14,084 research outputs found

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Extending Demand Response to Tenants in Cloud Data Centers via Non-intrusive Workload Flexibility Pricing

    Full text link
    Participating in demand response programs is a promising tool for reducing energy costs in data centers by modulating energy consumption. Towards this end, data centers can employ a rich set of resource management knobs, such as workload shifting and dynamic server provisioning. Nonetheless, these knobs may not be readily available in a cloud data center (CDC) that serves cloud tenants/users, because workloads in CDCs are managed by tenants themselves who are typically charged based on a usage-based or flat-rate pricing and often have no incentive to cooperate with the CDC operator for demand response and cost saving. Towards breaking such "split incentive" hurdle, a few recent studies have tried market-based mechanisms, such as dynamic pricing, inside CDCs. However, such mechanisms often rely on complex designs that are hard to implement and difficult to cope with by tenants. To address this limitation, we propose a novel incentive mechanism that is not dynamic, i.e., it keeps pricing for cloud resources unchanged for a long period. While it charges tenants based on a Usage-based Pricing (UP) as used by today's major cloud operators, it rewards tenants proportionally based on the time length that tenants set as deadlines for completing their workloads. This new mechanism is called Usage-based Pricing with Monetary Reward (UPMR). We demonstrate the effectiveness of UPMR both analytically and empirically. We show that UPMR can reduce the CDC operator's energy cost by 12.9% while increasing its profit by 4.9%, compared to the state-of-the-art approaches used by today's CDC operators to charge their tenants
    • …
    corecore