884 research outputs found

    Certificates of convexity for basic semi-algebraic sets

    Get PDF
    We provide two certificates of convexity for arbitrary basic semi-algebraic sets of Rn\R^n. The first one is based on a necessary and sufficient condition whereas the second one is based on a sufficient (but simpler) condition only. Both certificates are obtained from any feasible solution of a related semidefinite program and so can be obtained numerically (however, up to machine precision).Comment: 6 pages; To appear in Applied Mathematics Letter

    Matrix Convex Hulls of Free Semialgebraic Sets

    Full text link
    This article resides in the realm of the noncommutative (free) analog of real algebraic geometry - the study of polynomial inequalities and equations over the real numbers - with a focus on matrix convex sets CC and their projections C^\hat C. A free semialgebraic set which is convex as well as bounded and open can be represented as the solution set of a Linear Matrix Inequality (LMI), a result which suggests that convex free semialgebraic sets are rare. Further, Tarski's transfer principle fails in the free setting: The projection of a free convex semialgebraic set need not be free semialgebraic. Both of these results, and the importance of convex approximations in the optimization community, provide impetus and motivation for the study of the free (matrix) convex hull of free semialgebraic sets. This article presents the construction of a sequence C(d)C^{(d)} of LMI domains in increasingly many variables whose projections C^(d)\hat C^{(d)} are successively finer outer approximations of the matrix convex hull of a free semialgebraic set Dp={X:p(X)⪰0}D_p=\{X: p(X)\succeq0\}. It is based on free analogs of moments and Hankel matrices. Such an approximation scheme is possibly the best that can be done in general. Indeed, natural noncommutative transcriptions of formulas for certain well known classical (commutative) convex hulls does not produce the convex hulls in the free case. This failure is illustrated on one of the simplest free nonconvex DpD_p. A basic question is which free sets S^\hat S are the projection of a free semialgebraic set SS? Techniques and results of this paper bear upon this question which is open even for convex sets.Comment: 41 pages; includes table of contents; supplementary material (a Mathematica notebook) can be found at http://www.math.auckland.ac.nz/~igorklep/publ.htm

    Relative Entropy Relaxations for Signomial Optimization

    Full text link
    Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non-convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain successively tighter lower bounds of the optimal value of SPs. This sequence of lower bounds is computed by solving increasingly larger-sized relative entropy optimization problems, which are convex programs specified in terms of linear and relative entropy functions. Our approach relies crucially on the observation that the relative entropy function -- by virtue of its joint convexity with respect to both arguments -- provides a convex parametrization of certain sets of globally nonnegative signomials with efficiently computable nonnegativity certificates via the arithmetic-geometric-mean inequality. By appealing to representation theorems from real algebraic geometry, we show that our sequences of lower bounds converge to the global optima for broad classes of SPs. Finally, we also demonstrate the effectiveness of our methods via numerical experiments

    A Complete Characterization of the Gap between Convexity and SOS-Convexity

    Full text link
    Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials, via the definition of convexity, its first order characterization, and its second order characterization, are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming whereas deciding convexity is NP-hard. If we denote the set of convex and sos-convex polynomials in nn variables of degree dd with C~n,d\tilde{C}_{n,d} and ΣC~n,d\tilde{\Sigma C}_{n,d} respectively, then our main contribution is to prove that C~n,d=ΣC~n,d\tilde{C}_{n,d}=\tilde{\Sigma C}_{n,d} if and only if n=1n=1 or d=2d=2 or (n,d)=(2,4)(n,d)=(2,4). We also present a complete characterization for forms (homogeneous polynomials) except for the case (n,d)=(3,4)(n,d)=(3,4) which is joint work with G. Blekherman and is to be published elsewhere. Our result states that the set Cn,dC_{n,d} of convex forms in nn variables of degree dd equals the set ΣCn,d\Sigma C_{n,d} of sos-convex forms if and only if n=2n=2 or d=2d=2 or (n,d)=(3,4)(n,d)=(3,4). To prove these results, we present in particular explicit examples of polynomials in C~2,6∖ΣC~2,6\tilde{C}_{2,6}\setminus\tilde{\Sigma C}_{2,6} and C~3,4∖ΣC~3,4\tilde{C}_{3,4}\setminus\tilde{\Sigma C}_{3,4} and forms in C3,6∖ΣC3,6C_{3,6}\setminus\Sigma C_{3,6} and C4,4∖ΣC4,4C_{4,4}\setminus\Sigma C_{4,4}, and a general procedure for constructing forms in Cn,d+2∖ΣCn,d+2C_{n,d+2}\setminus\Sigma C_{n,d+2} from nonnegative but not sos forms in nn variables and degree dd. Although for disparate reasons, the remarkable outcome is that convex polynomials (resp. forms) are sos-convex exactly in cases where nonnegative polynomials (resp. forms) are sums of squares, as characterized by Hilbert.Comment: 25 pages; minor editorial revisions made; formal certificates for computer assisted proofs of the paper added to arXi
    • …
    corecore