6 research outputs found

    Challenges in Collaborative HRI for Remote Robot Teams

    Get PDF
    Collaboration between human supervisors and remote teams of robots is highly challenging, particularly in high-stakes, distant, hazardous locations, such as off-shore energy platforms. In order for these teams of robots to truly be beneficial, they need to be trusted to operate autonomously, performing tasks such as inspection and emergency response, thus reducing the number of personnel placed in harm's way. As remote robots are generally trusted less than robots in close-proximity, we present a solution to instil trust in the operator through a `mediator robot' that can exhibit social skills, alongside sophisticated visualisation techniques. In this position paper, we present general challenges and then take a closer look at one challenge in particular, discussing an initial study, which investigates the relationship between the level of control the supervisor hands over to the mediator robot and how this affects their trust. We show that the supervisor is more likely to have higher trust overall if their initial experience involves handing over control of the emergency situation to the robotic assistant. We discuss this result, here, as well as other challenges and interaction techniques for human-robot collaboration.Comment: 9 pages. Peer reviewed position paper accepted in the CHI 2019 Workshop: The Challenges of Working on Social Robots that Collaborate with People (SIRCHI2019), ACM CHI Conference on Human Factors in Computing Systems, May 2019, Glasgow, U

    CyPhER : a digital thread framework towards human-systems symbiosis

    Get PDF
    Cyber-physical twinning is an important area of study across multiple diverse fields. Creating more symbiotic human-machine partnerships facilitates extended reality. This thesis presents a flexible digital thread framework, CyPhER (Cyber Physical Extended Reality), as a platform and application agnostic solution for human-systems symbiosis. This framework includes software, techniques, and a reference architecture to allow for implementation in any field where cyber-physical twinning is possible. This thesis contains case studies carried out with industry partners in the domains of vocational education and robotics. These case studies demonstrate extended reality enabling human-systems symbiosis within their fields. When moving between these fields, CyPhER itself evolved, improving in terms of performance and capability. These applications required CyPhER to be deployed on a range of platforms spanning operating systems and form factors, which influenced its performance across these devices. Having flexibility in this approach allows CyPhER to address barriers in terms of computing apparatus in each field, such as edge devices. A cyber-physical extended reality is beneficial as a teaching aid, supporting a symbiotic process where both students and tutors can benefit from a teaching environment which utilises both the real and virtual worlds. It also benefits the field of automation, allowing for a symbiotic partnership between the human operator and systems. This is achieved through bidirectional interactions between robots and humans to enable enhanced operational decision support. Approaching these applications with a cyber-physical solution has enabled gains in usability, flexibility, and scalability in each field, abstracting complex systems with extended reality features to enable symbiosis between systems and the humans that control them. This is demonstrated in the consideration of control display gains in human-system interaction, which addresses the interaction barrier between the human and the system.Funded by Heriot-Watt Universit

    Route Planning and Operator Allocation in Robot Fleets

    Get PDF
    In this thesis, we address various challenges related to optimal planning and task allocation in a robot fleet supervised by remote human operators. The overarching goal is to enhance the performance and efficiency of the robot fleets by planning routes and scheduling operator assistance while accounting for limited human availability. The thesis consists of three main problems, each of which focuses on a specific aspect of the system. The first problem pertains to optimal planning for a robot in a collaborative human-robot team, where the human supervisor is intermittently available to assist the robot to complete its tasks faster. Specifically, we address the challenge of computing the fastest route between two configurations in an environment with time constraints on how long the robot can wait for assistance at intermediate configurations. We consider the application of robot navigation in a city environment, where different routes can have distinct speed limits and different time constraints on how long a robot is allowed to wait. Our proposed approach utilizes the concepts of budget and critical departure times, enabling optimal solution and enhanced scalability compared to existing methods. Extensive comparisons with baseline algorithms on a city road network demonstrate its effectiveness and ability to achieve high-quality solutions. Furthermore, we extend the problem to the multi-robot case, where the challenge lies in prioritizing robots when multiple service requests arrive simultaneously. To address this challenge, we present a greedy algorithm that efficiently prioritizes service requests in a batch and has a remarkably good performance compared to the optimal solution. The next problem focuses on allocating human operators to robots in a fleet, considering each robot's specified route and the potential for failures and getting stuck. Conventional techniques used to solve such problems face scalability issues due to exponential growth of state and action spaces with the number of robots and operators. To overcome these, we derive conditions for a technical requirement called indexability, thereby enabling the use of the Whittle index heuristic. Our key insight is to leverage the structure of the value function of individual robots, resulting in conditions that can be easily verified separately for each state of each robot. We apply these conditions to two types of transitions commonly seen in supervised robot fleets. Through numerical simulations, we demonstrate the efficacy of Whittle index policy as a near-optimal scalable approach that outperforms existing scalable methods. Finally, we investigate the impact of interruptions on human supervisors overseeing a fleet of robots. Human supervisors in such systems are primarily responsible for monitoring robots, but can also be assigned with secondary tasks. These tasks can act as interruptions and can be categorized as either intrinsic, i.e., being directly related to the monitoring task, or extrinsic, i.e., being unrelated. Through a user study involving 3939 participants, the findings reveal that task performance remains relatively unaffected by interruptions, and is primarily dependent on the number of robots being monitored. However, extrinsic interruptions led to a significant increase in perceived workload, creating challenges in switching between tasks. These results highlight the importance of managing user workload by limiting extrinsic interruptions in such supervision systems. Overall, this thesis contributes to the field of robot planning and operator allocation in collaborative human-robot teams. By incorporating human assistance, addressing scalability challenges, and understanding the impact of interruptions, we aim to enhance the performance and usability of robot fleets. Our work introduces optimal planning methods and efficient allocation strategies, empowering the seamless operation of robot fleets in real-world scenarios. Additionally, we provide valuable insights into user workload, shedding light on the interactions between humans and robots in such systems. We hope that our research promotes the widespread adoption of robot fleets and facilitates their integration into various domains, ultimately driving advancements in the field
    corecore