9 research outputs found

    Progressive construction of a parametric reduced-order model for PDE-constrained optimization

    Full text link
    An adaptive approach to using reduced-order models as surrogates in PDE-constrained optimization is introduced that breaks the traditional offline-online framework of model order reduction. A sequence of optimization problems constrained by a given Reduced-Order Model (ROM) is defined with the goal of converging to the solution of a given PDE-constrained optimization problem. For each reduced optimization problem, the constraining ROM is trained from sampling the High-Dimensional Model (HDM) at the solution of some of the previous problems in the sequence. The reduced optimization problems are equipped with a nonlinear trust-region based on a residual error indicator to keep the optimization trajectory in a region of the parameter space where the ROM is accurate. A technique for incorporating sensitivities into a Reduced-Order Basis (ROB) is also presented, along with a methodology for computing sensitivities of the reduced-order model that minimizes the distance to the corresponding HDM sensitivity, in a suitable norm. The proposed reduced optimization framework is applied to subsonic aerodynamic shape optimization and shown to reduce the number of queries to the HDM by a factor of 4-5, compared to the optimization problem solved using only the HDM, with errors in the optimal solution far less than 0.1%

    An improved penalty algorithm using model order reduction for MIPDECO problems with partial observations

    Get PDF
    This work addresses optimal control problems governed by a linear time-dependent partial differential equation (PDE) as well as integer constraints on the control. Moreover, partial observations are assumed in the objective function. The resulting problem poses several numerical challenges due to the mixture of combinatorial aspects, induced by integer variables, and large scale linear algebra issues, arising from the PDE discretization. Since classical solution approaches such as the branch-and-bound framework are typically overwhelmed by such large-scale problems, this work extends an improved penalty algorithm proposed by the authors, to the time-dependent setting. The main contribution is a novel combination of an interior point method, preconditioning, and model order reduction yielding a tailored local optimization solver at the heart of the overall solution procedure. A thorough numerical investigation is carried out both for the heat equation as well as a convection-diffusion problem demonstrating the versatility of the approach
    corecore