5 research outputs found

    A unified framework for isotropic meshing based on narrow-band Euclidean distance transformation

    Get PDF
    In this paper, we propose a simple-yet-effective method for isotropic meshing relying on Euclidean distance transformation based centroidal Voronoi tessellation (CVT). Our approach improves the performance and robustness of computing CVT on curved domains while simultaneously providing high-quality output meshes. While conventional extrinsic methods compute CVTs in the entire volume bounded by the input model, we restrict the computation to a 3D shell of user-controlled thickness. Taking voxels which contain surface samples as sites, we compute the exact Euclidean distance transform on the GPU. Our algorithm is parallel and memory-efficient, and can construct the shell space for resolutions up to 20483 at interactive speed. The 3D centroidal Voronoi tessellation and restricted Voronoi diagrams are also computed efficiently on the GPU. Since the shell space can bridge holes and gaps smaller than a certain tolerance, and tolerate non-manifold edges and degenerate triangles, our algorithm can handle models with such defects, which typically cause conventional remeshing methods to fail. Our method can process implicit surfaces, polyhedral surfaces, and point clouds in a unified framework. Computational results show that our GPU-based isotropic meshing algorithm produces results comparable to state-of- the-art techniques, but is significantly faster than conventional CPU-based implementations.MOE (Min. of Education, S’pore)Published versio

    Methods and Distributed Software for Visualization of Cracks Propagating in Discrete Particle Systems

    Get PDF
    Scientific visualization is becoming increasingly important in analyzing and interpreting numerical and experimental data sets. Parallel computations of discrete particle systems lead to large data sets that can be produced, stored and visualized on distributed IT infrastructures. However, this leads to very complicated environments handling complex simulation and interactive visualization on the remote heterogeneous architectures. In micro-structure of continuum, broken connections between neighbouring particles can form complex cracks of unknown geometrical shape. The complex disjoint surfaces of cracks with holes and unavailability of a suitable scalar field defining the crack surfaces limit the application of the common surface extraction methods. The main visualization task is to extract the surfaces of cracks according to the connectivity of the broken connections and the geometry of the neighbouring particles. The research aims at enhancing the visualization methods of discrete particle systems and increasing speed of distributed visualization software. The dissertation consists of introduction, three main chapters and general conclusions. In the first Chapter, a literature review on visualization software, distributed environments, discrete element simulation of particle systems and crack visualization methods is presented. In the second Chapter, novel visualization methods were proposed for extraction of crack surfaces from monodispersed particle systems modelled by the discrete element method. The cell cut-based method, the Voronoi-based method and cell centre-based method explicitly define geometry of propagating cracks in fractured regions. The proposed visualization methods were implemented in the grid visualization e–service VizLitG and the distributed visualization software VisPartDEM. Partial data set transfer from the grid storage element was developed to reduce the data transfer and visualization time. In the third Chapter, the results of experimental research are presented. The performance of e-service VizLitG was evaluated in a geographically distributed grid. Different types of software were employed for data transfer in order to present the quantitative comparison. The performance of the developed visualization methods was investigated. The quantitative comparison of the execution time of local Voronoi-based method and that of global Voronoi diagrams generated by Voro++ library was presented. The accuracy of the developed methods was evaluated by computing the total depth of cuts made in particles by the extracted crack surfaces. The present research confirmed that the proposed visualization methods and the developed distributed software were capable of visualizing crack propagation modelled by the discrete element method in monodispersed particulate media

    Centroidal Voronoi Tessellation of Line Segments and Graphs

    No full text
    corecore