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Abstract

We determine the number of labelled chordal planar graphs with n vertices, which is asymptotically c1 · n−5/2γnn!
for a constant c1 > 0 and γ ≈ 11.89235. We also determine the number of rooted simple chordal planar maps with
n edges, which is asymptotically c2n

−3/2δn, where δ = 1/σ ≈ 6.40375, and σ is an algebraic number of degree 12.
The proofs are based on combinatorial decompositions and singularity analysis. Chordal planar graphs (or maps)
are a natural example of a subcritical class of graphs in which the class of 3-connected graphs is relatively rich. The
3-connected members are precisely chordal triangulations, those obtained starting from K4 by repeatedly adding
vertices adjacent to an existing triangular face.

1 Introduction

A graph is chordal if every cycle of length greater than three contains at least one chord, which is an edge
connecting non-consecutive vertices of the cycle. Chordal graphs have been much studied in structural graph
theory and graph algorithms (see for instance [12]), but much less from the point of view of enumeration. It

is known that the asymptotic number of labelled chordal graphs with n vertices is
(

n
n/2

)
2n

2/4; an explanation

for this estimate is that as n goes to infinity almost all chordal graphs with n vertices are split, that is, the
vertex set can be partitioned into a clique and an independent set [2]. See also [17] for results on the exact
counting of chordal labelled graphs.

On the other hand, there has been much work on counting planar graphs and related classes of graphs
since the seminal work by Giménez and Noy [10]. Here we focus on planar graphs that are at the same time
chordal. To count them we use, as in [10], the canonical decomposition of graphs into k-connected components
for k = 1, 2, 3. The starting point is the enumeration of 3-connected chordal planar graphs: these are precisely
the chordal triangulations, which when suitably rooted are in bijection with ternary trees. Then we use the
decomposition of 2-connected graphs into 3-connected components. An important difference with the class of
all planar graphs is that one cannot compose more than two graphs in series since otherwise a chordless cycle
is created. A more significant difference is that the class of chordal planar graphs is subcritical (a concept
defined below), instead of being critical as the class of all planar graphs: this is reflected by the polynomial
term n−5/2 of the asymptotic estimates for the number of graphs in the class [5], as opposed to n−7/2 for
all planar graphs [10]. Thus we have a natural example in which the class of 3-connected graphs is relatively
rich, yet the class is subcritical.

Before stating our main results, we recall the formal definition of a subcritical class of graphs, which is
based on properties of the associated generating functions. A class of graphs G is block-stable if it has the
property that a graph belongs to G if and only if each of its blocks belongs to G. Let G be a block-stable
class of labelled graphs and denote the subclasses of connected graphs and 2-connected graphs by C and B,
their associated exponential generating functions by C(x) and B(x) with radius of convergence ρb and ρC ,
respectively. The class G is said to be subcritical [5] if

ρC ′(ρ) < ρb. (1)

This condition has important implications on the structure of a class of graphs. Intuitively, subcritical classes
are “tree-like” in some sense [11] exhibited for instance by the fact that their scaling limit is the continuum
random tree [13], which means that the global structure is essentially determined by the block-decomposition
tree, while the size of the blocks is bounded in expectation and at most logarithmic.
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Our first result is the following.

Theorem 1. Let gn be the number of labelled chordal planar graphs with n vertices, cn those which are
connected, and bn those which are 2-connected. Then as n→ ∞ we have

1. gn ∼ g · n−5/2γnn!, γ ≈ 11.89235, g ≈ 0.00027205

2. cn ∼ c · n−5/2γnn!, c ≈ 0.00027194,

3. bn ∼ b · n−5/2γnb n!, γb ≈ 10.76897, b ≈ 0.00016215.

We can add to the previous estimates the formula (see [1]) for the number tn of 3-connected labelled chordal
graphs

tn =

(
n

3

)
(3n− 9)!

(2n− 4)!
≈ t · n−5/2(27/4)nn!, t =

4
√
3

310
√
π
. (2)

A formula which will resurface later.
As a corollary of Theorem 1 the limiting probability that a random labelled planar chordal graph (with

the uniform distribution on graphs with n vertices) is connected tends to p = c/g ≈ 0.99963 as n→ ∞. In fact
it is straightforward to show [11] that the number of connected components is asymptotically distributed as
1+X, where X is a Poisson law with parameter C0 ≈ 0.00037470, a value computed at the end of Section 3,
so that p = e−C0 .

Our second result is about rooted maps. A rooted map is a connected planar multigraph with a fixed
embedding in the plane in which an edge (the root edge) is distinguished and directed. Rooted maps where
first enumerated by Tutte [16] and have been since then the object of much study (see [15] for definitions on
maps and an overview on their enumeration). We only consider simple maps (those with no loop or multiple
edge) since they are the natural objects with respect to the property of being chordal.

Theorem 2. Let Mn be the number of rooted chordal simple planar maps with n edges, and Bn those which
are 2-connected. Then as n→ ∞ we have

1. Bn ∼ b · n−3/2 · σ−n
b , with b ≈ 0.071674 and σ−1

b ≈ 3.65370,

2. Mn ∼ m · n−3/2 · σ−n, with m ≈ 0.12596 and σ−1 ≈ 6.40375.

The proof is again based on the structure of 3-connected chordal maps. As opposed to the class of general
maps, the class of simple chordal maps is again subcritical. This is reflected in the term n−3/2 instead of
the usual n−5/2 for classes of planar maps. Other natural subcritical classes are outerplanar maps [9] and
series-parallel maps [6], but these two classes do not contain 3-connected graphs.

For classes of labelled graphs we use exponential generating functions
∑
gnx

n/n!, where gn is the number
of graphs in the class with n vertices. For classes of rooted maps we use instead ordinary generating functions∑
Mnz

n, whereMn in the number of maps in the class with n edges. We say that the variable xmarks vertices
and z marks edges. We use the tools of analytic combinatorics [8] to obtain the estimates in Theorems 1 and
2, in particular transfer theorems for obtaining asymptotic estimates of functions with algebraic singularities.

Lemma 3. Assume that f(z) has radius of convergence ρ > 0 and admits an analytic continuation to an
open domain of the form

∆(R,ϕ) = {z : |z| < R, z ̸= ρ, | arg(z − ρ)| > ϕ} for some R > ρ and 0 < ϕ < π/2.

Further assume that f(z) verifies, when z ∼ ρ such that z ∈ ∆(ϕ,R),

f(z) ∼ c ·
(
1− z

ρ

)−α

for some c > 0 and α /∈ {0,−1,−2, . . . }.

Then the coefficients of f(z) satisfy

[zn]f(z) ∼ c

Γ(α)
nα−1ρ−n as n→ ∞.
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Finally we need the so-called disymmetry theorem for enumerating classes of graphs encoded by trees as
presented in [3]. A class of graphs A is said to be tree-decomposable if for each graph γ ∈ A we can associate
in a unique way a tree τ(γ) whose nodes are distinguishable (for instance, by using the labels). Let A• denote
the class of graphs in A where a node of τ(γ) is distinguished. Similarly, A•−• is the class of graphs in A
where an edge of τ(γ) is distinguished, and A•→• those where an edge τ(γ) is distinguished and given a
direction. The dissymmetry theorem allows us to express the class of unrooted graphs in A in terms of the
rooted classes.

Lemma 4. Let A be a tree-decomposable class. Then

A+A•→• ≃ A• +A•−•,

where ≃ is a bijection preserving the number of nodes.

If follows that we can write the series A• of A• in terms of the series of the other classes. If the encoding
trees have no adjacent nodes of the same type (as in our applications) then A•→• is twice A•−• and we have

A•(z) = A•(z)−A•−•(z).

In Section 2 we analyse the combinatorial structure of chordal planar graphs according to their connec-
tivity and deduce functional equations satisfied by the associated generating functions. Sections 3 and 4 are
devoted to the asymptotic analysis and to the proof of our main results.

2 Generating functions of chordal planar graphs

2.1 3-connected graphs

Chordal planar graphs that are 3-connected are in fact chordal triangulations (also called stacked triangu-
lations): they are obtained from K4 by repeatedly adding a vertex in the interior of an existing triangular
face and making it adjacent to the three vertices in the boundary. This is because chordal graphs admit a
perfect elimination ordering, so that when adding a new vertex one has to make it adjacent to exactly three
existing vertices in roder to preserve 3-connectedness and planarity.

Let T (z) be the generating function of labelled chordal triangulations rooted at a directed edge, where
z marks the number of vertices minus 2. It is clear that 3-connected chordal maps rooted at a triangle are
in bijection with planted ternary trees rooted at a leaf. The generating function of ternary trees rooted at a
leaf, where z marks internal nodes, is given by

S(z) = z(1 + S(z))3. (3)

According to the bijection, we have

T (z) =
zS(z)

2
. (4)

The division by 2 is because in a map we have two choices for the root face, to the left or to the right of the
root edge. It is well known that [zn]S(z) = 1

2n+1

(
3n
n

)
, from which (2) follows.

Later we need the unrooted version of T (z). It can be computed by algebraic integration of S(z) but we
choose to use the dissymmetry theorem on ternary trees since the proof is more combinatorial and it is used
again later.

Lemma 5. Let U(z) be the generating function counting (unrooted) labelled chordal triangulations, where z
marks all vertices. Then

U(z) =
z3

24
(S(z)− S(z)2). (5)

Proof. Labelled chordal triangulations with n vertices are in bijection with the class of trees with n−3 nodes
endowed with a labelling that satisfies the following:
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1. every node is labelled with a subset of size 4 of {1, . . . , n};

2. the intersection of the label of a node with the labels of its neighbours has size 3 and the intersection
is different for each neighbour. In particular, every node has degree at most 4;

3. the graph induced by the nodes whose label contains a given i ∈ {1, . . . , n} is connected.

Indeed, the nodes of the tree correspond to the 4-cliques in the triangulation, their labels correspond to the
labels of the four vertices of the 4-clique, and adjacent nodes correspond to two 4-cliques glued through a
triangle. From this, it is straigthforward to verify that the three properties of the labelling given above are
necessary and sufficient. Therefore, the generating function of the encoding trees, counted by their number
of nodes plus 3, is the generating function of labelled chordal triangulations. We will use the dissymmetry
theorem, i.e. Lemma 4, on the trees. We denote by A, A•, A•−• and A•→• the generating functions of A,
A•, A•−• and A•→•, respectively. Note that since all nodes have different labels they are distinguishable.
And hence A•→• = 2A•−•.

Rooting a tree at a node corresponds to rooting a chordal triangulation at a 4-clique. We fix the four
vertices of the clique, and then at each triangle we attach a (possibly empty) chordal triangulation. This
gives

A• =
z4

24
(1 + S(z))

4
=
z3

24
S(z) (1 + S(z)) .

Rooting at an edge corresponds to rooting a chordal triangulation at a triangle shared by two 4-cliques.
We fix the three vertices of the clique and then attach two chordal triangulations rooted at it. Taking into
account symmetries this gives

A•−• =
z3

12
S(z)2.

Finally, we have

U(z) = A = A• −A•−• =
z3

24
S(z) (1 + S(z))− z3

12
S(z)2 =

z3

24
(S(z)− S(z)2).

2.2 2-connected graphs

First we consider networks, that are 2-connected labelled chordal planar graphs rooted at a directed edge
e so that the endpoints of e are not labelled. Let E(x, y) be the generating function of networks, where x
marks vertices as before and y marks edges. The relation between E(x, y) and the corresponding generating
function B(x, y) of 2-connected graphs is then

E(x, y) =
2y

x2
By(x, y). (6)

Lemma 6. The following equation holds:

E(x, y) = y exp

(
xE(x, y)2 +

T
(
xE(x, y)3

)
E(x, y)

)
. (7)

Proof. Following the classical decomposition [11], networks are parallel compositions of series compositions
and 3-connected components. A 3-connected component in a network is a chordal triangulation rooted at an
edge, in which every edge except the root edge is replaced by a network. Furthermore, at most two networks
can be composed in series, as otherwise there would be an induced cycle of length at least 4. Thus, a series
composition can be encoded as a triangle rooted at an edge, in which each non-root edge is replaced by
a network. The factor y on the right-hand side of (7) encodes the root edge, the exponential encodes the
set (possibly empty) of parallel netwoks, the term xE(x, y)2 encodes the series composition of exactly two
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Fig. 1: Top left is an example of a 2-connected chordal planar graph. Top right is its decomposition into
series and 3-connected components. Bottom is the tree associated with the decomposition.

networks, and the term T (xE3)/E the replacement of edges in a triangulation t. The term xE3 stems from
the fact that we keep the vertices of t and in addtion if t has n− 2 vertices then it has exactly 3n edges; the
divsion by E is because the root edge of t is not replaced.

Expanding the first terms of E in series and using (6) we get

B(x, y) =
x2

2

∫
E(x, y)

y
dy =

y

2
x2 +

y3

6
x3 +

(
y6

24
+
y5

4

)
x4 +

(
y9

12
+
y8

4
+

7 y7

12

)
x5 + · · ·

We need to compute the integral
∫
(E(x, y)/y)dy in order to express B in terms of E. It is equivalent to

the operation of unrooting a graph, and we do it using again the dissymmetry theorem. We encode a 2-
connected chordal graph with a canonical tree, whose nodes are of the following types: e (edge), s (series),
and t (triangulation). Notice that the edges in the tree can only be of type e − s or e − t. An example of
the decomposition of a 2-connected chordal planar graph and its associated tree is illustrated by Figure 1.
We denote by Re(x), Rs(x), Rt(x), Re−s(x), Re−t(x) the generating functions encoding trees rooted at the
corresponding specific type of node or edge. By symmetry we have Re−s(x) = Re→s(x) = Rs→e(x), and the
same goes for Re−t(x).

Lemma 7. Let E = E(x) = E(x, 1) and B(x) = B(x, 1). Then

B(x) =
x2

2

(
E − xE3

12

(
S
(
xE3

)2
+ 5S

(
xE3

)
+ 8
))

. (8)

Proof. Applying Lemma 4 on the tree-decomposable class of labelled 2-connected chordal planar graphs and
taking the symmetries into account gives

B(x) = Rs(x) +Re(x) +Rt(x)−Re−s(x)−Re−t(x). (9)
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Next, we compute each of the series on the right-hand side of (9).
Rooting at nodes of the tree. Rooting the tree at a s-node corresponds to fixing three unordered vertices

of a triangle and attaching a (possibly empty) network at each of the three edges. Thus, Rs(x) = x3E3/6.
Furthermore, unless the graph is reduced to a single edge encoded by x2/2, nodes of type e have degree at
least 2 in the tree. Therefore, rooting at an e-node corresponds to fixing the two unordered vertices of the
edge and attaching a network with at least two parallel components. This is encoded by substracting the

first two terms of the exponential in 7, which gives Re(x) = x2

2

(
E − xE2 − T (xE3)/E

)
. Finally, rooting

at a t-node corresponds to attaching a network at each of the edges of an unrooted chordal triangulation.
Considering that z in U(z) encodes the number of vertices minus 2, this gives Rt(x) = U(xE3)/E6.

Rooting at edges of the tree. Rooting at an (e− s)-edge corresponds to rooting a graph at a triangle with
one of its sides distinguished. Therefore, we fix the three vertices of the triangle (the two vertices on the root
edge are unordered) and we attach a non-empty network to the root edge and any network to each of the

two remaining edges. This yields Re−s(x) =
x3

2 E
2 (E − 1). Finally, rooting at an (e− t)-edge corresponds to

rooting at a triangulation with a distinguished edge and attaching a network to each of its edges. The term

T
(
xE3

)
is explained as before and this gives Re−t(x) =

x2

2 T (xE
3)(E − 1)/E.

Equation (8) is finally derived from (9), using (4) and (5) with z = xE3, and simplifying.

2.3 Connected graphs and arbitary graphs

Let C•(x, y) = xCx(x, y) be the generating function of vertex rooted chordal connected graphs, where Cx

denotes the derivative with respect to x. Since chordality is preserved under blocks, we have the usual
relation between C• and B (see [11]) enconding the recursive decomposition of a (rooted) connected graph
into blocks:

C•(x, y) = xeB
′(C•(x,y),y). (10)

Using the expansion of B(x, y) one gets

C(x, y) = x+ y
x2

2
+
(
y3 + 3y2

) x3
3!

+
(
y6 + 6y5 + 12y4 + 16y3

) x4
4!

+
(
10y9 + 30y8 + 90y7 + 135y6 + 150y5 + 125 y4

) x5
5!

+ · · ·

Finally the generating function of all chordal planar graphs is G(x, y) = eC(x,y), giving

G(x, y) = 1 + x+ (y + 1)
x2

2
+
(
y3 + 3y2 + 3y + 1

) x3
3!

+
(
y6 + 6y5 + 12y4 + 20y3 + 15y2 + 6y + 1

) x4
4!

+
(
10y9 + 30y8 + 90y7 + 140y6 + 180y5 + 195y4 + y3 + 45y2 + 10y + 1

) x5
5!

+ · · ·

For instance the term 12y4x4/4! is because there are 15 =
(
6
4

)
labelled graphs with four vertices and four

edges, from which we must remove the three labellings of C4, the smallest non-chordal graph.

3 Proof of Theorem 1

3.1 2-connected graphs

Using (4) with z = x(1 + F )3 and setting y = 1, F = F (x) = E(x)− 1 and S = S(x(1 + F )3), we transform
Equations (3) and (7) into a system amenable to the so-called Drmota-Lalley-Wood’s theorem [4, Theorem
2.33], with u = 1, as follows:

F = exp

(
x(1 + F )2 +

x(1 + F )2S

2

)
− 1,

S = x(1 + F )3(1 + S)3.

(11)
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Let Φ(x, S, F ) and Ψ(x, S, F ) be the right hand-side of the first and second equation in (11), respectively.
Those functions are entire and define a system with a strongly connected dependency graph between variables
S and F . Furthermore, both have non-negative coefficients and vanish at x = 0, while they satisfy Φ(x, 0, 0) ̸=
0 and Ψ(x, 0, 0) ̸= 0, but also Φx(x, S, F ) ̸= 0 (where Φx = ∂Φ/∂x) and Ψx(x, S, F ) ̸= 0. Finally, Sytem (11)
extended by its Jacobian admits a solution that is non-zero. It is given by the following approximations:

ρb ≈ 0.092859, E0 = E(ρb) = 1 + F (ρb) ≈ 1.16454, S0 = S(ρbE
3
0) ≈ 0.41919. (12)

Thus the hypotheses of [4, Theorem 2.33] are verified. This implies in particular that ρb is the unique dominant
singularity of the function E(x), i.e. on the boundary of the disk of convergence, and that E(x) admits the
following analytic continuation in a domain of the form ∆(Rb, ϕb) for some Rb > ρb and 0 < ϕb < π/2:

E(x) = E0 − E1

√
1− x

ρb
+O

(
1− x

ρb

)
for x ∼ ρb and x ∈ ∆(Rb, ϕb), (13)

where E1 > 0 is computed next. Since S is itself a function of x and F , (11) can be re-written as F = Θ(x, F ),
where Θ is analytic at (ρb, F0) with F0 = F (ρb). One checks that Θx(ρb, F0) ̸= 0, ΘF (ρb, F0) = 0 and
ΘFF (ρb, F0) ̸= 0. And we can apply [8, Lemma VII.3] (see also [4, Remark 2.20]) to obtain

E1 = F1 =

√
2ρbΘx(ρb, F0)

ΘFF (ρb, F0)
≈ 0.092354. (14)

Furthermore, [4, Theorem 2.33] implies a similar results for S = S(x(1 + F )3). Note also that ρbE
3
0 =

0.14665 < 4/27, where 4/27 is the dominant singularity of S(z). This implies thar the composition scheme
S(xE(x)3) is subcritical in the sense of (1).

With those results at hand, we can finally consider the generating function B(x). Given the expression (8)
and the fact that the scheme is subcritical, the dominant singularity of B(x) is the same as that of E(x) and
it is furthermore unique. We show next that B(x) admits a singular expansion at z = ρb similar to E(x).
First we extend the system (11) so that it includes the variable y:

F = y exp

(
x(1 + F )2 +

x(1 + F )2S

2

)
− 1,

S = x(1 + F )3(1 + S)3,

(15)

where now F = F (x, y). By [4, Theorem 2.33] (setting u = y) there exist three functions ρb(y), f0(y) and
f1(y) analytic in a neighbourhood W of 1 such that for y ∈ W and x ∼ ρb(y) with |arg(x− ρb(y))| ̸= 0 the
following singular expansion holds

E(x, y) = 1 + F (x, y) = 1 + f0(y)− f1(y)

√
1− x

ρb(y)
+O

(
1− x

ρb(y)

)
, (16)

where ρb(1) = ρb, 1 + f0(1) = E0 and f1(1) = E1. From there, applying [4, Theorem 2.30] to (6) and setting
y = 1, we obtain that B(x) = B(x, 1) admits an analytic continuation of the form

B(x) = B0 −B2

(
1− x

ρb

)
+B3

(
1− x

ρb

)3/2

+O

(
1− x

ρb

)2

for x ∼ ρb and x ∈ ∆(Rb, ϕb).

The above coefficients can be computed by substituting into (8) the expansions of E(x) and S(xE(x)3) when
x = ρb(1 −X2), with X =

√
1− x/ρb. This gives B0 ≈ 0.0044796, B2 ≈ 0.0085328 and B3 ≈ 0.00038321.

The estimate on bn follows from Lemma 3, with b = 3B3/(4
√
π) ≈ 0.00016215.
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3.2 Connected and arbitrary graphs

The composition scheme (10) is subcritical because B′′(ρb) → ∞ (see [11]). This means in particular that
the singularities of C•(x) come from a branch point and not from those of B(x) and are obtained by solving

ρ = τe−B′(τ) and τB′′(τ) = 1, with τ = C•(ρ) < ρb.

To find such a solution, one must first compute E′(x) and E′′(x) and then B′′(x). This is a routine but
lengthy computation, best solved numerically1 together with equations (3) and (7), and which gives the
following approximate solutions:

τ ≈ 0.092859 and E(τ) ≈ 1.16446. (17)

So that we obtain a singularity of C•(x) at x = ρ given by

ρ = τe−B′(τ) ≈ 0.084088.

As before C•(x) can be extended analytically to a domain of the form ∆(R,ϕ) for some R > ρ and
0 < ϕ < π/2. The same holds for C(x) (see [11, Proposition 3.10.(1)]), which in fact verifies

C(x) = C0 − C2

(
1− x

ρ

)
+ C3

(
1− x

ρ

)3/2

+O

(
1− x

ρ

)2

for x ∼ ρ and x ∈ ∆(R,ϕ).

The above coefficients are given by:

C0 = τ(1 + log ρ− log τ) +B(τ) ≈ 0.00037470, C2 = τ ≈ 0.092859

and C3 =
3

2

√
2ρ exp(B′(τ))

τB′′′(τ)− τB′′(τ)2 + 2B′′(τ)
≈ 0.00027194.

The estimate for cn is again a consequence of Lemma 3. The same goes for the series G(x, y) = eC(x,y) of
arbitrary chordal planar graphs. Since G(x) = eC0(1−C2(1−x/ρ)+C3(1−x/ρ)3/2+O(1−x/ρ)2) for x ∼ ρ
and x ∈ ∆(ϕ,R), we have

G0 = eC0 ≈ 1.00037, G2 = C2e
C0 ≈ 0.092894, G3 = C3e

C0 ≈ 0.00027205,

and the estimate for gn follows. This concludes the proof of Theorem 1.

4 Simple chordal planar maps

Decomposition of 2-connected simple chordal maps. Let D(z) be the generating function of simple
2-connected chordal maps, where z marks the number of edges minus 1, and let S(z) be the generating
function of ternary trees satisfying (3). Similarly to the case of graphs, a simple 2-connected chordal map
can be decomposed into a sequence of smaller chordal maps. As opposed to the situation for graphs the
planar embedding provides a linear ordering and we use the sequence instead of the set construction. The
maps in the sequence are either a triangle rooted at an edge, where each side of the two non-root edges (four
sides in total) is replaced by a map, or 3-connected maps in which the two sides of every edge are replaced
by a map. This gives

D(z) =
1

1− z2D(z)4 (1 + S (z3D(z)6))
. (18)

This implicit equation determines D(z) uniquely as a series with non-negative coefficients.

1 We used Maple 2021 for those computations.
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Proof of Theorem 2, item 1. Let B(z) be the generating function counting simple 2-connected chordal
maps, with z now marking the total number of edges, so that B = B(z). Algebraic elimination between (3)
and (18) gives the following irreducible polynomial equation satisfied by B = B(z):

B9 − z2B5 + z3B4 + z3B3 − 3z4B2 + 3z5B − z6 = 0. (19)

Therefore, B(z) is an algebraic function and its analysis in the rest of the proof will follow the approach
detailed in [8, Chapter VII.7]. For instance, B(z) can be represented at z = 0 as a Taylor series with
non-negative coefficients and radius of convergence σb, for some σb > 0, corresponding to a branch of the
curve (19) passing through the origin, as follows:

B(z) = z + z3 + 5z5 + z6 + 35z7 + 16z8 + 288z9 +O(z10).

Next, we find the value of σb. By Pringsheim’s theorem (see [8, Theorem IV.6]), it must be a singularity
of B(z). Since B(z) is algebraic, its singularities must be among the roots of the discriminant of (19) with
respect to B, which up to a trivially non-zero factor is equal to

387420489z6 + 573956280z5 + 184705272z4 − 81168524z3 − 15907392z2 + 3326272z − 135424.

This polynomial admits σb ≈ 0.27370 as unique positive real root and it can be readily checked that no other
root ψ satisfies |ψ| = σb.

Finally, we determine the singular expansion of B(z) locally around σb. As B(z) is algebraic and has no
other singularity on the circle of radius σb, there exists R

′
b > σb and 0 < ϕ′b < π/2 for which its representation

at z = 0 admits an analytic continuation to a domain at z = σb of the form ∆(R′
b, ϕ

′
b). It can in fact be

computed from (19) using Newton’s polygon algorithm. This gives a singular expansion of the form:

B(z) = B(σb) + b1

√
1− z

σb
+O

(
1− z

σb

)
, for z ∼ σb and z ∈ ∆(R′

b, ϕ
′
b), (20)

where B(σb) ≈ 0.33301 and b1 ≈ 0.12704. The estimate on Bn then follows from Lemma 3.

Decomposition of simple chordal maps. Let M(z) be the generating function of all simple chordal maps,
where z marks the total number of edges. The decomposition of a map into block is given by the equation

M(z) = B
(
z(1 +M(z))2

)
, (21)

reflecting the fact that a map is obtained from its 2-connected core by attaching a (possibly empty) map at
each corner [16]. Since being simple and chordal is preserved by taking 2-connected components, the same
equation holds for simple chordal maps.

Proof of Theorem 2, item 2. We proceed as in the proof of item 1. First, by algebraic elimination between
(19) and (21), we obtain an irreducible polynomial equation satisfied by M =M(z):

z6M12 + 3z5 (4z − 1)M11 + z3
(
66z3 − 30z2 + 3z − 1

)
M10

+
(
220z6 − 135z5 + 24z4 − 7z3 + z2 − 1

)
M9 + z2

(
495z4 − 360z3 + 84z2 − 21z + 4

)
M8

+ z2
(
792z4 − 630z3 + 168z2 − 35z + 6

)
M7 + z2

(
924z4 − 756z3 + 210z2 − 35z + 4

)
M6

+ z2
(
792z4 − 630z3 + 168z2 − 21z + 1

)
M5 +

(
495z6 − 360z5 + 84z4 − 7z3

)
M4

+ z3
(
220z3 − 135z2 + 24z − 1

)
M3 + 3z4

(
22z2 − 10z + 1

)
M2 + 3z5 (4z − 1)M + z6 = 0,

(22)

From the curve (22) we get that M(z) can be represented at z = 0 as the following Taylor series with
non-negative coefficients and radius of convergence σ > 0:

M(z) = z + 2z2 + 6z3 + 22z4 + 92z5 + 419z6 + 2025z7 + 10214z8 + 53192z9 +O(z10).
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The discriminant of (22) with respect to M is, up to a trivially non-zero factor, given by

2035256037376z12 − 2215690119168z11 + 6474387490048z10 + 1262789263168z9

− 3620212090976z8 + 1275725763644z7 − 301902286683z6 + 60575733276z5

− 13112588384z4 − 5212588972z3 + 1812419712z2 − 148471488z + 3656448.

(23)

It admits two positive real roots, given approximately by 0.15616 and 0.49512. However 0.49512 cannot be
the radius of convergence of M(z) since it is larger than σb. Therefore σ ≈ 0.15616, and it can be readily
checked that (23) admits no other zero of modulus σ. This means that there exists R′ > σ and 0 < ϕ′ < π/2
for which the representation of M(z) at z = 0 admits an analytic continuation to a domain at z = σ of the
form ∆(R′, ϕ′). It is given by

M(z) =M(σ) +m1

√
1− z

σ
+O

(
1− z

σ

)
, for z ∼ σ and z ∈ ∆(R′, ϕ′), (24)

where M(σ) ≈ 0.31055 and m1 ≈ 0.22326. Note that the class of simple chordal maps is subcritical in the
sense, similar to (1), that the composition scheme in (21) is subcritical, that is, σ(1+M(σ)2) ≈ 0.26821 < σb.
The estimate on Mn is obtained from Lemma 3 as before, and this concludes the proof of Theorem 2.

5 Concluding remarks

From the system (15) and [4, Theorem 2.35] we could obtain, applying the so-called ‘quasi-powers theorem’
[8], a central limit theorem for the number of edges in a uniform random 2-connected chordal planar graph
with n vertices as n → ∞. This result is to be expectd and fits into a general scheme of similar Gaussian
parameters in subcritical graph classes (see for instance [5], and [7] and [14] for some generalisations). It
would be of interest to study in the context of chordal planar graphs other parameters, particularly extremal
parameters [11].

Furtermore, by sligthly adapting the scheme developed in this paper, one could in principle enumerate
several related families of chordal graphs, such as outerplanar and series-parallel graphs, planar multigraphs
and non-necessarily simple planar maps. But also non-planar graphs, such as forbidding K3,3 or K5 as a
minor. For chordal graphs, forbidding K5 as a minor is equivalent to the property of having tree-width at
most three. A future line of research is to enumerate chordal graphs with bounded tree-width.

To conclude we display the first numbers of labelled chordal planar graphs (resp. maps) counted by
vertices in Table 1 (resp. counted by edges in Table 2) for the different families studied in this work.

n gn cn bn
1 1 1 0
2 2 1 1
3 8 4 1
4 61 35 7
5 821 540 110
6 17962 13116 2880
7 589912 462868 108486
8 26990539 22189056 5376448
9 1611421595 1364476032 330554736
10 119106036226 102768330140 24223100940
11 10475032926304 9150009283316 2056900853260
12 1064759262580675 937871756182824 198279609266376
13 122455558249650523 108501459033647056 21365210239261824
14 15683814373288014514 13957140054455406368 2542622031178234096
15 2210104382919809469776 1973316500054545453200 331005569819483825280
16 339419270505312015418873 303844760227083629476736 46769563108388612386560
17 56377137858208036652271961 50574398535605806604877952 7125735843407702680130176
18 10064213826097447392585326650 9043978529936559892024953936 1164214191212133452455716432
19 1920763688236792486611031950040 1728560464917767130397726200016 203006967721530831955744610256
20 390147921384971528200998632189581 351542184165686400289151814740320 37624686779731200180043318035040

Tab. 1: Numbers of arbitrary, connected and 2-connected labelled chordal planar graphs with n vertices.
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n Mn Bn

1 1 1
2 2 0
3 6 1
4 22 0
5 92 5
6 419 1
7 2025 35
8 10214 16
9 53192 288
10 283921 210
11 1545326 2607
12 8544766 2612
13 47867107 25155
14 271091848 31885
15 1549624321 254255
16 8929009486 386672
17 51807558686 2663101
18 302430309885 4682253
19 1774979731304 28696460
20 10467456794046 56747900

Tab. 2: Numbers of arbitrary and 2-connected simple chordal maps with n edges.
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