1,241 research outputs found

    Enumeration of chordal planar graphs and maps

    Get PDF
    We determine the number of labelled chordal planar graphs with n vertices, which is asymptotically for a constant and . We also determine the number of rooted simple chordal planar maps with n edges, which is asymptotically , where , , and s is an algebraic number of degree 12. The proofs are based on combinatorial decompositions and singularity analysis. Chordal planar graphs (or maps) are a natural example of a subcritical class of graphs in which the class of 3-connected graphs is relatively rich. The 3-connected members are precisely chordal triangulations, those obtained starting from by repeatedly adding vertices adjacent to an existing triangular face.We gratefully acknowledge earlier discussions on this project with Erkan Narmanli. M.N. was supported by grants MTM2017-82166-P and PID2020-113082GB-I00, the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M). C.R. was supported by the grant Beatriu de Pinós BP2019, funded by the H2020 COFUND project No 801370 and AGAUR (the Catalan agency for management of university and research grants), and the grant PID2020-113082GB-I00 of the Spanish Ministry of Science and Innovation.Peer ReviewedPostprint (author's final draft

    Partitioning Perfect Graphs into Stars

    Full text link
    The partition of graphs into "nice" subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same-size stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-complete cases, for example, on grid graphs and chordal graphs.Comment: Manuscript accepted to Journal of Graph Theor

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author

    Slimness of graphs

    Full text link
    Slimness of a graph measures the local deviation of its metric from a tree metric. In a graph G=(V,E)G=(V,E), a geodesic triangle (x,y,z)\bigtriangleup(x,y,z) with x,y,zVx, y, z\in V is the union P(x,y)P(x,z)P(y,z)P(x,y) \cup P(x,z) \cup P(y,z) of three shortest paths connecting these vertices. A geodesic triangle (x,y,z)\bigtriangleup(x,y,z) is called δ\delta-slim if for any vertex uVu\in V on any side P(x,y)P(x,y) the distance from uu to P(x,z)P(y,z)P(x,z) \cup P(y,z) is at most δ\delta, i.e. each path is contained in the union of the δ\delta-neighborhoods of two others. A graph GG is called δ\delta-slim, if all geodesic triangles in GG are δ\delta-slim. The smallest value δ\delta for which GG is δ\delta-slim is called the slimness of GG. In this paper, using the layering partition technique, we obtain sharp bounds on slimness of such families of graphs as (1) graphs with cluster-diameter Δ(G)\Delta(G) of a layering partition of GG, (2) graphs with tree-length λ\lambda, (3) graphs with tree-breadth ρ\rho, (4) kk-chordal graphs, AT-free graphs and HHD-free graphs. Additionally, we show that the slimness of every 4-chordal graph is at most 2 and characterize those 4-chordal graphs for which the slimness of every of its induced subgraph is at most 1

    On The Center Sets and Center Numbers of Some Graph Classes

    Full text link
    For a set SS of vertices and the vertex vv in a connected graph GG, maxxSd(x,v)\displaystyle\max_{x \in S}d(x,v) is called the SS-eccentricity of vv in GG. The set of vertices with minimum SS-eccentricity is called the SS-center of GG. Any set AA of vertices of GG such that AA is an SS-center for some set SS of vertices of GG is called a center set. We identify the center sets of certain classes of graphs namely, Block graphs, Km,nK_{m,n}, KneK_n-e, wheel graphs, odd cycles and symmetric even graphs and enumerate them for many of these graph classes. We also introduce the concept of center number which is defined as the number of distinct center sets of a graph and determine the center number of some graph classes

    The Irreducible Spine(s) of Undirected Networks

    Full text link
    Using closure concepts, we show that within every undirected network, or graph, there is a unique irreducible subgraph which we call its "spine". The chordless cycles which comprise this irreducible core effectively characterize the connectivity structure of the network as a whole. In particular, it is shown that the center of the network, whether defined by distance or betweenness centrality, is effectively contained in this spine. By counting the number of cycles of length 3 <= k <= max_length, we can also create a kind of signature that can be used to identify the network. Performance is analyzed, and the concepts we develop are illurstrated by means of a relatively small running sample network of about 400 nodes.Comment: Submitted to WISE 201
    corecore