31,815 research outputs found

    Challenges in Multimodal Data Fusion

    No full text
    International audienceIn various disciplines, information about the same phenomenon can be acquired from different types of detectors, at different conditions, different observations times, in multiple experiments or subjects, etc. We use the term "modality" to denote each such type of acquisition framework. Due to the rich characteristics of natural phenomena, as well as of the environments in which they occur, it is rare that a single modality can provide complete knowledge of the phenomenon of interest. The increasing availability of several modalities at once introduces new degrees of freedom, which raise questions beyond those related to exploiting each modality separately. It is the aim of this paper to evoke and promote various challenges in multimodal data fusion at the conceptual level, without focusing on any specific model, method or application

    Multimodal Data Fusion and Quantitative Analysis for Medical Applications

    Get PDF
    Medical big data is not only enormous in its size, but also heterogeneous and complex in its data structure, which makes conventional systems or algorithms difficult to process. These heterogeneous medical data include imaging data (e.g., Positron Emission Tomography (PET), Computerized Tomography (CT), Magnetic Resonance Imaging (MRI)), and non-imaging data (e.g., laboratory biomarkers, electronic medical records, and hand-written doctor notes). Multimodal data fusion is an emerging vital field to address this urgent challenge, aiming to process and analyze the complex, diverse and heterogeneous multimodal data. The fusion algorithms bring great potential in medical data analysis, by 1) taking advantage of complementary information from different sources (such as functional-structural complementarity of PET/CT images) and 2) exploiting consensus information that reflects the intrinsic essence (such as the genetic essence underlying medical imaging and clinical symptoms). Thus, multimodal data fusion benefits a wide range of quantitative medical applications, including personalized patient care, more optimal medical operation plan, and preventive public health. Though there has been extensive research on computational approaches for multimodal fusion, there are three major challenges of multimodal data fusion in quantitative medical applications, which are summarized as feature-level fusion, information-level fusion and knowledge-level fusion: • Feature-level fusion. The first challenge is to mine multimodal biomarkers from high-dimensional small-sample multimodal medical datasets, which hinders the effective discovery of informative multimodal biomarkers. Specifically, efficient dimension reduction algorithms are required to alleviate "curse of dimensionality" problem and address the criteria for discovering interpretable, relevant, non-redundant and generalizable multimodal biomarkers. • Information-level fusion. The second challenge is to exploit and interpret inter-modal and intra-modal information for precise clinical decisions. Although radiomics and multi-branch deep learning have been used for implicit information fusion guided with supervision of the labels, there is a lack of methods to explicitly explore inter-modal relationships in medical applications. Unsupervised multimodal learning is able to mine inter-modal relationship as well as reduce the usage of labor-intensive data and explore potential undiscovered biomarkers; however, mining discriminative information without label supervision is an upcoming challenge. Furthermore, the interpretation of complex non-linear cross-modal associations, especially in deep multimodal learning, is another critical challenge in information-level fusion, which hinders the exploration of multimodal interaction in disease mechanism. • Knowledge-level fusion. The third challenge is quantitative knowledge distillation from multi-focus regions on medical imaging. Although characterizing imaging features from single lesions using either feature engineering or deep learning methods have been investigated in recent years, both methods neglect the importance of inter-region spatial relationships. Thus, a topological profiling tool for multi-focus regions is in high demand, which is yet missing in current feature engineering and deep learning methods. Furthermore, incorporating domain knowledge with distilled knowledge from multi-focus regions is another challenge in knowledge-level fusion. To address the three challenges in multimodal data fusion, this thesis provides a multi-level fusion framework for multimodal biomarker mining, multimodal deep learning, and knowledge distillation from multi-focus regions. Specifically, our major contributions in this thesis include: • To address the challenges in feature-level fusion, we propose an Integrative Multimodal Biomarker Mining framework to select interpretable, relevant, non-redundant and generalizable multimodal biomarkers from high-dimensional small-sample imaging and non-imaging data for diagnostic and prognostic applications. The feature selection criteria including representativeness, robustness, discriminability, and non-redundancy are exploited by consensus clustering, Wilcoxon filter, sequential forward selection, and correlation analysis, respectively. SHapley Additive exPlanations (SHAP) method and nomogram are employed to further enhance feature interpretability in machine learning models. • To address the challenges in information-level fusion, we propose an Interpretable Deep Correlational Fusion framework, based on canonical correlation analysis (CCA) for 1) cohesive multimodal fusion of medical imaging and non-imaging data, and 2) interpretation of complex non-linear cross-modal associations. Specifically, two novel loss functions are proposed to optimize the discovery of informative multimodal representations in both supervised and unsupervised deep learning, by jointly learning inter-modal consensus and intra-modal discriminative information. An interpretation module is proposed to decipher the complex non-linear cross-modal association by leveraging interpretation methods in both deep learning and multimodal consensus learning. • To address the challenges in knowledge-level fusion, we proposed a Dynamic Topological Analysis framework, based on persistent homology, for knowledge distillation from inter-connected multi-focus regions in medical imaging and incorporation of domain knowledge. Different from conventional feature engineering and deep learning, our DTA framework is able to explicitly quantify inter-region topological relationships, including global-level geometric structure and community-level clusters. K-simplex Community Graph is proposed to construct the dynamic community graph for representing community-level multi-scale graph structure. The constructed dynamic graph is subsequently tracked with a novel Decomposed Persistence algorithm. Domain knowledge is incorporated into the Adaptive Community Profile, summarizing the tracked multi-scale community topology with additional customizable clinically important factors

    A Survey of Multimodal Information Fusion for Smart Healthcare: Mapping the Journey from Data to Wisdom

    Full text link
    Multimodal medical data fusion has emerged as a transformative approach in smart healthcare, enabling a comprehensive understanding of patient health and personalized treatment plans. In this paper, a journey from data to information to knowledge to wisdom (DIKW) is explored through multimodal fusion for smart healthcare. We present a comprehensive review of multimodal medical data fusion focused on the integration of various data modalities. The review explores different approaches such as feature selection, rule-based systems, machine learning, deep learning, and natural language processing, for fusing and analyzing multimodal data. This paper also highlights the challenges associated with multimodal fusion in healthcare. By synthesizing the reviewed frameworks and theories, it proposes a generic framework for multimodal medical data fusion that aligns with the DIKW model. Moreover, it discusses future directions related to the four pillars of healthcare: Predictive, Preventive, Personalized, and Participatory approaches. The components of the comprehensive survey presented in this paper form the foundation for more successful implementation of multimodal fusion in smart healthcare. Our findings can guide researchers and practitioners in leveraging the power of multimodal fusion with the state-of-the-art approaches to revolutionize healthcare and improve patient outcomes.Comment: This work has been submitted to the ELSEVIER for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Multimodal Affect Recognition: Current Approaches and Challenges

    Get PDF
    Many factors render multimodal affect recognition approaches appealing. First, humans employ a multimodal approach in emotion recognition. It is only fitting that machines, which attempt to reproduce elements of the human emotional intelligence, employ the same approach. Second, the combination of multiple-affective signals not only provides a richer collection of data but also helps alleviate the effects of uncertainty in the raw signals. Lastly, they potentially afford us the flexibility to classify emotions even when one or more source signals are not possible to retrieve. However, the multimodal approach presents challenges pertaining to the fusion of individual signals, dimensionality of the feature space, and incompatibility of collected signals in terms of time resolution and format. In this chapter, we explore the aforementioned challenges while presenting the latest scholarship on the topic. Hence, we first discuss the various modalities used in affect classification. Second, we explore the fusion of modalities. Third, we present publicly accessible multimodal datasets designed to expedite work on the topic by eliminating the laborious task of dataset collection. Fourth, we analyze representative works on the topic. Finally, we summarize the current challenges in the field and provide ideas for future research directions

    Multimodal music information processing and retrieval: survey and future challenges

    Full text link
    Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, mid-level representations, motion, and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years

    A review on data fusion in multimodal learning analytics and educational data mining

    Get PDF
    The new educational models such as smart learning environments use of digital and context-aware devices to facilitate the learning process. In this new educational scenario, a huge quantity of multimodal students' data from a variety of different sources can be captured, fused, and analyze. It offers to researchers and educators a unique opportunity of being able to discover new knowledge to better understand the learning process and to intervene if necessary. However, it is necessary to apply correctly data fusion approaches and techniques in order to combine various sources of multimodal learning analytics (MLA). These sources or modalities in MLA include audio, video, electrodermal activity data, eye-tracking, user logs, and click-stream data, but also learning artifacts and more natural human signals such as gestures, gaze, speech, or writing. This survey introduces data fusion in learning analytics (LA) and educational data mining (EDM) and how these data fusion techniques have been applied in smart learning. It shows the current state of the art by reviewing the main publications, the main type of fused educational data, and the data fusion approaches and techniques used in EDM/LA, as well as the main open problems, trends, and challenges in this specific research area

    Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images

    Full text link
    Object detection in Remote Sensing Images (RSI) is a critical task for numerous applications in Earth Observation (EO). Unlike general object detection, object detection in RSI has specific challenges: 1) the scarcity of labeled data in RSI compared to general object detection datasets, and 2) the small objects presented in a high-resolution image with a vast background. To address these challenges, we propose a multimodal transformer exploring multi-source remote sensing data for object detection. Instead of directly combining the multimodal input through a channel-wise concatenation, which ignores the heterogeneity of different modalities, we propose a cross-channel attention module. This module learns the relationship between different channels, enabling the construction of a coherent multimodal input by aligning the different modalities at the early stage. We also introduce a new architecture based on the Swin transformer that incorporates convolution layers in non-shifting blocks while maintaining fixed dimensions, allowing for the generation of fine-to-coarse representations with a favorable accuracy-computation trade-off. The extensive experiments prove the effectiveness of the proposed multimodal fusion module and architecture, demonstrating their applicability to multimodal aerial imagery.Comment: submitted to ICASSP202
    • …
    corecore