202 research outputs found

    Reconstructing Probability Distributions with Gaussian Processes

    Full text link
    Modern cosmological analyses constrain physical parameters using Markov Chain Monte Carlo (MCMC) or similar sampling techniques. Oftentimes, these techniques are computationally expensive to run and require up to thousands of CPU hours to complete. Here we present a method for reconstructing the log-probability distributions of completed experiments from an existing MCMC chain (or any set of posterior samples). The reconstruction is performed using Gaussian process regression for interpolating the log-probability. This allows for easy resampling, importance sampling, marginalization, testing different samplers, investigating chain convergence, and other operations. As an example use-case, we reconstruct the posterior distribution of the most recent Planck 2018 analysis. We then resample the posterior, and generate a new MCMC chain with forty times as many points in only thirty minutes. Our likelihood reconstruction tool can be found online at https://github.com/tmcclintock/AReconstructionTool.Comment: 7 pages, 4 figures, repository at https://github.com/tmcclintock/AReconstructionToo

    A Systematic Study of Projection Biases in Weak Lensing Analysis

    Full text link
    We present a systematic study of projection biases in the weak lensing analysis of the first year of data from the Dark Energy Survey (DES) experiment. In the analysis we used a Λ\LambdaCDM model and three two-point correlation functions. We show that these biases are a consequence of projecting, or marginalizing, over parameters like hh, Ωb\Omega_b, nsn_s and Ωνh2\Omega_\nu h^2 that are both poorly constrained and correlated with the parameters of interest like Ωm\Omega_m, σ8\sigma_8 and S8S_8. Covering the relevant parameter space we show that the projection biases are a function of where the true values of the poorly constrained parameters lie with respect to the parameter priors. For example, biases in the position of the posteriors can exceed the 1.5σ\sigma level if the true values of hh and nsn_s are close to the top of the prior's range and the true values of Ωb\Omega_b and Ωνh2\Omega_\nu h^2 are close to the bottom of the range of their priors. We also show that in some cases the 1D credible intervals can be over-specified by as much as 30% and coverage can be as low as 27%. Finally we estimate these projection biases for the analysis of three and six years worth of DES data

    Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks

    Get PDF
    High-dimensional probability density estimation for inference suffers from the "curse of dimensionality". For many physical inference problems, the full posterior distribution is unwieldy and seldom used in practice. Instead, we propose direct estimation of lower-dimensional marginal distributions, bypassing high-dimensional density estimation or high-dimensional Markov chain Monte Carlo (MCMC) sampling. By evaluating the two-dimensional marginal posteriors we can unveil the full-dimensional parameter covariance structure. We additionally propose constructing a simple hierarchy of fast neural regression models, called Moment Networks, that compute increasing moments of any desired lower-dimensional marginal posterior density; these reproduce exact results from analytic posteriors and those obtained from Masked Autoregressive Flows. We demonstrate marginal posterior density estimation using high-dimensional LIGO-like gravitational wave time series and describe applications for problems of fundamental cosmology

    Parameter inference and model comparison using theoretical predictions from noisy simulations

    Get PDF
    When inferring unknown parameters or comparing different models, data must be compared to underlying theory. Even if a model has no closed-form solution to derive summary statistics, it is often still possible to simulate mock data in order to generate theoretical predictions. For realistic simulations of noisy data, this is identical to drawing realizations of the data from a likelihood distribution. Though the estimated summary statistic from simulated data vectors may be unbiased, the estimator has variance which should be accounted for. We show how to correct the likelihood in the presence of an estimated summary statistic by marginalizing over the true summary statistic in the framework of a Bayesian hierarchical model. For Gaussian likelihoods where the covariance must also be estimated from simulations, we present an alteration to the Sellentin-Heavens corrected likelihood. We show that excluding the proposed correction leads to an incorrect estimate of the Bayesian evidence with JLA data. The correction is highly relevant for cosmological inference that relies on simulated data for theory (e.g. weak lensing peak statistics and simulated power spectra) and can reduce the number of simulations required.Comment: 9 pages, 6 figures, published by MNRAS. Changes: matches published version, added Bayesian hierarchical interpretation and probabilistic graphical mode

    Relativistic spin precession in the binary PSR J1141-6545

    Full text link
    PSR J1141-6545 is a precessing binary pulsar that has the rare potential to reveal the two-dimensional structure of a non-recycled pulsar emission cone. It has undergone 25deg\sim 25 \deg of relativistic spin precession in the 18\sim18 years since its discovery. In this paper, we present a detailed Bayesian analysis of the precessional evolution of the width of the total intensity profile, to understand the changes to the line-of-sight impact angle (β\beta) of the pulsar using four different physically motivated prior distribution models. Although we cannot statistically differentiate between the models with confidence, the temporal evolution of the linear and circular polarisations strongly argue that our line-of-sight crossed the magnetic pole around MJD 54000 and that only two models remain viable. For both these models, it appears likely that the pulsar will precess out of our line-of-sight in the next 353-5 years, assuming a simple beam geometry. Marginalising over β\beta suggests that the pulsar is a near-orthogonal rotator and provides the first polarization-independent estimate of the scale factor (A\mathbb{A}) that relates the pulsar beam opening angle (ρ\rho) to its rotational period (PP) as ρ=AP0.5\rho = \mathbb{A}P^{-0.5} : we find it to be >6 deg s0.5> 6 \rm~deg~s^{0.5} at 1.4 GHz with 99\% confidence. If all pulsars emit from opposite poles of a dipolar magnetic field with comparable brightness, we might expect to see evidence of an interpulse arising in PSR J1141-6545, unless the emission is patchy.Comment: Accepted for publication in Astrophysical Journal Letter

    Complete parameter inference for GW150914 using deep learning

    Get PDF
    The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past five years. As the rate of detections grows with detector sensitivity, this poses a growing computational challenge for data analysis. With this in mind, in this work we apply deep learning techniques to perform fast likelihood-free Bayesian inference for gravitational waves. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows---specifically, a neural spline normalizing flow---which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a global set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the prior and detector noise characteristics used for training. By training with the detector noise power spectral density estimated at the time of GW150914, and conditioning on the event strain data, we use the neural network to generate accurate posterior samples consistent with analyses using conventional sampling techniques

    Do pulsar timing arrays observe merging primordial black holes?

    Full text link
    In this letter we evaluate whether the gravitational wave background recently observed by a number of different pulsar timing arrays could be due to merging primordial supermassive black hole binaries. We find that for homogeneously distributed primordial black holes this possibility is inconsistent with strong cosmological and astrophysical constraints on their total abundance. If the distribution exhibits some clustering, however, the merger rate will in general be enhanced, opening the window for a consistent interpretation of the PTA data in terms of merging primordial black holes.Comment: 8 pages, 3 figure
    corecore