The semantics of a transition system are sim-
ple, i.e., starting from the initial state, any path through the transition system
is possible. For example, 〈x, x, x, y, z, x〉, 〈y, y, y, z, z, x〉, and 〈〉 (the empty se-
quence) are possible behaviors of the transition system depicted in Figure 6.

Fig. 6. Example transition system

Transition systems are the most basic representation of processes, e.g., simple
processes tend to have many states (cf. “state explosion” problem in verification).
However, using the theory of regions and tools like Petrify [13], transition systems
can be “folded” into more compact representations, e.g., Petri nets. Especially
transition systems with a lot of concurrency (assuming interleaving semantics)
can be reduced spectacularly through the folding of states into regions, e.g.,
transition systems with hundreds or even thousands of states can be mapped
onto compact Petri nets. However, before using the theory of regions to fold

transition systems into Petri nets, we first need to derive a transition system
from a change log. To do this we first introduce some useful notation.

Definition 8 (Useful Notations). Let PS ∈ P be a process schema and let
σ = 〈∆1, ∆2, . . . ∆n〉 ∈ L be a change log instance from some valid log L.

– σ(k) = ∆k is the kth element of σ (1 ≤ k ≤ n),
– hd(σ, k) = 〈∆1, ∆2, . . . ∆k〉 is the sequence of the first k elements (0 ≤ k ≤ n)

of σ (with hd(σ, 0) = 〈 〉),
– state(PS, σ, k) = PS′ where PS[hd(σ, k)〉PS′, i.e., PS′ is the process schema

after the first k changes have been applied.

Definition 8 shows that given an initial process schema PS and a change log
instance σ, it is possible to construct the process schema resulting after executing
the first k changes in σ. state(PS, σ, k) is the state after applying ∆1, ∆2, . . . ∆k.
Note that state(PS, σ, 0) = PS is the initial process and state(PS, σ, n) is the
state after applying all changes listed in σ.

Using the notations given in Definition 8 it is fairly straightforward to con-
struct a transition system based on an initial process schema and a log. The
basic idea is as follows. The states in the transition system correspond to all
process schemas visited in the log, i.e., the initial process schema is a possible
state, all intermediate process schemas (after applying some but not all of the
changes) are possible states, and all final process schemas are possible states of
the resulting transition system. There is a transition possible from a state PS1

in the transition system to another state PS2 if in at least one of the change log
instances PS1 is changed into PS2.

Definition 9 (Transition System of a Change Log). Let PS ∈ P be a
process schema and L a valid change log for PS. TS(PS,L) = (S, E, T, si) is the
corresponding transition system, where S = {state(PS, σ, k) | σ ∈ L ∧ 0 ≤ k ≤
|σ|} is the state space, E = {σ(k) | σ ∈ L ∧ 1 ≤ k ≤ |σ|} is the set of events,
T = {(state(PS, σ, k), σ(k), state(PS, σ, k + 1)) | σ ∈ L ∧ 1 ≤ k < |σ|} is the
transition relation, and si = PS is the initial state (i.e., the original process
schema).

Note that this approach assumes that changes are memoryless, i.e., the set
of possible changes depends on the current process schema and not on the path
leading to the current process schema. This means that if there are multiple
“change paths” leading to a state PS′, then the next change in any of these
paths is possible when one is in state PS′. In other words: only the current
process schema for the change process and not the way it was obtained. Note
that this assumption is similar, but also different, from the assumption in the
first approach: there commutative changes are assumed to occur in any order
even when this has not been observed.

For technical reasons it is useful to add a unique start event start and state
s0 and a unique end event end and state se. This can be achieved by adding
start and end to respectively the start and end of any change log instance. It
can also be added directly to the transition system.

Definition 10 (Extended Transition System of a Change Log). Let PS ∈
P be a process schema and L a valid change log for PS. TS(PS,L) = (S, E, T, si)
is as defined in Definition 9. Let s0, se, start, and end be fresh identifiers.
TS∗

(PS,L) = (S∗, E∗, T ∗, s∗i) is the extended transition system, where S∗ = S ∪

{s0, se}, E∗ = E ∪ {start, end}, T ∗ = T ∪ (
⋃

σ∈L {(s0, start, state(PS, σ, 0)),
(state(PS, σ, |σ|), end, se)}), and si = s0.

s0

s1
op3

start

s4

op4
s2

s9
s5 s12

op8op5

op1

op2

s6

s7

s8

op6

op2

op1

se

end

end

s13

s14

op8

end

op9

s3

op2

op1

s11

op7

end
end

s10

s15

end

op10

op7

end

end
end

Activity Names:

EO = Enter Order

IP = Inform Patient

PP= Prepare Patient

EP = Examine Patient

DR = Deliver Report

LT = Lab Test

XR = X-Ray

States:

s0 = initial state

se = final state

s1 = <EO,IP,PP,EP,DR>

s2 = <EO,IP,PP,EP,LT,DR>

s3 = <EO,PP,IP,EP,LT,DR>

s4 = <EO,IP,XR,PP,EP,DR>

s5 = <EO,PP,EP,DR>

s6 = <EO,PP,EP,IP,DR>

s7 = <EO,PP,IP,EP,DR>

s8 = <EO,PP,IP,EP,LT,DR>

s9 = <EO,PP,IP,EP,DR>

s10 = <EO,IP,PP,EP,LT>

s11 = <EO,PP,IP,EP,LT>

s12 = <EO,IP,PP,EP,XR,DR>

s13 = <EO,PP,IP,EP,XR,DR>

s14 = <EO,PP,IP,EP,XR,LT,DR>

s15 = <EO,IP,PP,EP,XR,LT,DR>

Fig. 7. Transition system based on the change log shown in Figure 3

Figure 7 shows the transition system obtained by applying Definition 10
to the running example, i.e., the change log depicted in Figure 3 (consisting
of nine change log instances and ten different change operations) is used to
compute TS∗

(PS,L). For convenience we use shorthands for activity names: EO
= Enter Order, IP = Inform Patient, PP = Prepare Patient, EP = Exam-
ine Patient, DR = Deliver Report, LT = Lab Test, and XR = X-Ray. Fig-
ure 3 defines ten different change operations, these correspond to the events in
the transition system. Moreover, the artificial start and end are added. Hence
E = {start, op1, op2, . . . , op10} is the set of events. The application of a change
operation to some process schema, i.e., a state in Figure 7, results in a new
state. Since in this particular example all process schemas happen to be sequen-

tial, we can denote them by a simple sequence as shown in Figure 7. For example,
s1 = 〈EO, IP, PP, EP, DR〉 is the original process schema before applying any
changes. When in the first change log instance op1 is applied to s1 the resulting
state is s2 = 〈EO, IP, PP, EP, LT, DR〉 (i.e., the process schema with the lab
test added). When in the same change log instance op2 is applied to s2 the re-
sulting state is s3 = 〈EO, PP, IP, EP, LT, DR〉 (i.e., the process schema where
Inform Patient is moved). This can be repeated for all nine instances, resulting
in fifteen states plus the two artificial states, i.e., S = {s0, s1, . . . , s15, se}. Using
the approach defined in definitions 9 and 10, the transition system shown in
Figure 7 is obtained.

As indicated at the start of this section, transition systems can be mapped
onto Petri nets using synthesis techniques based on the so-called regions [13, 21].
An example of a tool that can create a Petri net for any transition system using
regions is Petrify [12]. In this paper we do not elaborate on this and only present
the basic idea.

Given a transition system TS = (S, E, T, si), a subset of states S′ ⊆ S is a
region if for all events e ∈ E one of the following properties holds:

– all transitions with event e enter the region, i.e., for all s1, s2 ∈ S and
(s1, e, s2) ∈ T : s1 6∈ S′ and s2 ∈ S′,

– all transitions with event e exit the region, i.e., for all s1, s2 ∈ S and (s1, e, s2) ∈
T : s1 ∈ S′ and s2 6∈ S′, or

– all transitions with event e do not “cross” the region, i.e., for all s1, s2 ∈ S

and (s1, e, s2) ∈ T : s1, s2 ∈ S′ or s1, s2 6∈ S′.

The basic idea of using regions is that each region S′ corresponds to a place in the
corresponding Petri net and that each event corresponds to a transition in the
corresponding Petri net. Given a region all the events that enter the region are
the transitions producing tokens for this place and all the events that leave the
region are the transitions consuming tokens from this place. In the original theory
of regions many simplifying assumptions are made, e.g., elementary transitions
systems are assumed [21] and in the resulting Petri net there is one transition
for each event. Many transition systems do not satisfy such assumptions. Hence
many refinements have been developed and implemented in tools like Petrify [12,
13]. As a result it is possible to synthesize a suitable Petri net for any transition
system. Moreover, tools such as Petrify [12] provide different settings to navigate
between compactness and readability and one can specify desirable properties
of the target model. For example, one can specify that the Petri net should be
free-choice. For more information we refer to [12, 13].

Figure 8 shows the Petri net corresponding to the transition system of Fig-
ure 7. This Petri net was constructed using regions. It can be observed that the
Petri net is more or less identical to the transition system. One can use Pet-
rify with different settings. This way it is possible to construct a more compact
Petri net, however, this process model is less readable. At first sight, it may be
disappointing to see the Petri net shown in Figure 8. However, one should note
that the change log depicted in Figure 3 only has nine change log instances,
i.e., compared to the number of change operations, the number of instances is

Fig. 8. Screenshot of ProM showing the Petri net obtained for the change log depicted
in Figure 3

rather low. It seems that only a few of the possible interleavings are present in
Figure 3. As a result, the transition system in Figure 8 seems to be the result of
a number of particular examples rather than a description of the full behavior.
The strength and also the weakness of our approach using regions is that the
corresponding Petri net has a behavior identical to the transition system. The
transition system is branching bisimilar to the Petri net. Hence there is no gen-
eralization for going from Figure 7 (transition system) to Figure 8 (Petri net).

Figure 9 shows another example of a transition system that exhibits more
parallelism (i.e., there are more interleavings). When we apply our approach to
this transition system we obtain the Petri net shown in Figure 10. Clearly this
Petri net reveals the behavior implied by Figure 9 in a compact and readable
manner. This example shows the potential of applying logs to transition systems
with more parallelism.

6.5 Comparing Both Approaches

We have introduced two new process mining approaches based on the character-
istics of change logs. The first approach is based on the multi-phase algorithm
[17, 18]. However, the original algorithm has been enhanced to exploit informa-
tion about commutativity of change operations. If there are independent changes
(i.e., changes that operate on different parts of the schema), it is not necessary to
see all permutations to conclude that they are in parallel. The second approach is

s0

s1

op3

start

s4s2

s9

s5

s12

op1

op2

s6 s7

s8

se
end

s13

s14

s3

s11s10

s15

op2

op3
op1

op3

op2

op1

op3
op2

op1

op4

op5
op6

op6 op7

op7
op6

op9

op10

Fig. 9. A transition system with more parallelism

Fig. 10. Screenshot of ProM showing the Petri net obtained for the transition system
depicted in Figure 9

based on the observation that given an original schema and a sequence of change
operations, it is possible to reconstruct the resulting process schema. This can be
used to derive a transition system where the states are represented by possible
(intermediate) process schemas. Using regions such a transition model can be
translated into an equivalent Petri net describing the change process.

Both approaches make assumptions and generalize on the basis of observed
behavior.

The first approach assumes that commutativity implies parallelism, i.e., even
if change operations are only observed in a specific order, commutativity still sug-
gests that potentially these change operations could be performed concurrently.
This way the approach generalizes things dramatically. Consider for example the
Petri net in Figure 5 which has been derived from the change log depicted in

Figure 3. This Petri net allows for much more sequences of changes than the
ones that happen to be present in the change log.

The second approach also makes an assumption to generalize things: changes
are memoryless. It is assumed that the set of possible changes only depends
on the current process schema and not on the path leading to this schema.
This allows for some form of generalization quite different from the assumption
that commutativity implies parallelism. The second approach first constructs the
transition system. In this step some generalization takes place due to the memo-
ryless state encoding. Then this transition system is mapped onto an equivalent
Petri net, i.e., when constructing the Petri net no further generalizations take
place. Figure 8 shows the Petri net which has been derived from the change log
depicted in Figure 3.

The Petri net in Figure 8 is very different from the one in Figure 5. This
illustrates that both approaches produce different results, i.e., they provide two
fundamentally different ways of looking at change processes. It seems that in this
particular example, the first approach performs better than the second. This
seems to be a direct consequence of the small amount of change log instances
(just nine) in comparison with the possible number of change operations. When
there is an abundance of change log instances, the second approach performs
better because it more precisely captures the observed sequences of changes.
Moreover, the second step could be enhanced by generalization operations at
the transition system level, e.g., using commutativity.

7 Context and Learning

So far, we have discussed what constitutes a process change, how change infor-
mation can be represented in logs, and how these logs can be mined to deliver
valuable insights into the scope of change. The latter enables us to understand
how processes deviate from predefined routines. However, what is still needed
is an understanding of why changes occur and what causes change (i.e., the se-
mantic reasons for a change). The answers to these questions can be found in
the context of a process [42, 46]. In other words, context is the relevant subset
of the entire situation of a business process that makes change necessary. This
section attempts to arrive at a useful understanding of context (Section 7.1). We
further show how context information can be elicited and stored (Section 7.2)
and, finally, how it can be exploited by machine learning techniques to learn
from change (Section 7.3).

7.1 Context Information

Understanding the environment in which a process is embedded as the context
of the process raises the question what exactly constitutes this context. Defini-
tions of context in related disciplines such as Web systems engineering [26] and
mobile applications research [29] focus around the users and their interaction
with the systems [16, 45]. They typically include only reduced information such

as locality (e.g., what is the closest restaurant and how do I make a booking?)
and user characteristics (e.g., what type of food does the user of the mobile
application like?). However, attempting to introduce these interaction-focussed
approaches to the area of process flexibility requires that the process is aware of
its surroundings irrespective of user interactions. In order to facilitate this gen-
eral awareness in a structured manner, the challenge is to identify the relevant
context of business process, i.e., those elements or variables in the context that
have impact on process design or execution (e.g., location, but not legislation).

The context of a business process can generally be divided into two distinct
parts. The intrinsic context is constituted by all data and information that is
directly accessible by the business process. This will usually resolve to the data
structures defined in the process definition itself, i.e., all data created and mod-
ified during its execution (e.g., the name and address of a customer). Such a
process definition would at least include the control flow logic, involved informa-
tional data, and organizational resources [25]. On the other hand, the extrinsic
context of a process cannot be defined as concisely. It contains all information
that is available at some stage during the execution of a business process, and
that could potentially have influenced decisions in this process. As such, the
extrinsic context is very large, containing basically all knowledge available, both
in the immediate environment of a process (e.g., high system load or crash) and
in its external environment (e.g., the weather or stock market situation during
execution).

From the complete extrinsic context of a process, it is necessary to determine
the subset that is relevant, i.e., that has had an actual chance of influencing the
execution. One obvious criterion for this decision is time, i.e. only that set of
information which was available at a certain point in time may be relevant for
decisions at that time. A second criterion is involvement, which means that for
context information to be relevant, at least one person or system involved in
the process must have had access to it so to be able to react upon it. Obviously
it is not possible to determine involvement with absolute certainty, e.g., one
cannot know for certain all knowledge of persons involved in a process. However,
by using suitable heuristics (e.g., based on locality or other spatial data) the
involvement criterion can restrict the extrinsic context to a reasonable subset.

The above relevancy criteria can be determined more or less automatically,
i.e. they are of a technical nature. Any further selection of relevant context,
however, needs to be based on semantics of information, i.e. their level of contri-
bution to the objectives (or goals) of the process. In general terms, goals, when
applied to process modeling, specify the final state that a process seeks to reach
(e.g., “complete an order”) [49]. Thus, from a semantic viewpoint, the relevant
extrinsic context is the set of extrinsic variables that, when changed, impacts the
transition between the predefined process execution steps in a way that affects
the extent of achieving the goal [42].

A consideration of goals thus allows identifying relevant context informa-
tion. This can be achieved by decomposing the process into information that is
contained in traditional process descriptions, (e.g., control flow, data, resources,

applications), i.e., information intrinsic to the process definition, and extrin-
sic information that impacts goal achievement but goes beyond this traditional
layer of description. This way, the notion of goals makes it possible to reduce
the extrinsic context to a subset of relevance (see Figure 11.

relevant context

complete context

intrinsic context

relevant intrinsic
context

relevant extrinsic
context

Fig. 11. The Context of a Business Process

In a basic format, a methodology for deriving relevant context information
should consist of the following steps:

1. Determine process goal and identify appropriate measures.

2. Decompose process in accordance to goal in a set of goal-relevant information
that is intrinsic (i.e., information that is contained in the process specifica-
tion) and a set of goal-relevant information that is not fully dependent on
the process definition, i.e., extrinsic.

3. Determine impact of goal-relevant, extrinsic information on the achievement
of the goal to determine relevancy.

4. Type context and identify relevant state value ranges.

The accomplishment of each of these steps may benefit from existing research.
Goal identification, for instance, is an important topic in the requirements engi-
neering discipline. The basic idea for determining goals and relevant context is
centered around the notion of a requirement chunk, which is a pair 〈Goal,Case〉
and denotes a potential way of achieving a goal in a given scenario (i.e., case)
[41]. The identification process then starts with a given goal and describes a
process case as a possible concretization of the goal. Clearly, this step results in
one complete requirement chunk, made up of goal-relevant information that is
either intrinsic or extrinsic to the process definition. Re-iterations of this process
for various cases can then be used to elicit the set of information that is rele-
vant to all cases but not intrinsic — and thus denotes relevant extrinsic context
that, together with the relevant intrinsic context information available from the
process description, can then be typed, conceptualized and utilized.

7.2 Elicitation and Storage of Context Information

The definition of the relevant context of a business process is necessary for learn-
ing from it, both from a practical perspective (i.e., limitation is necessary to
preserve abstraction), as well as from a technical one (i.e., being able to cope
with technical limitations of memory and computation time). In order to make
this relevant context available for learning, suitable solutions have to be found
for its elicitation (i.e., retrieval) and storage.

Context information can be retrieved from a wide range of potential data
sources. Large parts of the intrinsic context can be extracted from enactment
logs, which often include information about time and value of a data modifica-
tion. Also, queries can be executed on databases, which hold relevant context
information for the process. The latter, however, poses the problem that most
conventional databases do not provide history information of data, i.e., once a
new value is provided it usually erases the previous one, and the time of change
is usually unknown. Thus, context information can be divided into timed history
and the static context, with the latter often being identified as a snapshot of
context data at the end of execution (e.g., the final state of context information
stored in a database).

As context information is most useful when it is timed, an obvious means
of storage is to enhance change logs with context data. This makes it possible
to structure the context history in suitable chunks, i.e., the structural states
of a process (between change operations). Technically, this is accomplished by
examining each change event, acquiring timed context information for the time
of its occurrence, and then enriching it with the elicited context information.

The static context of a process can obviously not be used to learn from single
changes in a case, as it remains unchanged. However, it can point out to drivers
for change when the static context of a number of cases are being compared.
Then, it would, for instance, be possible to find patterns in the static context
that always appear together with a certain type of change. Thus, the static
context may be stored in an unordered fashion, associated to a specific case
(e.g., listing the static context fields at the beginning of each case).

Approaches for structuring, understanding and describing semantic context
information in a meaningful and applicable manner could again benefit from
research in related disciplines. We found that in the area of context modeling and
description a substantial amount of research has already been conducted, e.g. in
the form of context architectures [47] or context ontologies [10]. For instance, the
Context Ontology Language [50] is designed to accommodate selected aspects
of context such as temperature, scales, the relative strengths of aspects and
further meta data. A promising approach stems from the work of Analyti et
al. [6] who build directed graphs and use relationships such as generalization
and classification to describe context.

7.3 Learning from Context Information

Assuming access to context information, it would become possible to investigate
changes in a process together with the reasons for the change decisions take

along the execution of a process. This can be achieved by looking at change
process models and the decision points contained within. Decision points in a
change process model are the points where the process splits into alternative
paths. They describe crucial points where a set of cases, which have so far been
subject to the same modifications, is split into subsets which exhibit a different
set of changes from then on. The most significant of these decision points is the
implicit choice, whether a case is subject to modification in the first place, or
whether it can be executed without applying changes to the process model.

While a change process model itself is already immensely helpful, for instance
for monitoring an adaptive PMS, it can not be used to learn from process change.
Learning shall be interpreted as deriving information from an adaptive PMS,
which can be used to facilitate future changes, or make them obsolete in the
first place. The fundamental premise is that cases in which a certain change (or,
pattern of changes) has been applied will exhibit distinct patterns in their context
information. For example, whenever a customer’s record has been stored for more
than two years in the customer database, the otherwise necessary credit check is
removed from the process schema. Note that these context data characteristics
need not represent the reason for change per se, they can also describe further
effects of the original reason for change, which itself is not found in the context
information.

As sketched above, the set of context information can be very large. Thus,
identifying the pivotal data elements, or patterns thereof, which are unique for
a specific change, is like looking for a needle in a haystack. Fortunately, exist-
ing Machine Learning (ML) [30, 58] techniques can solve exactly this problem
in an automatic fashion. Classification algorithms, which are a subset of ML
algorithms, take for input a classified set of examples, the so-called training set.
Once this set has been analyzed, the algorithm is capable of classifying previously
unknown examples.

In the example process in Figure 5, let us assume that we are interested in
the decision point after change operation “INSERT LabTest”. The question is
what made it necessary for some cases to delete the activity “Deliver report”,
while this was skipped for others. The first step in answering this question is
to select the training set, i.e., the subset of cases for which “LabTest” has been
inserted. Subsequently, all cases in the training set are classified according to
whether “Deliver report” has been deleted later on.

Training a decision tree algorithm [31, 44] with this classified set may for
example yield the decision tree shown in Figure 12. The root node first tests the
value for the “Urgency” context attribute; if it has a value of “high”, the case is
classified as “TRUE”, meaning that “Deliver report” is deleted. Correspondingly,
cases with low urgency do not have this activity deleted (“FALSE”). For those
cases where the urgency was set to “medium”, the classification is performed
based on the context attribute “Time”. Thus, for cases with medium urgency,
only those running at night had activity “Deliver report” deleted.

Note that while “Urgency” can be considered a static context attribute,
“Time” will naturally change during execution, and should thus be determined

Urgency Time

TRUE

FALSE

high

medium

low

TRUE

FALSE
day

night

Fig. 12. A decision tree

in a timed fashion (i.e., with respect to the decision point under consideration,
it may hold different values for the same case). It is further important to point
out that classification algorithms may use only a subset of context attributes
to generate their knowledge base. If a certain data field cannot be related to
the classification under consideration (i.e., the path taken), it is automatically
excluded from the decision tree.

Other classification algorithms from ML can generate a set of classification
rules [30]. For example, one classification rule for the above example would be “IF
Urgency = medium AND Time = day THEN DELETE.DeliverReport = FALSE”.
While it is also possible to generate rules from a decision tree, directly gener-
ated classification rules are often a more compact representation, as they can be
defined more flexibly.

Note that both decision trees and classification rules are explicit representa-
tions of the algorithm’s generated knowledge base, i.e., they can be easily stored
and are understandable by humans. Other ML classification techniques like neu-
ral networks are also highly efficient in classifying unknown cases, after they
have been trained on an existing set. However, their design makes it virtually
impossible to comprehend why a specific case has been assigned to a certain
class, i.e. they remain a “black box”.

Classification algorithms are always focused on specific decisions, i.e. one
branching point, and are thus dependent on the mining of a change process model
in the first place. This means that for analyzing or predicting changes to a specific
process schema, one has to identify all decision points in the change process
model. For each of these decision points, the training set needs to be determined
and enriched with specific context information before the classification algorithm
can be applied to it.

An alternative to this approach is the mining of association rules [4]. Here,
every case is regarded as a set of facts, where a fact can both be the occurrence
of a change operation as well as a context attribute having a specific value.
After identifying frequent item sets, i.e., facts that are often found together in
a case, the algorithm can derive association rules. These rules describe, for in-
stance, that for a large fraction of cases where an additional x-ray was inserted,
the patient was older than 65 years and the doctor was female, an additional
blood screening was inserted. Association rules are derived in a global manner,

viz., the order in which change operations occur is not taken into account. De-
pending on the circumstances, this feature can be beneficial or detrimental. For
example, when there are hardly any causal relations between change operations,
association rules may deliver more enlightening results. They can discover tacit
relationships between change operations and context data, which cannot be cap-
tured by classification.

Knowledge gained from both classification and association rule algorithms
can be used for a number of purposes. One important application is the predic-
tion of future changes for a running case. Whether predicted changes are ap-
plied autonomously by the system (self-adaption), merely proposed to the user
(decision support), or whether they are only used to identify abnormal cases
(monitoring) is strongly dependent on the application scenario at hand.

The artificial limitation of the training set can also be used to highlight spe-
cific aspects. One example is to limit the case base used for learning to cases
performed by a specific user, in order to customize the system to his behavior.
Another possibility is to limit the set of context information under considera-
tion, e.g. for highlighting the resource perspective by only looking at who was
responsible for a certain change pattern.

One significant downside of most ML techniques is their high demand of com-
putation time and memory. However, both resources are becoming less expensive
every year, while the amount of data to be processed remains relatively stable.
The complete process of learning from change using context can also be described
as successively filtering the available context. While the time and involvement
criteria deliver the first, coarse restriction of the context set, subsequent testing
for interference with process goals further narrows this set down significantly.
The application of ML techniques delivers the final identification of the drivers
for change from the relevant context, and is able to relate them to one another
(e.g., generating a decision tree). We believe that this structured approach can
deliver precise results while still remaining feasible in practical settings, and is
thus a foundation for the design of self-adapting PMSs.

8 Implementation and Tool Support

To enable experimentation with change logs and their analysis, an import plugin
has been implemented for the ProMimport framework, which allows to extract
both enactment and change logs from instance files of the ADEPT demonstra-
tor prototype [36]. ProMimport8 is a flexible and open framework for the rapid
prototyping of MXML import facilities from all kinds of PAISs. The ADEPT
demonstrator prototype provides the full set of process change facilities found
in the ADEPT distribution, except for implementation features like work dis-
tribution and the like. The combination of both makes it possible to create and
modify a process schema in the ADEPT demonstrator prototype, after which a

8 ProMimport is available under an Open Source license at
http://promimport.sourceforge.net/.

respective change log can be imported and written to the MXML-based change
log format described in Section 5.1.

Fig. 13. Change Mining Plugin within ProM.

These change logs can then be loaded into the ProM framework9. A dedicated
change mining plugin has been developed, which implements the commutativity-
enhanced multi-phase algorithm described in Section 6.3. It is also possible to
mine only a selection of the change log instances found in the log. The resulting
change process can be visualized in the form of a workflow graph, Petri net, or
EPC.

Figure 13 shows the change mining plugin implementing the approach based
on commutativity, introduced in Section 6.3, within the ProM framework. It
displays the example process introduced in Figure 3 in terms of a process graph.
The activities and arcs are annotated with frequencies, indicating how often the
respective node or path has been found in the log.

In Section 6.4 we proposed a second approach exploiting the specific nature
of change logs. This approach builds a transition system assuming that change
processes are memoryless, i.e., only the current schema is relevant and not the
different intermediate process schemas. After building the transition system,
the theory of regions can be applied to construct a Petri net of the change
process. ProM has different plugins to construct, visualize, and analyze transition
systems. However, there is not yet a plugin dedicated to change processes. Once
there is a transition system ProM can create a Petri net using the Petrify import

9 ProM is available under an Open Source license at http://prom.sourceforge.net/.

and export plugin. Figures 8 and 10 show two screenshots of ProM. Both process
models have been obtained using a combination of ProM and Petrify as described
in Section6.4.

For determining the drivers for change, as proposed in Section 7.3, ProM
features a decision mining plugin [44]. It uses a decision-tree algorithm, which
is employed to unveil data properties used in decision points.

9 Related Work

Although process mining techniques have been intensively studied in recent
years [2, 3, 11, 17, 18], no systematic research on analyzing process change logs
has been conducted so far. Existing approaches mainly deal with the discovery
of process schemas from execution logs, conformance testing, and log-based ver-
ification (cf. Section 2.1). The theory of regions [12, 13] has also been exploited
to mine process schemas from execution logs [28], e.g. from logs describing soft-
ware development processes. However, execution logs in traditional PMSs only
reflect what has been modeled before, but do not capture information about pro-
cess changes. While earlier work on process mining has mainly focused on issues
related to control flow mining, recent work additionally uses event-based data
for mining model perspectives other than control flow (e.g., social networks [1],
actor assignments, and decision mining [44]).

In recent years, several approaches for adaptive process management have
emerged [38], most of them supporting changes of certain process aspects and
changes at different levels. Examples of adaptive PMSs include ADEPT [36],
CBRflow [55], and WASA [57]. Though these PMSs provide more meaningful
process logs when compared to traditional workflow systems, so far, only little
work has been done on fundamental questions like what we can learn from this
additional log information, how we can utilize change logs, and how we can
derive optimized process schemas from them.

CBRFlow [55] has focused on the question how to facilitate exception han-
dling in adaptive PMSs. More precisely, it applies conversational case-based rea-
soning (CCBR) in order to assist users in defining ad-hoc changes and in captur-
ing contextual knowledge about them (see our discussion in Section 7). This, in
turn, increases the quality of change logs and change case bases respectively, and
therefore provides new perspectives. CBRFlow, for example, supports the reuse
of previous ad-hoc changes when defining new ones [55]. The retrieval of similar
changes is based on CCBR techniques. CCBR itself is an extension of the original
case-based reasoning (CBR) paradigm, which actively involves users in the infer-
ence process [5]. A CCBR system can be characterized as an interactive system
that, via a mixed-initiative dialogue, guides users through a question-answering
sequence in a case retrieval context. In [56] the authors further improve the sup-
port for change reuse by additionally discovering dependencies between different
ad-hoc changes.

In [40, 54] the CBRFlow approach has been extended to a framework for
integrated process life cycle support. In particular, knowledge from the change

case base is applied to continuously derive improved process schemas. This is
similar to our goal for discovering optimized process schemas from change log.
However, we have provided more advanced and more general mining techniques
in this context, whereas [40] particularly makes use of semantically enriched log-
files (e.g., information about the frequency of a particular change, user ratings,
etc.). We will consider respective semantical and statistical information in our
future work as well.

10 Summary and Outlook

This paper gave an overview of how comprehensive support for true process
flexibility can be provided by combining adaptive process management systems
with advanced process mining techniques. The integration of process mining with
adaptive PMS enables the exploitation of knowledge about process changes from
change logs, which in turn enables us to reason about the reason for the change,
i.e., the contextual drivers for flexibility.

We have developed two mining techniques and implemented them as plugins
for the ProM framework, taking ADEPT change logs in the mapped MXML
format as input. We demonstrated that change log information (as created by
adaptive PMSs like ADEPT) can be imported into the ProM framework. Based
on this we have sketched how to discover a (minimal) change process which
captures all modifications applied to a particular process so far. This discovery
is based on the analysis of the (temporal) dependencies existing between the
change operations applied to the respective process instance. Meaningful, com-
pact representations of the change process can be derived by either making use
of the concept of commutativity, or by application of the theory of regions, as
has been shown. Altogether, the presented approaches can be very helpful for
process engineers to get an overview about which instance changes have been
applied at the system level and what we can learn from them. Corresponding
knowledge is indispensable to make the right decisions with respect to the intro-
duction of changes at the process type level (e.g., to reduce the need for ad-hoc
changes at the instance level in future).

In our future work we want to further improve user support by augmenting
change processes with additional contextual information (e.g., about the reason
why changes have been applied or the originator of the change). From this we
expect better comprehensibility of change decisions and higher reusability of
change knowledge (in similar situations). The detection of this more context-
based information will be accomplished by applying advanced mining techniques
(e.g., decision mining [44]) to change log information. In a related stream of
work we continue our research on the identification and description of contextual
information. We envision that based on an appropriate way of conceptualizing
and identifying context, support can be developed to monitor, mine and control
contextual variables in the environment of a process, which would in effect allow
for true process agility, decreased reaction-time, and overall more flexible support
in process design and execution.

Acknowledgements: This research has been supported by the Technology
Foundation STW, applied science division of NWO and the technology pro-
gramme of the Dutch Ministry of Economic Affairs.

References

1. W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks
from Event Logs. Computer Supported Cooperative work, 14(6):549–593, 2005.

2. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

3. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

4. Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules
between sets of items in large databases. SIGMOD Rec., 22(2):207–216, 1993.

5. D.W. Aha and H. Munoz-Avila. Introduction: Interactive case-based reasoning.
Applied Intelligence, 14(7-8), 2001.

6. Anastasia Analyti, Manos Theodorakis, Nikos Spyratos, and Panos Constantopou-
los. Contextualization as an independent abstraction mechanism for conceptual
modeling. Information Systems, 32(1):24–60, 2007.

7. Pavel Balabko, Alain Wegmann, Alain Ruppen, and Nicolas Clement. Captur-
ing design rationale with functional decomposition of roles in business processes
modeling. Software Process: Improvement and Practice, 10(4):379–392, 2005.

8. I Bider. Masking flexibility behind rigidity: Notes on how much flexibility people
are willing to cope with. In Jaelson Castro and Ernest Teniente, editors, CAiSE’05
Workshops, pages 7–18, Porto, Portugal, 2005. FEUP.

9. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data and
Knowledge Engineering, 24(3):211–238, 1998.

10. Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware perva-
sive computing environments. The Knowledge Engineering Review, 18(3):197–207,
2003.

11. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

12. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and synthesis of asyn-
chronous controllers. IEICE Transactions on Information and Systems, E80-
D(3):315–325, March 1997.

13. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
from Finite Transition Systems. IEEE Transactions on Computers, 47(8):859–882,
August 1998.

14. J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models
and Workflow Specifications. International Journal of Cooperative Information
Systems, 13(3):289–332, 2004.

15. J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2004.

16. Anind K. Dey. Understanding and using context. Personal and Ubiquitous Com-
puting, 5(1):4–7, 2001.

17. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building
Instance Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W. Ling, editors, In-
ternational Conference on Conceptual Modeling (ER 2004), volume 3288 of Lecture
Notes in Computer Science, pages 362–376. Springer-Verlag, Berlin, 2004.

18. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Ag-
gregating Instance Graphs into EPCs and Petri Nets. In Proceedings of the 2nd
International Workshop on Applications of Petri Nets to Coordination, Worklflow
and Business Process Management (PNCWB) at the ICATPN 2005, 2005.

19. B.F. van Dongen, A.K. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A new era in process mining tool
support. In G. Ciardo and P. Darondeau, editors, Proceedings of the 26th Interna-
tional Conference on Applications and Theory of Petri Nets (ICATPN 2005), vol-
ume 3536 of Lecture Notes in Computer Science, pages 444–454. Springer-Verlag,
Berlin, 2005.

20. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

21. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Informatica, 27(4):315–368, 1989.

22. C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow
systems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan, editors,
Proceedings of the Conference on Organizational Computing Systems, pages 10 –
21, Milpitas, California, August 1995. ACM SIGOIS, ACM Press, New York.

23. R. van Glabbeek and U. Goltz. Refinement of Actions and Equivalence Notions
for Concurrent Systems. Acta Informatica, 37(4–5):229–327, 2001.

24. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

25. Stefan Jablonski and Christoph Bussler. Workflow Management. Modeling Con-
cepts, Architecture, and Implementation. Thomson Computer Press, London, UK,
1996.

26. J. Wolfgang Kaltz, Jürgen Ziegler, and Steffen Lohmann. Context-aware web en-
gineering: Modeling and applications. Revue d’Intelligence Artificielle, 19(3):439–
458, 2005.

27. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD thesis, Queensland University of Technology, Bris-
bane, 2002. (available via http://www.workflowpatterns.com/).

28. Ekkart Kindler, Vladimir Rubin, and Wilhelm Schäfer. Process mining and petri
net synthesis. In Johann Eder and Schahram Dustdar, editors, Business Process
Management Workshops, volume 4103 of Lecture Notes in Computer Science, pages
105–116. Springer Verlag, Vienna, Austria, 2006.

29. Marius Mikalsen and Anders Kofod-Petersen. Representing and reasoning about
context in a mobile environment. In Stefan Schulz and Thomas Roth-Berghofer, ed-
itors, First International Workshop on Modeling and Retrieval of Context, volume
114 of CEUR Workshop Proceedings, pages 25–35, Ulm, Germany, 2004. CEUR.

30. T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
31. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
32. James Brian Quinn. Intelligent Enterprise: A Knowledge and Service Based

Paradigm for Industry. Free Press, New York, NY, 1992.

33. Gil Regev and Alain Wegmann. A regulation-based view on business process and
supporting system flexibility. In Jaelson Castro and Ernest Teniente, editors, Pro-
ceedings of the CAiSE’05 Workshops. Vol. 1, pages 91–98. FEUP, Porto, Portugal,
2005.

34. M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes of
Workflows Without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

35. M. Reichert, S. Rinderle, and P. Dadam. On the common support of workflow type
and instance changes under correctness constraints. In Proc. Int’l Conf. on Co-
operative Information Systems (CoopIS’03), LNCS 2888, pages 407–425, Catania,
Italy, November 2003.

36. M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management
with adept2. In Proc. 21st Int’l Conf. on Data Engineering (ICDE’05), pages 1113–
1114, Tokyo, 2005.

37. S. Rinderle. Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm, 2004.

38. S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria for Dynamic Changes
in Workflow Systems – A Survey. Data and Knowledge Engineering, Special Issue
on Advances in Business Process Management, 50(1):9–34, 2004.

39. S. Rinderle, M. Reichert, M. Jurisch, and U. Kreher. On Representing, Purging,
and Utilizing Change Logs in Process Management Systems. In Proc. Int’l Conf.
on Business Process Management (BPM’06), Vienna, 2006.

40. S. Rinderle, B. Weber, M. Reichert, and W. Wild. Integrating Process Learning
and Process Evolution - A Semantics Based Approach. In Proc. 3rd Int. Conf. on
Business Process Management (BPM’05), pages 252–267, Nancy, 2005.

41. Colette Rolland, Carine Souveyet, and Camille Ben Achour. Guiding goal modeling
using scenarios. IEEE Transactions on Software Engineering, 24(12):1055–1071,
1998.

42. Michael Rosemann, Jan Recker, Peter Ansell, and Christian Flender. Context-
awareness in business process design. In Andy Koronios and Ed Fitzgerald, edi-
tors, Australasian Conference on Information Systems, Adelaide, Australia, 2006.
Australasian Chapter of the Association for Information Systems.

43. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin,
2006.

44. A. Rozinat and W.M.P. van der Aalst. Decision Mining in ProM. In S. Dustdar,
J.L. Faideiro, and A. Sheth, editors, International Conference on Business Process
Management (BPM 2006), volume 4102 of Lecture Notes in Computer Science,
pages 420–425. Springer-Verlag, Berlin, 2006.

45. Bill N. Schilit and Marvin M. Theimer. Disseminating active map information to
mobile hosts. IEEE Network, 8(5):22–32, 1994.

46. Albrecht Schmidt. Implicit human computer interaction through context. Personal
Technologies, 4(2-3):191–199, 2000.

47. Johanneke Siljee, Sven Vintges, and Jos Nijhuis. A context architecture for service-
centric systems. In Thomas Strang and Claudia Linnhoff-Popien, editors, Location-
and Context-Awareness: First International Workshop LoCA 2005, volume 3479
of Lecture Notes in Computer Science, pages 16–25. Springer, Oberpfaffenhofen,
Germany, 2005.

48. Pnina Soffer. On the Notion of Flexibility in Business Processes. In Jaelson
Castro and Ernest Teniente, editors, Proceedings of the CAiSE’05 Workshops. Vol.
1, pages 35–42. FEUP, Porto, Portugal, 2005.

49. Pnina Soffer and Yair Wand. On the notion of soft-goals in business process
modeling. Business Process Management Journal, 11(6):663–679, 2005.

50. Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank. Cool: A context
ontology language to enable contextual interoperability. In Jean-Bernard Stefani,
Isabelle Demeure, and Daniel Hagimont, editors, Distributed Applications and In-
teroperable Systems - DAIS 2003, volume 2893 of Lecture Notes in Computer Sci-
ence, pages 236–247. Springer, Paris, France, 2003.

51. D.M. Strong and S.M. Miller. Exceptions and exception handling in computerized
information processes. ACM Transactions on Information Systems, 13(2):206–233,
1995.

52. Wil M. P. van der Aalst, Christian Günther, Jan Recker, and Manfred Reichert.
Using process mining to analyze and improve process flexibility - position paper
-. In Thibaud Latour and Michael Petit, editors, The 18th International Con-
ference on Advanced Information Systems Engineering. Proceedings of Workshops
and Doctoral Consortium, pages 168–177. Namur University Press, Luxembourg,
Grand-Duchy of Luxembourg, 2006.

53. Marco Waimer. Integration of adaptive process management technology and pro-
cess mining, 2006. (in German).

54. B. Weber, S. Rinderle, W. Wild, and M. Reichert. CCBR-Driven Business Process
Evolution. In Proc. Int. Conf. on Cased based Reasoning (ICCBR’05), Chicago,
2005.

55. B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling adaptive workflow man-
agement through conversational case-based reasoning. In Proc. Eurpean Conf. on
Case–based Reasoning (ECCBR’04), pages 434–448, Madrid, 2004.

56. B. Weber, W. Wild, M. Lauer, and M. Reichert. Improving Exception Handling
by Discovering Change Dependencies in Adaptive Process Management Systems.
In Proc. 2nd Int’l Workshop on Business Process Intelligence (BPI’06), pages 93
– 104, Vienna, 2006.

57. M. Weske. Formal foundation and conceptual design of dynamic adaptations in
a workflow management system. In Proc. Hawaii International Conference on
System Sciences (HICSS-34), 2001.

58. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques, 2nd Edition. Morgan Kaufmann, 2005.

