125,006 research outputs found

    Slow Adaptive OFDMA Systems Through Chance Constrained Programming

    Full text link
    Adaptive OFDMA has recently been recognized as a promising technique for providing high spectral efficiency in future broadband wireless systems. The research over the last decade on adaptive OFDMA systems has focused on adapting the allocation of radio resources, such as subcarriers and power, to the instantaneous channel conditions of all users. However, such "fast" adaptation requires high computational complexity and excessive signaling overhead. This hinders the deployment of adaptive OFDMA systems worldwide. This paper proposes a slow adaptive OFDMA scheme, in which the subcarrier allocation is updated on a much slower timescale than that of the fluctuation of instantaneous channel conditions. Meanwhile, the data rate requirements of individual users are accommodated on the fast timescale with high probability, thereby meeting the requirements except occasional outage. Such an objective has a natural chance constrained programming formulation, which is known to be intractable. To circumvent this difficulty, we formulate safe tractable constraints for the problem based on recent advances in chance constrained programming. We then develop a polynomial-time algorithm for computing an optimal solution to the reformulated problem. Our results show that the proposed slow adaptation scheme drastically reduces both computational cost and control signaling overhead when compared with the conventional fast adaptive OFDMA. Our work can be viewed as an initial attempt to apply the chance constrained programming methodology to wireless system designs. Given that most wireless systems can tolerate an occasional dip in the quality of service, we hope that the proposed methodology will find further applications in wireless communications

    Assisting decision-making in Queensland barley production through chance constrained programming

    Get PDF
    A chance constrained programming model is developed to assist Queensland barley growers make varietal and agronomic decisions in the face of changing product demands and volatile production conditions. Unsuitable or overlooked in many risk programming applications, the chance constrained programming approach nonetheless aptly captures the single‐stage decision problem faced by barley growers of whether to plant lower‐yielding but potentially higher‐priced malting varieties, given a particular expectation of meeting malting grade standards. Different expectations greatly affect the optimal mix of malting and feed barley activities. The analysis highlights the suitability of chance constrained programming to this specific class of farm decision problem.Crop Production/Industries,

    CHANCE CONSTRAINED PROGRAMMING MODELS FOR RISK-BASED ECONOMIC AND POLICY ANALYSIS OF SOIL CONSERVATION

    Get PDF
    The random nature of soil loss under alternative land-use practices should be an important consideration of soil conservation planning and analysis under risk. Chance constrained programming models can provide information on the trade-offs among pre-determined tolerance levels of soil loss, probability levels of satisfying the tolerance levels, and economic profits or losses resulting from soil conservation to soil conservation policy makers. When using chance constrained programming models, the distribution of factors being constrained must be evaluated. If random variables follow a log-normal distribution, the normality assumption, which is generally used in the chance constrained programming models, can bias the results.Risk and Uncertainty,

    A distributionally robust perspective on uncertainty quantification and chance constrained programming

    Get PDF
    The objective of uncertainty quantification is to certify that a given physical, engineering or economic system satisfies multiple safety conditions with high probability. A more ambitious goal is to actively influence the system so as to guarantee and maintain its safety, a scenario which can be modeled through a chance constrained program. In this paper we assume that the parameters of the system are governed by an ambiguous distribution that is only known to belong to an ambiguity set characterized through generalized moment bounds and structural properties such as symmetry, unimodality or independence patterns. We delineate the watershed between tractability and intractability in ambiguity-averse uncertainty quantification and chance constrained programming. Using tools from distributionally robust optimization, we derive explicit conic reformulations for tractable problem classes and suggest efficiently computable conservative approximations for intractable ones

    Chance-constrained programming with fuzzy stochastic coefficients

    Get PDF
    International audienceWe consider fuzzy stochastic programming problems with a crisp objective function and linear constraints whose coefficients are fuzzy random variables, in particular of type L-R. To solve this type of problems, we formulate deterministic counterparts of chance-constrained programming with fuzzy stochastic coefficients, by combining constraints on probability of satisfying constraints, as well as their possibility and necessity. We discuss the possible indices for comparing fuzzy quantities by putting together interval orders and statistical preference. We study the convexity of the set of feasible solutions under various assumptions. We also consider the case where fuzzy intervals are viewed as consonant random intervals. The particular cases of type L-R fuzzy Gaussian and discrete random variables are detailed
    corecore