951 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Distributed Estimation and Performance Limits in Resource-constrained Wireless Sensor Networks

    Get PDF
    Distributed inference arising in sensor networks has been an interesting and promising discipline in recent years. The goal of this dissertation is to investigate several issues related to distributed inference in sensor networks, emphasizing parameter estimation and target tracking with resource-constrainted networks. To reduce the transmissions between sensors and the fusion center thereby saving bandwidth and energy consumption in sensor networks, a novel methodology, where each local sensor performs a censoring procedure based on the normalized innovation square (NIS), is proposed for the sequential Bayesian estimation problem in this dissertation. In this methodology, each sensor sends only the informative measurements and the fusion center fuses both missing measurements and received ones to yield more accurate inference. The new methodology is derived for both linear and nonlinear dynamic systems, and both scalar and vector measurements. The relationship between the censoring rule based on NIS and the one based on Kullback-Leibler (KL) divergence is investigated. A probabilistic transmission model over multiple access channels (MACs) is investigated. With this model, a relationship between the sensor management and compressive sensing problems is established, based on which, the sensor management problem becomes a constrained optimization problem, where the goal is to determine the optimal values of probabilities that each sensor should transmit with such that the determinant of the Fisher information matrix (FIM) at any given time step is maximized. The performance of the proposed compressive sensing based sensor management methodology in terms of accuracy of inference is investigated. For the Bayesian parameter estimation problem, a framework is proposed where quantized observations from local sensors are not directly fused at the fusion center, instead, an additive noise is injected independently to each quantized observation. The injected noise performs as a low-pass filter in the characteristic function (CF) domain, and therefore, is capable of recoverving the original analog data if certain conditions are satisfied. The optimal estimator based on the new framework is derived, so is the performance bound in terms of Fisher information. Moreover, a sub-optimal estimator, namely, linear minimum mean square error estimator (LMMSE) is derived, due to the fact that the proposed framework theoretically justifies the additive noise modeling of the quantization process. The bit allocation problem based on the framework is also investigated. A source localization problem in a large-scale sensor network is explored. The maximum-likelihood (ML) estimator based on the quantized data from local sensors and its performance bound in terms of Cram\\u27{e}r-Rao lower bound (CRLB) are derived. Since the number of sensors is large, the law of large numbers (LLN) is utilized to obtain a closed-form version of the performance bound, which clearly shows the dependence of the bound on the sensor density, i.e.,i.e., the Fisher information is a linearly increasing function of the sensor density. Error incurred by the LLN approximation is also theoretically analyzed. Furthermore, the design of sub-optimal local sensor quantizers based on the closed-form solution is proposed. The problem of on-line performance evaluation for state estimation of a moving target is studied. In particular, a compact and efficient recursive conditional Posterior Cram\\u27{e}r-Rao lower bound (PCRLB) is proposed. This bound provides theoretical justification for a heuristic one proposed by other researchers in this area. Theoretical complexity analysis is provided to show the efficiency of the proposed bound, compared to the existing bound

    Decentralized Detection in Realistic Sensor Networks

    Get PDF
    Tämä työ käsittelee kohteen ilmaisua sensoriverkolla, joka koostuu äänisensoreista. Työn pääpaino on epäideaalisen tilanteen käsittelyllä, jossa monet hajautettua ilmaisua käsittelevät oletukset, joita alan kirjallisuudessa tehdään, eivät enää päde. Sensoriverkko koostuu mielivaltaiseen verkkotopologiaan asetetuista sensoreista ja fuusiokeskuksesta, ja tavoite on ilmaista verkkoa lähestyvä kohde, joka tuottaa äänisignaalia. Tiedon käsittelyyn sensoreilla ja fuusiokeskuksella esitetään kaksi erilaista algoritmia. Toinen algoritmeista perustuu suurimman uskottavuuden menetelmään ja toinen on heuristinen, klassiseen ilmaisuteoriaan perustuva, lähestymistapa ongelmaan. Algoritmien suorituskykyä tutkitaan simulaatioiden avulla. Heuristisen algoritmin suorituskyky on huomattavasti parempi kaikissa simuloiduissa tilanteissa. Algoritmien johdossa taustakohina oletettiin normaalijakautuneeksi, mutta simulaatioiden perusteella algoritmit toimivat kohtuullisen hyvin myös pidempihäntäisen taustakohinajakauman tapauksessa. Heuristinen algoritmi tarjoaa paremman suorituskyvyn lisäksi myös helpomman tavan asettaa kynnysarvoparametrit niin, että sensoreilla ja fuusiokeskuksella on haluttu väärän hälytyksen todennäköisyys.This thesis discusses the detection of a target using a network of acoustic sensors. The focus of the work is on considering what to do in a non-ideal situation, where many of the assumptions often made in decentralized detection literature are no longer valid. The sensors and a fusion center are grouped in an arbitrary formation, and the object is to detect an approaching target which emits a sound signal. Two different schemes are considered for processing the data at sensors and the fusion center. One of the schemes is based on maximum likelihood estimation and the other one is a heuristic approach based on classical detection theory. The performances of the two schemes are studied in simulations. The heuristic scheme has a better detection performance for a given false alarm rate with all different sets of settings for the simulation. In derivation of the schemes, the background acoustic noise is assumed to be normal distributed, but, according to the simulations, the schemes still work relatively well under a long tailed noise distribution. In addition to better performance, the heuristic scheme offers easier setup of threshold values and approximation of false alarm rates for given thresholds using simple equations

    Heterogeneous Sensor Signal Processing for Inference with Nonlinear Dependence

    Get PDF
    Inferring events of interest by fusing data from multiple heterogeneous sources has been an interesting and important topic in recent years. Several issues related to inference using heterogeneous data with complex and nonlinear dependence are investigated in this dissertation. We apply copula theory to characterize the dependence among heterogeneous data. In centralized detection, where sensor observations are available at the fusion center (FC), we study copula-based fusion. We design detection algorithms based on sample-wise copula selection and mixture of copulas model in different scenarios of the true dependence. The proposed approaches are theoretically justified and perform well when applied to fuse acoustic and seismic sensor data for personnel detection. Besides traditional sensors, the access to the massive amount of social media data provides a unique opportunity for extracting information about unfolding events. We further study how sensor networks and social media complement each other in facilitating the data-to-decision making process. We propose a copula-based joint characterization of multiple dependent time series from sensors and social media. As a proof-of-concept, this model is applied to the fusion of Google Trends (GT) data and stock/flu data for prediction, where the stock/flu data serves as a surrogate for sensor data. In energy constrained networks, local observations are compressed before they are transmitted to the FC. In these cases, conditional dependence and heterogeneity complicate the system design particularly. We consider the classification of discrete random signals in Wireless Sensor Networks (WSNs), where, for communication efficiency, only local decisions are transmitted. We derive the necessary conditions for the optimal decision rules at the sensors and the FC by introducing a hidden random variable. An iterative algorithm is designed to search for the optimal decision rules. Its convergence and asymptotical optimality are also proved. The performance of the proposed scheme is illustrated for the distributed Automatic Modulation Classification (AMC) problem. Censoring is another communication efficient strategy, in which sensors transmit only informative observations to the FC, and censor those deemed uninformative . We design the detectors that take into account the spatial dependence among observations. Fusion rules for censored data are proposed with continuous and discrete local messages, respectively. Their computationally efficient counterparts based on the key idea of injecting controlled noise at the FC before fusion are also investigated. In this thesis, with heterogeneous and dependent sensor observations, we consider not only inference in parallel frameworks but also the problem of collaborative inference where collaboration exists among local sensors. Each sensor forms coalition with other sensors and shares information within the coalition, to maximize its inference performance. The collaboration strategy is investigated under a communication constraint. To characterize the influence of inter-sensor dependence on inference performance and thus collaboration strategy, we quantify the gain and loss in forming a coalition by introducing the copula-based definitions of diversity gain and redundancy loss for both estimation and detection problems. A coalition formation game is proposed for the distributed inference problem, through which the information contained in the inter-sensor dependence is fully explored and utilized for improved inference performance
    corecore