9 research outputs found

    Online reviews provide insight into consumer satisfaction

    Get PDF
    Consumer satisfaction is one of the key concepts in health care and refers to how happy our consumers are with the health care services they receive. Reported satisfaction is also an indicator of healthcare quality, specifically as perceived by the end users. The growth and increasing popularity of online review platforms, including Google or Yelp, has meant that consumers can now easily share their experiences with wider audiences, allowing them to assess potential services and reported outcomes.http://journals.lww.com/thehearingjournal/pages/default.aspxhj2022Speech-Language Pathology and Audiolog

    AD-BERT: Using Pre-trained contextualized embeddings to Predict the Progression from Mild Cognitive Impairment to Alzheimer's Disease

    Full text link
    Objective: We develop a deep learning framework based on the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model using unstructured clinical notes from electronic health records (EHRs) to predict the risk of disease progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Materials and Methods: We identified 3657 patients diagnosed with MCI together with their progress notes from Northwestern Medicine Enterprise Data Warehouse (NMEDW) between 2000-2020. The progress notes no later than the first MCI diagnosis were used for the prediction. We first preprocessed the notes by deidentification, cleaning and splitting, and then pretrained a BERT model for AD (AD-BERT) based on the publicly available Bio+Clinical BERT on the preprocessed notes. The embeddings of all the sections of a patient's notes processed by AD-BERT were combined by MaxPooling to compute the probability of MCI-to-AD progression. For replication, we conducted a similar set of experiments on 2563 MCI patients identified at Weill Cornell Medicine (WCM) during the same timeframe. Results: Compared with the 7 baseline models, the AD-BERT model achieved the best performance on both datasets, with Area Under receiver operating characteristic Curve (AUC) of 0.8170 and F1 score of 0.4178 on NMEDW dataset and AUC of 0.8830 and F1 score of 0.6836 on WCM dataset. Conclusion: We developed a deep learning framework using BERT models which provide an effective solution for prediction of MCI-to-AD progression using clinical note analysis

    Challenges in adapting existing clinical natural language processing systems to multiple, diverse health care settings

    No full text
    Widespread application of clinical natural language processing (NLP) systems requires taking existing NLP systems and adapting them to diverse and heterogeneous settings. We describe the challenges faced and lessons learned in adapting an existing NLP system for measuring colonoscopy quality. Colonoscopy and pathology reports from 4 settings during 2013-2015, varying by geographic location, practice type, compensation structure, and electronic health record. Though successful, adaptation required considerably more time and effort than anticipated. Typical NLP challenges in assembling corpora, diverse report structures, and idiosyncratic linguistic content were greatly magnified. Strategies for addressing adaptation challenges include assessing site-specific diversity, setting realistic timelines, leveraging local electronic health record expertise, and undertaking extensive iterative development. More research is needed on how to make it easier to adapt NLP systems to new clinical settings. A key challenge in widespread application of NLP is adapting existing systems to new clinical settings

    Automated Coding of Under-Studied Medical Concept Domains: Linking Physical Activity Reports to the International Classification of Functioning, Disability, and Health

    Get PDF
    Linking clinical narratives to standardized vocabularies and coding systems is a key component of unlocking the information in medical text for analysis. However, many domains of medical concepts lack well-developed terminologies that can support effective coding of medical text. We present a framework for developing natural language processing (NLP) technologies for automated coding of under-studied types of medical information, and demonstrate its applicability via a case study on physical mobility function. Mobility is a component of many health measures, from post-acute care and surgical outcomes to chronic frailty and disability, and is coded in the International Classification of Functioning, Disability, and Health (ICF). However, mobility and other types of functional activity remain under-studied in medical informatics, and neither the ICF nor commonly-used medical terminologies capture functional status terminology in practice. We investigated two data-driven paradigms, classification and candidate selection, to link narrative observations of mobility to standardized ICF codes, using a dataset of clinical narratives from physical therapy encounters. Recent advances in language modeling and word embedding were used as features for established machine learning models and a novel deep learning approach, achieving a macro F-1 score of 84% on linking mobility activity reports to ICF codes. Both classification and candidate selection approaches present distinct strengths for automated coding in under-studied domains, and we highlight that the combination of (i) a small annotated data set; (ii) expert definitions of codes of interest; and (iii) a representative text corpus is sufficient to produce high-performing automated coding systems. This study has implications for the ongoing growth of NLP tools for a variety of specialized applications in clinical care and research.Comment: Updated final version, published in Frontiers in Digital Health, https://doi.org/10.3389/fdgth.2021.620828. 34 pages (23 text + 11 references); 9 figures, 2 table

    The Revival of the Notes Field: Leveraging the Unstructured Content in Electronic Health Records

    Get PDF
    Problem: Clinical practice requires the production of a time- and resource-consuming great amount of notes. They contain relevant information, but their secondary use is almost impossible, due to their unstructured nature. Researchers are trying to address this problems, with traditional and promising novel techniques. Application in real hospital settings seems not to be possible yet, though, both because of relatively small and dirty dataset, and for the lack of language-specific pre-trained models.Aim: Our aim is to demonstrate the potential of the above techniques, but also raise awareness of the still open challenges that the scientific communities of IT and medical practitioners must jointly address to realize the full potential of unstructured content that is daily produced and digitized in hospital settings, both to improve its data quality and leverage the insights from data-driven predictive models.Methods: To this extent, we present a narrative literature review of the most recent and relevant contributions to leverage the application of Natural Language Processing techniques to the free-text content electronic patient records. In particular, we focused on four selected application domains, namely: data quality, information extraction, sentiment analysis and predictive models, and automated patient cohort selection. Then, we will present a few empirical studies that we undertook at a major teaching hospital specializing in musculoskeletal diseases.Results: We provide the reader with some simple and affordable pipelines, which demonstrate the feasibility of reaching literature performance levels with a single institution non-English dataset. In such a way, we bridged literature and real world needs, performing a step further toward the revival of notes fields

    Systematic review on ai-blockchain based e-healthcare records management systems

    Get PDF
    Electronic health records (EHRs) are digitally saved health records that provide information about a person's health. EHRs are generally shared among healthcare stakeholders, and thus are susceptible to power failures, data misuse, a lack of privacy, security, and an audit trail, among other problems. Blockchain, on the other hand, is a groundbreaking technology that provides a distributed and decentralized environment in which nodes in a list of networks can connect to each other without the need for a central authority. It has the potential to overcome the limits of EHR management and create a more secure, decentralized, and safer environment for exchanging EHR data. Further, blockchain is a distributed ledger on which data can be stored and shared in a cryptographically secure, validated, and mutually agreed-upon manner across all mining nodes. The blockchain stores data with a high level of integrity and robustness, and it cannot be altered. When smart contracts are used to make decisions and conduct analytics with machine-learning algorithms, the results may be trusted and unquestioned. However, Blockchain is not always indestructible and suffers from scalability and complexity issues that might render it inefficient. Combining AI and blockchain technology can handled some of the drawbacks of these two technical ecosystems effectively. AI algorithms rely on data or information to learn, analyze, and reach conclusions. The performance of AI algorithms is enhanced through the data obtained from a data repository or a reliable, secure, trustworthy, and credible platform. Researchers have identified three categories of blockchain-based potential solutions for the management of electronic health records: conceptual, prototype, and implemented. The purpose of this research work is to conduct a Systematic Literature Review (SLR) to identify and assess research articles that were either conceptual or implemented to manage EHRs using blockchain technology. The study conducts a comprehensive evaluation of the literature on blockchain technology and enhanced health record management systems utilizing artificial intelligence technologies. The study examined 189 research papers collected from various publication categories. The in-depth analysis focuses on the privacy, security, accessibility, and scalability of publications. The SLR has illustrated that blockchain technology has the potential to deliver decentralization, security, and privacy that are frequently lacking in traditional EHRs. Additionally, the outcomes of the extensive analysis inform future researchers about the type of blockchain to use in their research. Additionally, methods used in healthcare are summarized per application area while their pros and cons are highlighted. Finally, the emphasized taxonomy combines blockchain and artificial intelligence, which enables us to analyze possible blockchain and artificial intelligence applications in health records management systems. The article ends with a discussion on open issues for research and future directions

    Enhancing outbreak early warning surveillance in resource-limited Pacific island countries and territories

    Full text link
    Comprehensive, timely, and accurate health data are essential for the detection of outbreak-prone diseases. If these go unnoticed or are identified late, they pose significant risks to the health of a population. In the Pacific islands, a syndrome-based surveillance strategy, known as the Pacific Syndromic Surveillance System (PSSS), is employed for the early detection of outbreaks. The PSSS, implemented in 2010, has provided a mechanism by which resource-limited Pacific island governments have been able to perform routine surveillance activities and address many of their national and international health protection needs and obligations. Despite being a cornerstone of health protection for many Pacific islands, the surveillance system had not been comprehensively evaluated. Nor had behavioural, technical, or upstream health system factors that influence its performance been investigated. This thesis assesses whether the PSSS is meeting its stated objectives and produces evidence to augment technical and operational elements of the system. The thesis answers the following questions: (i) is the PSSS meeting its stated objectives? (ii) are algorithm-based approaches to outbreak detection appropriate in the Pacific island systems and context?; (iii) how can the PSSS be enhanced to meet information needs during public health emergencies?; and (iv) what factors enable and constrain surveillance nurses’data collection and reporting practice? The thesis found that the surveillance system is simple, well regarded, trusted, and context-relevant mechanism that Pacific island governments from across the development spectrum have been able to adopt and maintain with minimal external technical or financial support. Despite these positive findings, the research identified several statistical, procedural, and broader systems barriers to optimal performance, including chronic staffing and other resource constraints, insufficient data on which to base outbreak detection analysis, and poor integration of health information systems. Looking ahead, the thesis identifies practical opportunities for system improvement and highlights areas for further research

    Preface

    Get PDF
    corecore