An adaptive approach to using reduced-order models as surrogates in
PDE-constrained optimization is introduced that breaks the traditional
offline-online framework of model order reduction. A sequence of optimization
problems constrained by a given Reduced-Order Model (ROM) is defined with the
goal of converging to the solution of a given PDE-constrained optimization
problem. For each reduced optimization problem, the constraining ROM is trained
from sampling the High-Dimensional Model (HDM) at the solution of some of the
previous problems in the sequence. The reduced optimization problems are
equipped with a nonlinear trust-region based on a residual error indicator to
keep the optimization trajectory in a region of the parameter space where the
ROM is accurate. A technique for incorporating sensitivities into a
Reduced-Order Basis (ROB) is also presented, along with a methodology for
computing sensitivities of the reduced-order model that minimizes the distance
to the corresponding HDM sensitivity, in a suitable norm. The proposed reduced
optimization framework is applied to subsonic aerodynamic shape optimization
and shown to reduce the number of queries to the HDM by a factor of 4-5,
compared to the optimization problem solved using only the HDM, with errors in
the optimal solution far less than 0.1%