
Joona Koskiahde

Decentralized Detection in Realistic
Sensor Networks

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 26.12.2011

Thesis supervisor:

Prof. Andreas Richter

Thesis instructor:

D.Sc. (Tech.) Jan Eriksson

A! Aalto University
School of Electrical
Engineering



aalto-yliopisto
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Tämä työ käsittelee kohteen ilmaisua sensoriverkolla, joka koostuu äänisensoreista.
Työn pääpaino on epäideaalisen tilanteen käsittelyllä, jossa monet hajautettua
ilmaisua käsittelevät oletukset, joita alan kirjallisuudessa tehdään, eivät enää
päde. Sensoriverkko koostuu mielivaltaiseen verkkotopologiaan asetetuista
sensoreista ja fuusiokeskuksesta, ja tavoite on ilmaista verkkoa lähestyvä kohde,
joka tuottaa äänisignaalia. Tiedon käsittelyyn sensoreilla ja fuusiokeskuksella
esitetään kaksi erilaista algoritmia. Toinen algoritmeista perustuu suurimman
uskottavuuden menetelmään ja toinen on heuristinen, klassiseen ilmaisuteoriaan
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suorituskyky on huomattavasti parempi kaikissa simuloiduissa tilanteissa. Algo-
ritmien johdossa taustakohina oletettiin normaalijakautuneeksi, mutta simulaa-
tioiden perusteella algoritmit toimivat kohtuullisen hyvin myös pidempihäntäisen
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formation, and the object is to detect an approaching target which emits a sound
signal. Two different schemes are considered for processing the data at sensors
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1 Introduction

This thesis focuses on detecting a target with a network of sensors. The general
introductions to sensor networks and the situation under consideration are given in
this chapter. Additionally, organization of topics and objectives of the thesis are
discussed.

1.1 Sensor networks

Sensor networks consist of sensors which measure some physical properties of the
environment and are able to communicate with each other. The sensors are usually
battery-powered and equipped with low-power computing hardware, and a radio
transceiver [1]. Typically, there is also a node with heavier computing capabilities
in the network called a fusion center, which is used to combine information from the
sensors [2].

Energy consumption is an important aspect in the design of sensor networks
since the sensors usually operate on battery-power. Therefore, smaller energy con-
sumption results in longer lifetime of the network. This should be taken into account
in all levels of design. Applications should generate little traffic into the network,
network layer packets should have minimum overhead, and radios should transmit
at moderate power levels.

There are numerous military and civil scenarios where sensor networks may be
utilized. Deployed on the battlefield, a sensor network can detect, classify, and track
enemy movements. In environmental studies, a sensor network can be used for, e.g.,
habitat monitoring or measuring temperature, wind speed, and humidity. [3]

1.2 Main scenario

In surveillance applications, the first and often the most critical step is detection of
an intruder or a target. Naturally, if a target is to be classified, localized, or tracked,
it must be detected first. In this thesis, the focus is on detecting a target using a
sensor network. The main scenario considered is detection of a vehicle in a forest
using acoustic sensors. This scenario could arise, e.g., in a military setting where a
sensor network is deployed along a forest road to give an alarm if unknown vehicles
move on the road.

In designing a good way to process the measurements from the sensors to detect
the target, attention is turned to detection theory. Some basic principles and defi-
nitions are described from classical detection theory. Fundamentals of decentralized
detection are also presented, where part of the decision making process is distributed
to the sensors.

Although the vehicle could be detected with, e.g., seismic sensors [4], acoustic
sensors are discussed here since the propagation of sound and hearing the target
are relatively easy to understand intuitively. It should be clear that basic concepts
of decision theory apply just as well to seismic and other types of measurements
similarly to acoustic measurements.
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1.3 Objectives of the thesis

The purpose of this thesis is to devise a suitable detection scheme for the main sce-
nario described above. The reasons why many of the schemes presented in detection
literature are not suitable for this scenario are discussed. Two different approaches
to the problem of the main scenario are considered, and their performances are
compared in simulations. Both approaches have parameters which need to be set.
Methods to find practical values for these parameters are discussed, as well.

1.4 Organization of the thesis

Classical centralized detection is described in Chapter 2. In Chapter 3, decentralized
detection with a sensor network is discussed. How to apply the theory of classical and
decentralized detection to practical scenarios, especially the main scenario described
in Chapter 1.2, is considered in Chapter 4. Chapter 5 highlights some characteristics
of other scenarios that are related to the main scenario. To find out the performance
of the proposed detection algorithms, a number of simulations were run. These
simulations and their results are described in Chapter 6. Chapter 7 concludes the
thesis and proposes directions for future research.
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2 Classical detection

This chapter is an introduction to classical detection theory. In classical detection
theory, only a single sensor and its measurements are considered. Some basic con-
cepts and terminology are discussed here. These are needed later when the problem
of the main scenario is discussed in detail.

2.1 Introduction

In the main scenario (Chapter 1.2) the objective is to infer if a target is absent
or present in the network. The target emits a sound signal, and based on sound
measurements a decision has to be made on absence or presence of the target. Mea-
surements are perturbed by random background noise which makes the detection
of the target signal nontrivial. Detecting a signal in noise is essentially a statistical
hypothesis testing problem [5]. Absence or presence of the target correspond to
null hypothesis (H0) and alternative hypothesis (H1), respectively. This is a binary
hypothesis testing problem since there are only two different hypotheses.

Since measurements are disturbed by random background noise, the measure-
ments are modeled as random variables. Under each hypothesis, H0 and H1, the
measurements have a different distribution, e.g., the target signal may increase the
mean of the distribution of background noise. In detection, the objective is to infer
from which distribution the measurements are drawn. Since the background noise is
usually modeled as a continuous distribution, a fixed set of measurements may have
been generated by both distributions. Therefore, there is a possibility of making an
error in the inference. A decision can be made that the target is present, although
it is not, or, on the other hand, a decision can be made that there is no target,
although there is one. The probability of deciding the target is present, even though
it is not, is called the probability of false alarm (PFA). The probability of deciding
the target is absent, even though there is one, is called the probability of miss (PM).
The probability of making a correct decision when the target is present is called the
probability of detection (PD). Notice that PD = 1− PM .

Figure 1 illustrates a case where there is only one measurement. Probability
density functions of the measurements under H0 and H1 are denoted by p(x;H0)
and p(x;H1), respectively. The figure illustrates a decision rule which decides in
favor of H1 when x > 2. The probability of detection equals the green area, and
the probability of false alarm equals the red area. It should be obvious from the
figure that PFA can decreased by moving the threshold right, but at the same time
PD decreases. Conversely, both PD and PFA can be increased at the same time
by moving the threshold left. This is due to the fact that PFA and PD cannot be
adjusted to opposing directions at the same time by adjusting the threshold [5].

Naturally, a good detector has a high PD and a low PFA. A detector that
maximizes PD for a given PFA, assuming the distributions under both hypotheses
are completely known, is described next.
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Figure 1: Probabilities of detection and false alarm for two example distributions
using only one measurement x.

2.2 Neyman–Pearson theorem

The Neyman–Pearson (NP) theorem [6] states that to maximize the probability of
detection (PD) for a given probability of false alarm (PFA), decide H1 if

Λ(x) =
l(x;H1)

l(x;H0)
> γ, (1)

where x is the vector of measurements, l(x;H0) and l(x;H1) are the likelihood
functions of the measurements under H0 and H1, respectively, and γ is the threshold
which satisfies the given PFA. The likelihood function is effectively the same as
the probability density function of the measurements, i.e., l(x) = p(x), only the
interpretation is different. In the probability density function, the variable is x, and
the parameters of the distribution are fixed. In the likelihood function, the variables
are the parameters of the distribution, and x is fixed. Since Λ(x) is the ratio of
the likelihoods of H1 and H0, it is called the likelihood ratio. The whole test (1),
including both the likelihood ratio and the threshold, is termed the likelihood ratio
test (LRT).

The value of the threshold γ can be obtained from the following relations between
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γ and PFA

PFA = Pr {Λ(x) > γ;H0} =

∫

{x:Λ(x)>γ}
l(x;H0) dx, (2)

where the notation x : Λ(x) > γ indicates the region of x where Λ(x) > γ [5].

2.3 Composite hypothesis testing

In the discussion above, it was assumed that the distributions of the measurements
under both hypotheses are completely known. The scenario is termed simple hy-
pothesis testing. If the distributions contain unknown parameters, the problem is
called composite hypothesis testing. This is more akin to the main scenario (Chapter
1.2) where the objective is to detect a sound signal of unknown amplitude in noise.
The first approach to designing a test for distributions containing unknown param-
eters is to design an NP test (1) assuming the unknown parameters are known. The
test should be then modified so that it does not depend on the unknown parameters
anymore, if possible. The resulting test is optimal in the Neyman-Pearson sense
since it is an NP test. Another approach is to build the so-called generalized like-
lihood ratio test. In the generalized likelihood ratio test, the unknown parameters
in the distributions are first estimated, and then the distributions are used in the
likelihood ratio test with the estimated parameters. [5]
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3 Decentralized detection

Instead of the situation of a single sensor of the previous chapter, detection with
several sensors is considered in this chapter. This gives rise to a new problem of
fusing the information from the sensors. Also, a method to save significant amounts
of energy in this type of situation is discussed.

3.1 Introduction

In classical detection of Chapter 2, only one sensor, which makes a decision based on
its own measurements, is considered. By contrast, in centralized and decentralized
detection, a network of sensors is considered [7]. In centralized detection, the sensors
simply send all their raw data to the fusion center for decision making. This may
be unnecessary at times and requires constant communication between the sensors
and the fusion center. Thus, in decentralized detection, the sensors have their own
local decision rules that define what and when to send to the fusion center [8],
which combines the information it receives from the sensors. The sensors might
not always send something, and when they send, they do not necessarily send their
measurements as such but some function of the measurements.

In the rest of this thesis, decentralized detection is disscussed instead of central-
ized detection, since a centralized setting can be thought of as a special case of a
decentralized setting. The fusion center has its own decision rule which determines
how to make a decision about the absence or presence of the target based on the
information received from the sensors. This is illustrated in Figure 2. Signal from
the target at sensor i is denoted by Ai, xi are the measurements of sensor i, and
f(xi) is its function of the measurements that is sent to the fusion center if the
sensor decides the target is present. In this representation, the left switch is closed
when the target is present in the network, and the right switch is closed when the
corresponding sensor decides the target is present. Thus, a sensor’s objective is to
close the right switch when the left switch is closed, and vice versa. A sensor makes
this decision based on its noise-corrupted measurements.

Classical detection could, in principle, be employed in a network of sensors.
Then, there would be no fusion center, and any single sensor could set off the alarm.
The performance of the system would be worse than in a decentralized system since
all information would not be used in the decision making. This can be intuitively
understood if sensors are thought to gather evidence of the target. If one sensor has
conclusive evidence of the target or several sensors have a weak piece of evidence in
a decentralized setting, the fusion center sets off the alarm. In a classical type of
system the situation where several sensors have weak, but not conclusive, evidence
would not set off the alarm. One might want to compensate for this by setting the
sensors to give an alarm already if it has some weak evidence, but this would also
increase the rate of false alarms.

In early papers that discussed decentralized detection, mainly quantization of
measurements or likelihood ratios was considered, and sensors sent some informa-
tion to the fusion center all the time [2, 9]. From the viewpoint of total energy
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Figure 2: Setup of a decentralized detection scenario.

consumption of the sensors, quantization of measurements which are transmitted
at a low data rate is not significant. Packet lengths used by the sensors’ radios
are typically longer than the amount of bits required to accurately represent the
function of measurements in question, and communication protocols often require
transmission of side information [10, 11]. Additionally, starting a transmission with
radio hardware may consume significant amounts of energy [12]. Thus, in this the-
sis, energy efficiency is considered by reducing the number of transmissions, not the
size of transmissions. The loss in performance due to quantization also becomes in-
significant quickly as the number of quantization levels increases from the minimum
of two [7].

3.2 Censoring

Saving the limited battery power of the sensors is important, since energy consump-
tion is related to the lifetime of the network. If the null hypothesis is significantly
more likely, as in the main scenario (Chapter 1.2), sending messages saying the tar-
get is absent all the time is not informative. Large amounts of energy can be saved
by not sending anything from the sensors to the fusion center when the target is not
observed. This is called censoring.

In considering what the sensors should send to the fusion center, when they
send, an assumption is made. Measurements are assumed to be conditionally in-
dependent from all other sensors’ measurements, conditioned on both hypotheses.
This assumption is satisfied under the null hypothesis for local noise [13], especially
if the sensors are not too close to each other. This assumption might not hold very
well when the target is present in some cases [14]. However, this assumption is made
to keep the expressions tractable. The complexity of designing optimal detection
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algorithms becomes an extensive problem without this assumption [15].
Conditionally independent measurements lead to computing [16] and censoring

[17] likelihood ratio tests at the sensors. Each sensor should compute its local
likelihood ratio according to equation (1), i.e., assuming N sensors in the network,
for each sensor i, i = 1 . . . N , the likelihood ratio is

Λi(xi) =
l(xi;H1)

l(xi;H0)
, (3)

where xi are the conditionally independent and identically distributed measurements
of sensor i.

This likelihood ratio (3) should be sent to the fusion center only if it is large
enough. It is not obvious that censoring the likelihood ratio when it is smaller than
some threshold value is optimal. It is not even obvious that the optimal censoring
region should be a single interval. Fortunately, it has been shown that under some
mild conditions, the optimal censoring interval is a single interval which has a lower
threshold of zero [17]. Thus, for each sensor i, the local decision rule is

φi(xi) =

{
Λi(xi), if Λi(xi) ≥ γi,
ρi, if Λi(xi) < γi,

(4)

where γi is the threshold to which the likelihood ratio is compared, and ρi is the
value associated with the censoring region. This value associated with the censoring
region, ρi, is needed later when a decision rule for the fusion center is designed.
Notice that, according to the censoring principle, nothing is sent to the fusion center
if Λi(xi) < γi, although ρi is a value associated with this region of Λi(xi). The
threshold, γi, can be used to adjust the sensitivity of the sensor i, determining how
large the measurements must be before making a local decision of presence of the
target and sending the likelihood ratio to the fusion center.

The fusion center has a decision rule which it uses to decide if the target is
present or absent in the network. Given the local sensor decision rules (4), the
optimal decision rule for the fusion center is [17]

φ0(φ1, . . . , φN) =

{
1, if

∏N
i=1 φi(xi) ≥ γ0,

0, otherwise,
(5)

where 1 and 0 correspond to deciding the target is present or absent for the network,
respectively, and γ0 is the decision threshold for the fusion center that can be used
to adjust the sensitivity of alarms. Factors of

∏N
i=1 φi(xi) which are not received

from sensors correspond to the censored likelihood ratios. As defined in equation
(4), they correspond to ρi. They are evaluated at the fusion center as

ρi =
Pr {Λi < γi;H1}
Pr {Λi < γi;H0}

. (6)

However, there is a problem if this sceme is applied to the main scenario (Chapter
1.2). Distribution of the measurements under the target hypothesis is unknown,
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since the distance of the target from each sensor is unknown. I.e., l(xi;H1) is not
completely known since it depends on the loudness of the target and the distance
of the target from sensor i. The form of l(xi;H1) is assumed to be known, but at
least one parameter is not known. Therefore, the likelihood ratios at the sensors,
and the unreceived, censored likelihood ratios at the fusion center cannot be eval-
uated. However, the distribution of background noise, p(xi;H0), is assumed to be
completely known. This means the estimates of mean (11) and variance (12) in
Chapter 4.2 are assumed to be so good that their errors can be ignored.

3.3 Maximum likelihood detection

To overcome the problem of not knowing p(xi;H1) completely, the unknown param-
eter can be estimated using the maximum likelihood principle, and this estimate
can be used in the likelihood ratio (3). This approach to hypothesis testing is also
called the generalized likelihood ratio test [5]. In maximum likelihood detection, the
maximum likelihood estimate of the unknown parameter in p(xi;H1) is computed
at each sensor [13].

Maximum likelihood estimation is widely used in practical estimation problems,
since it is relatively simple and can often be found quite easily. In general, the
maximum likelihood estimate of a parameter µ of a probability density function
p(x), where x are samples from the distribution depending on µ, is the value of
µ that maximizes p(x) for a fixed x. This can be understood intuitively as the
value of µ that is most likely to have produced the observations x. However, for a
finite number of observations, the maximum likelihood estimator has no optimality
properties. [20]

Maximum likelihood estimation procedure can be applied here, since l(xi;H1)
and l(xi;H0) are essentially probability density functions, as discussed in Chapter
2.2. Assume that l(xi;H1) and l(xi;H0) differ only in one parameter, their expected
value, µi. Under H0, the parameter is assumed to be known, µi = µ0,i. This means
the sensors are assumed to know the expected value of their measurements, when
there is no target but only background noise. Notice that in reality µ0,i has to be
estimated, too, with the estimator given in equation (11). This estimate is assumed
to be obtained from such a large amount of data that the estimation error can be
ignored, and µ0,i is assumed to be known. Under H1, the parameter µi is unknown,
but it is assumed to be larger than µ0,i. This is a natural assumption since the
additional signal from the target increases the expected value of the measurements.
The maximum-likelihood estimate of l(xi;H1) can be found by maximizing l(xi;H1)
over the parameter µi. Therefore, instead of using the classical likelihood ratio (3)
at each sensor, each sensor computes

Λ̃i(xi) =
max
µi

l(xi;H1)

l(xi;H0)
, (7)
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and uses Λ̃i(xi) in the decision rule (4), yielding

φ̃i(xi) =

{
Λ̃i(xi), if Λ̃i(xi) ≥ γi,

ρi, if Λ̃i(xi) < γi.
(8)

The fusion center may use a decision rule similar to the one in equation (5) which
multiplies the received and censored likelihood ratios together, i.e.,

φ̃0(φ̃1, . . . , φ̃N) =

{
1, if

∏N
i=1 φ̃(xi) ≥ γ0,

0, otherwise.
(9)

However, there is still the same problem as in Chapter 3.2: the fusion center would
need ρi, corresponding to censored likelihood ratios, to evaluate the right side of
equation (9). The fusion center cannot evaluate it from equation (6) since it does
not know the distribution under H1. Unlike the sensors, it cannot estimate the
unknown parameter in the distribution under H1, since the fusion center does not
have the measurements of sensor i. It is proposed in [13] that the fusion center
should set ρi = γi to provide robustness to uncertainty in the unknown parameter
of the distribution under H1. This requires that the fusion center knows γi so the
sensors must inform the fusion center of the threshold they use in their decision rule
(8).
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4 Decentralized detection of vehicle noise in a for-

est

Whereas the two previous chapters dealt mainly with the theory of detection, this
chapter focuses on applying the theory to the main scenario. This chapter considers
in detail how the sensors and the fusion center should process their information.
Two different approaches are proposed for both the sensors and the fusion center.

4.1 Introduction

From viewpoint of a single sensor, the problem of the main scenario (Chapter 1.2) is
essentially a detection of an unknown but positive mean shift in noise. This is exactly
the composite hypothesis testing problem described in Chapter 2.3. Therefore, it
would make sense to treat the problem at the sensor as a composite hypothesis
testing problem and to design some associated fusion rule for the fusion center. As
discussed in Chapter 3, according to the censoring paradigm, the sensors consider
whether or not to send information to the fusion center. This can be interpreted as
a local decision on the absence or presence of the target, but a single sensor deciding
the target is present does not start an alarm in the network. When a sensor decides
the target is present, it sends some function of its measurements to the fusion center.
The decision making of the sensors in the network is discussed in Chapter 4.3.

The fusion center needs some rule according to which it uses the received infor-
mation to make the final decision on absence or presence of the target. The decision
rules for the fusion center that are optimal in some sense, some of which were dis-
cussed in Chapter 3, often include an assumption that all sensors observe the same
phenomena independently. In the main scenario, the sensors are spread across such
a wide area that this assumption is not valid when the target is present. If this were
taken into account, the tractability of the expressions for the decision rules might
become an issue. Regardless of that, some sort of decision rule for the fusion center
has to be designed. Decision rules for the fusion center are discussed in Chapter 4.4.

4.2 Practical considerations

The acoustic sensors used are assumed to be simple omnidirectional microphones
which measure sound pressure. The measurements considered in this thesis are
measurements of effective sound pressure. Effective sound pressure is the root mean
square over a set of instantaneous sound pressure measurements. This set of instan-
taneous sound pressure measurements is assumed to be taken over a time period,
which is short enough that the characteristics of the background noise and target
signal stay approximately the same, but long enough that it encompasses several
wavelengths in the frequency range of interest. For example, this time period could
be 200 ms.

The acoustic background noise, which affects the instantaneous sound pressure
measurements, consists of sounds from a large number of sources such as rustling
of leaves in the surrounding trees. In other words, the background noise is a sum
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of many sources of acoustic noise. The central limit theorem states that the sum
of several independent random variables converges to a normal distribution as the
number random variables in the sum grows to infinity [18]. The individual random
variables in the sum need to have a finite expected value and a finite variance,
but as long as these are finite, the distributions of the random variables can be
arbitrary. Therefore, according to the central limit theorem, the background noise
of the instantaneous sound pressure measurements can be approximated by a normal
distribution.

As discussed above, the effective sound pressure measurements are root mean
squares of sets of normal distributed random variables. Therefore, they are chi
distributed. Again invoking the central limit theorem, if there are enough measure-
ments in the set, the chi distribution can be approximated with a normal distribu-
tion. In the design of the sensors’ decision rules, the acoustic background noise in
the forest is modeled by a normal distribution with mean µ0,i and variance σ2

i . I.e.,
each effective sound pressure measurement, henceforth just measurement, in xi at
sensor i, xi[k], k = 1 . . . K, is distributed as

xi[k] ∼
{

N (µ0,i, σ
2
i ) under H0,

N (µ0,i + Ai, σ
2
i ) under H1,

(10)

where Ai is the unknown mean shift depending on the loudness of the target and
its distance from sensor i. While the normality assumption might not hold in, e.g.,
windy conditions, there is some justification for the assumption [19]. Furthermore,
measurements xi[1] . . . xi[K] are assumed to be identically and independently dis-
tributed for a fixed i, i.e., for each sensor individually. This means that, under
each hypothesis, each measurement in the set xi[1] . . . xi[K] at sensor i is drawn
from the same normal distribution having the same µ0,i, σ

2
i , and Ai. If the target

moves between the measurements, the target signal strength Ai changes and, strictly
speaking, the assumption does not hold anymore. However, the K measurements
are assumed to be taken during such a short time interval that the change in Ai is
negligible.

Naturally, the sensors do not know µ0,i and σ2
i , but each sensor can estimate

them by taking measurements when the network is initialized. If a sensor takes K
measurements x[k], k = 1 . . . K, it can estimate µ as

µ̂0,i =
1

K

K∑

k=1

x[k] (11)

and σ2
i as

σ̂2
i =

1

K − 1

K∑

k=1

(x[k]− µ̂0,i)
2. (12)

It can be shown that these estimators for the expected value and variance of a
normal distribution are actually mimimum variance unbiased estimators for these
parameters [20]. This means they have the smallest variance among all unbiased
estimators of these parameters. Thus, the expected value of the squared error of
these estimates is the smallest among all unbiased estimators of these parameters.
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4.3 Sensors’ decision rules

Two different schemes for processing the measurements in sensors are presented in
this chapter. The first scheme is based on maximum likelihood estimation, and the
second scheme is derived from classical detection theory.

4.3.1 Maximum likelihood scheme

If the maximum likelihood scheme of Chapter 3.3 is to be used in the detection
problem, each sensor needs to compute the maximum likelihood estimate of their
likelihood ratio (7). Since the measurements are assumed to be distributed according
to equation (10), computing the estimated likelihood ratio (7) includes maximizing

l(xi;H1) =
1

(2πσ2
i )

K
2

e
− 1

2σ2
i

∑K
k=1(xi[k]−µ1,i)2

(13)

with respect to µ1,i = µ0,i + Ai, i.e., the expected value of the measurements when
the target is present. The sensors do not know µ1,i, but they compute the maximum
likelihood estimate of it, so that it can be used in computing the estimated likelihood
ratio (7). This estimate is derived next. The general outline of the derivation follows
[20, pp. 163–164].

Natural logarithm is a strictly increasing function, so the natural logarithm of a
function attains is maximum value at the same point where the original function at-
tains its maximum value. Thus, instead of the likelihood funcion (13), its logarithm
can be maximized,

ln l(xi;H1) = ln

(
1

(2πσ2
i )

K
2

e
− 1

2σ2
i

∑K
k=1(xi[k]−µ1,i)2

)
(14)

= − ln
(

(2πσ2
i )

K
2

)
− 1

2σ2
i

K∑

k=1

(xi[k]− µ1,i)
2. (15)

The extrema of a function are found at the points where the derivative equals zero
or at the end points of domain of the function. Finding the maxima of ln l(xi;H1)
with respect to µ1,i is considered next. The expected value of a normal distribution,
µ1,i, can take any values in the range (−∞,∞). Clearly ln l(xi;H1) −→ −∞ as
µ1,i −→ ∞ or µ1,i −→ −∞. The function to be maximized, ln l(xi;H1), is a
logarithm of a probability density function, so ln l(xi;H1) ≥ 0. Thus, it has to
have at least one maximum inside the endpoint of its domain. The extrema inside
the domain are found in the points where the derivative equals zero. Taking the
derivative with respect to µ1,i gives

∂ ln l(xi;H1)

∂µ1,i

=
1

σ2
i

K∑

k=1

(xi[k]− µ1,i) =
1

σ2
i

(
K∑

k=1

xi[k]−Kµ1,i

)
. (16)

Setting this to zero, denoting the estimate of µ1,i as µ̂1,i, and solving for µ̂1,i yields

µ̂1,i =
1

K

K∑

k=1

xi[k]. (17)
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To make sure this is the maximum and not the minimum, the sign of the second
derivative is checked. Differentiating function (16) again with respect to µ1,i gives

∂2 ln l(xi;H1)

∂µ2
1,i

= −K
σ2
i

. (18)

Since K and σ2
i are positive, equation (18) is always negative. Thus, equation(17)

gives the maximum, and replacing µ1,i with its estimate (17) maximizes equation
(13). In this scheme, if a sensor decides the target is present, it sends its estimated
likelihood ratio (7) to the fusion center.

There is an important distinction between equations (11) and (17), although
both are sample averages. The estimate of the average level of acoustic background
noise (11) is computed once when the network is initialized and no target is present
in the network. If necessary, it may be updated, for instance, if it begins to rain, the
background noise level grows, but in any case its value changes rarely. On the other
hand, the estimate in equation (17) is computed in every time step as the sensor
makes a decision on presence or absence of the target.

In addition of maximizing function (13), ρi and γi in function (8) have to be set.
It is not simple to determine them so that they would yield a certain probability of
false alarm. In this thesis, a computer simulation is used to determine the parameters
to yield a suitably low rate of false alarms. If ρi = γi is set, as suggested in Chapter
3.3, and the same value of ρi is set to all sensors, then all sensors are set to the same
probability of false alarm assuming the same background noise conditions. In this
situation, Matlab [21] script of Appendix A can be used to find a suitable value for
the parameter ρ.

4.3.2 Classical composite hypothesis testing approach

With the assumption of normal distributed background noise, the problem at each
sensor is essentially that of detecting an unknown but positive mean shift in Gaussian
noise. This is a special case of the classical composite hypotesis problem of Chapter
2.3. As discussed in Chapter 2.3, first a Neyman–Pearson test (1), or NP test, is
designed as if the value of the mean shift were known, and then the test is modified
so that it does not depend on the value of the mean shift. Next, an NP test (1) is
derived for this setting. The derivation follows the outline of the derivation in [5,
pp. 191–194]. In this case, the NP test decides the target is present if

Λi(xi) =
l(xi;H1)

l(xi;H0)
=

1

(2πσ2
i )
K
2
e
− 1

2σ2
i

∑K
k=1(xi[k]−(µ0,i+Ai))

2

1

(2πσ2
i )
K
2
e
− 1

2σ2
i

∑K
k=1(xi[k]−µ0,i)2

> γi, (19)

since the joint probability density function of xi under each hypothesis is the product
of the marginal probability density functions of the measurements xi[k]. To be exact,
µ0,i should be replaced in the equation (19) with its estimate, µ̂0,i. However, the
value of this estimate is assumed to be so close to the true value that its true value
can be used in the equation.
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Combining the exponentials and canceling out common terms yields

e
− 1

2σ2
i

(−2Ai
∑K
k=1 xi[k]+K(A2

i+2µ0,iAi))
> γi. (20)

Taking the natural logarithm of both sides gives

− 1

2σ2
i

(− 2Ai

K∑

k=1

xi[k] +K(A2
i + 2µ0,iAi)) > ln(γi). (21)

Rearranging the equation yields

Ai

K∑

k=1

xi[k] > σ2
i ln(γi) +

K

2
(A2

i + 2µ0,iAi). (22)

Since the target signal Ai is positive at each sensor, both sides can be divided by
Ai, and the inequality still holds, resulting in

K∑

k=1

xi[k] >
σ2
i

Ai
ln(γi) +

K

2
(Ai + 2µ0,i). (23)

Scaling by 1/K yields to the test statistic

T (xi) =
1

K

K∑

k=1

xi[k] >
σ2
i

KAi
ln(γi) +

1

2
(Ai + 2µ0,i) = γ′i, (24)

where γ′i denotes the threshold to which the test statistic is compared.
The test statistic does not depend on Ai, but the threshold appears to depend

on it. If that would really be the case, the test could not be implemented, since
Ai would have to known beforehand, and it was assumed to be unknown. The
distribution of a single measurement, xi[k], when the target is not present, i.e.,
under H0, does not depend on Ai (10). The test statistic is just a scaled sum of
those measurements. Therefore, the distribution of the test statistic under H0 does
not depend on Ai, either. This should be intuitively clear because the distribution
of the noise cannot be dependent on the loudness of some target, which is not even
present in the network. Also, because the test statistic is a linear combination of
normal distributed variables, it is normal distributed itself. Distribution of xi[k]
under H0 is known (10), so the parameters for the distribution of T (xi) under H0

can be calculated. The expected value of T (xi) under H0 is

E(T (xi);H0) = E

(
1

K

K∑

k=1

xi[k]

)
=

1

K

K∑

k=1

E(xi[k]) (25)

=
1

K
KE(xi[k]) = E(xi[k]) = µ0,i. (26)



16

Similarly, the variance of T (xi) under H0 is

Var(T (xi);H0) = Var

(
1

K

K∑

k=1

xi[k]

)
=

1

K2

K∑

k=1

Var(xi[k]) (27)

=
1

K2
KVar(xi[k]) =

1

K
Var(xi[k]) =

σ2
i

K
. (28)

Thus, when the target is not present, T (xi) ∼ N (µ0,i,
σ2
i

K
).

Now the probability of false alarm can be related to the threshold of the test,
i.e.,

PFA = Pr{T (xi) > γ′i;H0} = Pr

{
1

K

K∑

k=1

xi[k] > γ′i;H0

}
(29)

= Pr





1
K

∑K
k=1 xi[k]− µ0,i√

σ2
i

K

>
γ′i − µ0,i√

σ2
i

K

;H0



 . (30)

The transformed test statistic is distributed according to the standard normal dis-
tribution,

1
K

∑K
k=1 xi[k]− µ0,i√

σ2
i

K

∼ N (0, 1). (31)

Therefore, PFA (30) can be expressed in terms of the complementary cumulative
distribution function of the standard normal distribution, the Q-function [22]. The
Q-function is defined as

Q(x) = 1− Φ(x), (32)

where Φ(x) is the cumulative distribution function of the standard normal distribu-
tion.

Now PFA (30) can be written as

PFA = Q


γ

′
i − µ0,i√

σ2
i

K


 . (33)

Solving for γ′i gives

γ′i =

√
σ2
i

K
Q−1(PFA) + µ0,i, (34)

where Q−1 denotes the inverse Q-function, i.e., Q(Q−1(x)) = x. A function has an
inverse function, if it is a monotonically increasing or decreasing function [23]. The
inverse Q-function exists, since Q-function is a monotonically decreasing function.
The threshold (34) is now independent of Ai. A desired false alarm rate can be set,
remembering from Chapter 2 that decreasing false alarms also decreases the prob-
ability of detection, and the corresponding threshold can be solved from equation
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(34). Combining equations (24) and (34) yields to a test which decides the target is
present if

1

K

K∑

k=1

xi[k] >

√
σ2
i

K
Q−1(PFA) + µ0,i. (35)

Since this is actually an NP test (1), it yields the highest probability of detection
for a given probability of false alarm.

Similarly as for H0, it can be shown that under H1, T (xi) ∼ N (µ0,i + Ai,
σ2
i

K
).

Therefore, as was done for the probability of false alarm, the probability of detection
can be expressed with a Q-function as

PD = Pr{T (xi) > γ′i;H1} = Q


γ

′
i − µ0,i − Ai√

σ2
i

K


 (36)

= Q




√
σ2
i

K
Q−1(PFA) + µ0,i − µ0,i − Ai√

σ2
i

K


 (37)

= Q

(
Q−1(PFA)−

√
KA2

i

σ2
i

)
. (38)

Since the Q-function is a monotonically decreasing function, equation (38) shows
that the probability of detection increases with Ai, the strength of the target signal
at the sensor in question. This is natural since it is easier to detect a strong signal
than a weak signal. Unlike the probability of false alarm, the probability of detection
cannot be evaluated beforehand at each sensor since the sensors do not know Ai.

4.4 Fusion center decision rule

This chapter deals with processing of information the fusion center receives from the
sensors. The fusion center needs a decision rule which tells how to make a decision
on absence or presence of a target based on the information sent by the sensors.
Two schemes are proposed, each corresponding to one of the schemes for sensors,
discussed in Chapter 4.3.

4.4.1 Maximum likelihood scheme

One viable option for a fusion center processing method is to employ the maximum
likelihood distributed detection scheme (Chapters 3.3 and 4.3.1), even if the as-
sumptions discussed in Chapter 4.1 do not hold. In this case, the fusion center uses
the fusion rule given in equation (9) as its decision rule. However, there is still the
problem of setting a proper threshold γ0 for the decision rule. It is desirable to set
it to yield a certain probability of false alarm, assuming normal distributed acous-
tic background noise as in Chapter 4.3. To do that, the distribution of

∏N
i=1 φ̃(xi)

would have to be known. Even if the fact that each φ̃(xi) is an estimated and pos-
sibly censored likelihood would be ignored, the distribution of a product of random
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variables, albeit independent and normal distributed, is difficult to determine [24].
This makes even approximation of the probability of false alarm complicated.

Regardless of the complexity of determining the probability of false alarm, some
value for the threshold γ0 has to be set. Assume that all sensors use the same
threshold γi = γ in their decision rule (8). Furthermore, assume all sensors set the
value associated with the censoring region as ρi = ρ = γ, as suggested in Chapter
3.3. A reasonable form for γ0 would be

γ0 = αρN , (39)

where α is a factor depending on the number of sensors in the network, the proba-
bilities of false alarms of the sensors, values of the censoring regions, and the desired
probability of false alarm for the fusion center. Using the threshold above (39) in
the decision rule of the fusion center (9) results in a decision rule that decides the
target is present if the product of the likelihoods is α times larger than the product
of censored likelihoods. It is not clear how to choose α to yield a certain probability
of false alarm, but a suitable value for it can be found from a computer simulation.
An example of such a simulation for Matlab [21] is presented in Appendix A.

4.4.2 Combining standard deviations

Determining parameter values for the maximum likelihood scheme discussed in
Chapters 4.3.1 and 4.4.1 is a problem that typically requires computer simulations.
To overcome this problem, another detection scheme for the fusion center is de-
vised. This scheme is a heuristic approach based on classical detection theory. In
this simpler scheme, likelihoods are forgotten, and sensors use a simpler function
of the measurements to make a decision. For this setting, it is assumed that the
sensors use function (35) as their decision rule and, when they send, they send their
normalized measurements. This means that if sensor i decides the target is present
it sends

yi(xi) =
1
K

∑K
k=1 xi[k]− µ0,i√

σ2
i

K

, (40)

which is the same as the transformed test statistic in equation (31). This value
received by the fusion center, yi(xi), tells how many standard deviations away the
set of measurements is from the average noise level. The fusion center could, for
instance, sum all the received yi(xi), compare the sum to a threshold, and decide
the target is present if the sum is large enough, i.e.,

n∑

i=1

yi(xi) > γ0, (41)

where n is the number of received transmissions from the sensors.
In addition to being a simpler scheme, setting a value for γ0 is easier here than

it is for the maximum likelihood scheme. In equation (34), Q−1(PFA) tells how
many standard deviations away the measurements must be from the average noise
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level before a sensor decides the target is present and sends information to the fusion
center. Thus, if all sensor thresholds are set to yield the same PFA, setting γ0 twice as
large as Q−1(PFA) results in deciding the target is present if the yi(xi) received from
a single sensor is large enough, or if two or more sensors send something. Notice that
PFA in Q−1(PFA) means the probability of false alarm for a single sensor, not for the
fusion center. If γ0 is set to γ0 = 2 ·Q−1(PFA), as suggested, the probability of false
alarm for the fusion center can be approximated quite easily. This approximation
is derived next.

Probability that a single sensor would produce a value larger than γ0 is very
small, if PFA for the individual sensors is set to a reasonably small value. For
example, already for PFA = 10−3 and network size N = 20, the probability equals

Pr {yi(xi) > γ0} = Pr





1
K

∑K
k=1 xi[k]− µ0,i√

σ2
i

K

> 2Q−1(PFA)



 (42)

= Q
(
2Q−1(PFA)

)
(43)

= Q
(
2Q−1(10−3)

)
(44)

≈ 3.2 · 10−10, (45)

where the use of Q-function follows from the fact that yi(xi) is a standard normal
distributed variable. Since the measurements of the sensors are assumed to be
independent, probability that one or more sensors in the network produce a value
larger than γ0 can be written as

1− Pr {no large values} = 1− (1− Pr {yi(xi) > γ0})N (46)

≈ N · Pr {yi(xi) > γ0} (47)

= Q
(
2Q−1(PFA)

)
, (48)

where the approximation holds for reasonably small values of N and PFA. Thus,
for the example above of PFA = 10−3 and network size N = 20, the probability
that one of the sensors in the network gives a value larger than γ0 is approximately
20 ·Q (2Q−1(10−3)) ≈ 6.4 · 10−9. This significantly smaller than the probability that
the measurements of at least two sensors exceed their local threshold γi under H0

(54). Therefore, the probability that a single sensor would produce a value larger
than γ0 is ignored in the approximation of the PFA of the fusion center. Only the
probability of two or more sensors giving a local alarm at the same time is considered.
This probability is derived next.

Because γ0 is set twice as large as the sensors’ local thresholds, it does not
matter how large yi(xi) the two sensors send to the fusion center since two of any
magnitude will give an alarm at the fusion center. The number of sensors which
give a false alarm at the same time, M , is a binomially distributed random variable,
i.e., M ∼ Bin(N,PFA). Therefore, the probability that two or more sensors give a
false alarm at the same time can be obtained from the binomial distribution as

Pr {M ≥ 2} (49)
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= 1− Pr {M = 0} − Pr {M = 1} (50)

= 1−
(
N

0

)
(PFA)0 (1− PFA)N−0 −

(
N

1

)
(PFA)1 (1− PFA)N−1 (51)

= 1− (1− PFA)N −NPFA (1− PFA)N−1 (52)

= 1−
(
1− 10−3

)20 − 20 · 10−3
(
1− 10−3

)19
(53)

≈ 1.9 · 10−4, (54)

which is several orders of magnitude larger than 6.4 · 10−9. The probabilities given
in equations (48) and (49) for N = 20 as a function of PFA are presented in Figure
3.
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Figure 3: Probabilities of different false alarm types at the fusion center as a function
of PFA for network size N = 20.

On the other hand, fixing the probability of false alarm to a value of PFA = 10−3,
and varying the number of sensors N from 5 to 100 shows that the approximation is
valid also for other reasonable network sizes. The same probabilities of one sensor
alarm (48) and multisensor alarms (49) of Figure 3 for different network sizes are
presented in Figure 4.

This shows equation (51) can be used to approximate the probability of false
alarm at the fusion center when γ0 is set to γ0 = 2 · Q−1(PFA). Same kind of
approximation can be done when γ0 is set a little smaller. If the multiplier of
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Figure 4: Probabilities of different false alarm types at the fusion center as a function
of network size N with probability of false alarm of a single sensor set to PFA = 10−3.

Q−1(PFA) is in the range 1 . . . 2, the situation is still the same: a large value from
a single sensor, or any values from two or more sensors will set off the alarm. The
difference is that the large value from a single sensor does not have to be so large as
before. Now the probability of noise causing one of the sensors to give such a large
value that it sets off the alarm at the fusion center is given by

N · Pr {yi(xi) > γ0} = N ·Q
(
β ·Q−1(PFA)

)
, (55)

instead of equation (48). The probability of a single large value grows rapidly as the
multiplier gets smaller than 2. For N = 20, PFA = 10−3, and multiplier, denoted by
β, in the range 1.3 . . . 1.7, the probabilities of the single large values are presented
in Figure 5. The probability that two or more sensors give false alarms at the same
time for the same values of N and PFA is 1.9 · 10−4, so the approximation holds, for
these values of N and PFA, fairly well when the multiplier is in the range 1.5 . . . 2.

Approximating the probability of false alarm at the fusion center when γ0 >
2 ·Q−1(PFA) is more difficult. Restricting γ0 this way is not actually very confining,
since the probability of false alarm of the fusion center can be set to any desired
value by adjusting the probability of false alarm of the sensors.
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Figure 5: Probabilities of different false alarm types at the fusion center as a function
of β for network size N = 20 and PFA = 10−3.

4.5 Further considerations

In addition to the form of the tests at the sensors and the fusion center, there is
a question of whether to set the thresholds of the sensors low and limit the false
alarms with a high fusion center threshold, or to set high sensor thresholds and
a relatively low fusion center threshold. This is essentially a compromise between
energy consumption and performance. If the sensors did not censor anything, the
fusion center would have the most information available, and it would be able to
make, at least in theory, the best decisions. However, this would quickly deplete
the batteries of the sensors since they would have to send information in every time
step. If the sensor thresholds were set higher than the fusion center threshold, energy
consumption would be minimized, but performance would degrade and this would
not be a decentralized setting anymore. In this case, a single transmission from
a single sensor would set off the alarm, and fusion center would not be needed at
all. Since there is essentially no fusion center to combine the information in this
case, because all the sensors use only their own measurements, performance of the
system drops. The value of the threshold at the fusion center does not affect the
energy consumption of the network. It is a compromise between the probability of
false alarm and probability of detection or the delay in detection. Setting a high
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threshold decreases both the probabilities of false alarm and detection, and vice
versa, as discussed in Chapter 2.1.

In the previous chapters, each sensor is assumed to make a decision based on K
previous measurements. The choice of K is a free design parameter. Taking several
previous measurements into account each time step decreases the probability of
the false alarms due to noise spikes, i.e., unusually large values of noise. If the
normality assumption of the background noise does not hold, the distribution of the
noise might be a long-tailed one, and noise spikes might be larger and more common
than assumed. Choosing a K larger than one is especially useful in this situation.
However, increasing K means averaging over more and more samples, which results
in increasing delay in detection. The alarm at the fusion center will be set off a
few time steps later than if there is no averaging. This is the price that is paid for
mitigating the effects of noise spikes.
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5 Special characteristics of other scenarios

Characteristics of other scenarios akin to the main scenario of Chapter 1.2 are con-
sidered in this chapter. Especially, the effects of these characteristics to detection
schemes in these scenarios are discussed here.

5.1 Detecting impulses

In the main scenario, the sensor network is trying to detect a vehicle in a forest. The
vehicle produces a continuous sound signal so taking measurements, e.g., once in a
second is adequate for detection. If the sound produced by the sound source is an
impulse, the sensor might miss the impulse if it takes measurements too infrequently.
For example, a gunshot is such a short sound that it can well be classified as an
impulse [25, figure 1]. In such a scenario, the sound pressure must be monitored very
frequently. It might be more practical to measure the sound pressure continuously,
instead of taking measurements at certain intervals. The downside is that monitoring
continuously depletes the batteries of the sensors faster, which reduces the lifetime
of the network. Also, in this type of impulse detection, averaging over several
measurements, i.e., choosing K larger than one, might not be a good idea. Averaging
smooths the signal, which is undesirable, as the objective is to detect abrupt impulse
spikes.

5.2 Scenarios without a fusion center

As discussed in Chapter 4.5, letting a single sensor set off global alarm in the main
scenario results in inferior performance. Even if the sensors are deployed far away
from each other such that two sensors cannot detect the target at the same time, a
fusion center can be useful. Although only one sensor at a time can detect the target,
it may be beneficial to have information at the fusion center from the other sensors
saying they do not detect any targets. Despite the sensors being quite distant from
each other in this scenario, the sensors need to be within radio communication range
of each other so that alarms can be transmitted across the network.

On the other hand, a detection system may be designed so that there is no need
for a designated fusion center. This is called fully decentralized detection. In this
type of system, sensors communicate between themselves to convey information
about their measurements or local decision. The sensors try to find a consensus
about presence or absence of the target. When enough nodes agree on the target
being present, a global alarm is set off. Unlike a conventional decentralized system,
a fully decentralized system is not vulnerable to fusion center breakdown. [26]

5.3 Direct communication with the fusion center

If the sensor setup is such that all sensors can communicate directly with the fusion
center, there might not be need for large overheads in transmissions. In this case,
the size of the transmissions may be heavily dependent on the quantization of the
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information the sensors send to the fusion center. While in the main scenario using,
for example, 3 bits instead of 10 bits to describe the information might not save
much energy, as discussed in Chapter 3.1, in the direct communication setup it
might bring significant energy savings.

Additionally, if the sensors are arranged, e.g., into a linear or circular array with
equal distances between the sensors, the system may give a good estimate on the
direction of the target [27]. For this the sensors have to be so close to each other
and the target has to be so close to the sensors that all sensors can hear the target.

5.4 Different types of sensors

Sensor types that can detect a target from as long distance as possible should be
used for detection. However, other types of sensors may be more suitable for other
purposes. E.g., it might make sense to deploy a few cameras to the network of
the main scenario for classification purposes. These cameras could do automatic
classification of targets [28, 29] or send images of the detected targets out of the
network.

If the objective is to detect people, instead of vehicles, in a forest, infrared sensors
are a viable option [30]. Unlike acoustic sensors, infrared sensors require line of sight
with the target for detection. However, a single person walking in a forest might
not make that much sound, so it is not obvious which sensor type would detect the
target first. Especially in the case of heavy rain, the level of acoustic background
noise can be so high that acoustic sensors might be practically useless in detecting
people. It should also be taken into account that nearby thundering will cause all
acoustic sensors to give alarms.

5.5 Target localization and tracking

In many scenarios, such as the main scenario, it is desirable to locate a target in
addition of detecting it. Some short-range sensors, such as cameras, may be better
than acoustic sensors for localizing a target inside the network. Since they have a
short range, they cannot detect or localize a target that is at some distance from the
network. Thus, it is reasonable to do localization with acoustic or other long-range
sensors, too [31].

When localizing a target with acoustic or other long-range sensors, the detection
thresholds of the sensors should be lowered from the one used in detection mode.
Many localization algorithms likely have better accuracy with more data, albeit
somewhat noise-corrupted data. It may not be of great importance anymore to save
energy by reducing transmissions from the sensors when a target is detected. Instead,
getting an accurate location estimate is far more important in many scenarios.

In addition to running only a localization algorithm, it is usually desirable run a
tracking algorithm on top of that. While localization algorithms typically consider
only the measurements from the current time instant, tracking algorithms can be
used to exploit the time dependence between consecutive location estimates. In the
tracking algorithms, the location estimate is based on prediction derived from the
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previous estimates in addition to measurements. The statistical performance of the
refined location estimates given by a tracking algorithm is generally better than that
of the raw location estimates given by the localization algorithm. Examples of this
type of tracking algorithms are the Kalman filter [20] and its extensions [32].
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6 Simulations

A set of simulations was run in the main scenario and in an alternative scenario
(see Chapter 6.7.3) to compare the performance of the two proposed schemes. In
addition, the effect of different parameters of the schemes were studied. The simu-
lations were run with Matlab R2010a software [21], which is a technical computing
environment focusing on numerical computing. Simulation settings and results of
the simulations are described in this chapter.

6.1 Simulation scenario

A number of simulations were run to compare the performance of the suggested
detection schemes. The simulations are based on a scenario in which a vehicle
comes to a network of acoustic sensors located in a forest, stays there for a while,
and leaves the network via a different route.
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Figure 6: The route of the target in the simulation scenario.

The simulation scenario is shown in Figures 6 and 7. Figure 6 shows the whole
route of the target in the simulation scenario. Figure 7 is the same figure zoomed
in near the network to better illustrate the grouping of the sensors. There are 20
sensors and a fusion center grouped into an area of ca. 1 km x 1.5 km along a road.
In the coordinate system of Figures 6 and 7, one unit corresponds to one meter in
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Figure 7: The sensor network of the simulation scenario with the route of the target
near the network.

the simulation. The locations of the sensors are marked with blue dots, the location
of the fusion center is marked with a green dot, and the route of the target is marked
by the red curve. The target enters the network via the upper curve, stops for 1
min 40 s in the place denoted by the red cross, and leaves the network via the lower
curve. The simulation lasts for 2000 seconds, i.e., approximately 34 min, and the
speed of the target as it moves is ca. 30 km/h.

6.2 Modeling sound propagation in a forest

A model for sound propagation in a forest is needed for the simulations. The model
used in the simulations is a simplified version of an ISO standard [36] describing
sound propagation outdoors.

To calculate the sound pressure level at a sensor, the distance from the target and
the sound power level of the target are needed. In the ISO standard, the following
equation is given for the sound pressure level:

LfT (DW ) = LW +DC − A, (56)

where LfT (DW ) is the continuous downwind octave-band sound pressure level rela-
tive to a 20 µPa reference sound pressure, LW is the sound power level of the sound
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source relative to a 1 pW reference sound power, DC is the directivity correction in
decibels, and A is the attenuation, in decibels, that occurs during propagation from
the target to the sensor. For the simulation, it is assumed that the spectrum of the
sound produced by the target is such that most of the energy is concentrated on a
narrow frequency band so that only one octave band from LfT (DW ) can be taken
into account. In general, the attenuation of sound depends on frequency, so this
assumption makes the calculation of attenuation simpler. The target is assumed to
be an unidirectional sound source, so DC is set to DC = 0. Although the standard
is defined for a sound propagating downwind, wind is not taken into account in
the simulations, and the same propagation model is used for sound propagating in
all directions. Therefore, the sound pressure level at a sensor due to the target is
simplified into

LP = LW − A. (57)

The attenuation A is divided into components in the standard:

A = Adiv + Aatm + Agr + Abar + Amisc, (58)

where Adiv is the attenuation due to geometrical divergence, Aatm is the attenuation
due to atmospheric absorption, Agr is the attenuation due to the ground effect, Abar
is the attenuation due to a barrier, and Amisc is the attenuation due to miscellaneous
other effects.

Besides the forest, no other obstacles between a sensor and the target are taken
into account, so Abar = 0. The miscellaneous other factors are also assumed to be
zero, i.e., Amisc = 0.

Since the objective is to detect a vehicle in the simulation, most of the energy
of the sound is assumed to be around the frequency of 100 Hz [37, 38]. This ap-
proximation might not be valid with all vehicles, but it is deemed an appropriate
simplification. With this assumption, the atmospheric absorption and ground effect
can be calculated for the frequency of 100 Hz, and their frequency dependence can
be neglected.

In the standard atmospheric absorption is calculated as

Aatm = αsd/1000, (59)

where αs is a parameter depending on the frequency of the sound, and d is the
distance the sound propagates in the air. For frequencies around 100 Hz, αs is
approximately 0.2, so for, e.g., the distance of 1 km, Aatm = 0.2 dB. This is such a
small value that it is lost under the other inaccuracies of the model. Thus, in the
simulation, the atmospheric absorption is set to Aatm = 0.

For the geometric divergence, there is an equation in the standard that is directly
applied in the simulation:

Adiv = 20 log10

(
d

d0

)
+ 11, (60)

where d is the distance the sound propagates, and d0 is the reference distance
d0 = 1 m. The constant 11 in the equation relates the sound power level of an
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omnidirectional sound source to the sound pressure level at a distance of 1 m [39,
p. 88].

Several different methods for calculating the attenuation due to ground effect are
given in the standard. In addition of frequency, the ground effect depends on the
height of the sensors and the target. However, based on actual measurements in a
Finnish forest [40, figure 3 (left)], the attenuation due to ground effect in simulations
is set to Agr = 8 dB.

As a summary, the sound pressure level LP [dB] at a sensor due to the target is
calculated from the sound power level of the target, and its distance from the sensor
as

LP = LW − A = LW − (Adiv + Agr) = LW − 20 log10(d)− 19. (61)

6.3 Wireless communication model

Usually the research on decentralized detection and the related simulations do not
consider the communication aspect of the sensor network. As discussed in Chapter
1.1, the sensors are typically connected by a wireless communication channel. To
make the simulations more realistic, a model for the communication between sensors
is implemented in the simulations. The fundamental function of this model in the
simulations is discarding some of the information sent from the sensors to the fusion
center.

There are essentially two major reasons why the measurement information from
sensors might not received by the fusion center:

� In the physical layer, there may be so low a signal-to-noise ratio (SNR) that
the receiving sensor or fusion center cannot properly decode the information
from a transmission.

� In the medium access control (MAC) layer, there may be congestion in the
transmission medium.

Both of these are taken into account in the model for wireless communication in the
network. Since the lifetime of the battery-powered sensors depend on energy con-
sumption, energy-efficiency is of paramount importance in sensor networks. Energy
can be saved by limiting the transmit power of the sensors, which results in quite a
low SNR at the receiver. Thus, a relatively high percentage of the information sent
by the sensors may be lost because of this. Sleep cycles [34] may also be utilized
by the sensors to save energy. During sleep periods, a sensor’s radio is completely
turned off, so it cannot transmit or receive anything during that period. The active
periods, when the radio is actually on, may be short, and there may be a lot of
traffic in the network during these periods. The information from all the sensors
may not make it to the fusion center during an active period in case of congestion
in the network.

To represent the loss of detection information from low SNR, a simple approach
is applied. Each value a sensor sends to the fusion center is lost with some proba-
bility PSNR. This is a baseline for the probability of packet loss, where one packet
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constitutes one value a sensors sends. In the simulations, it is assumed the sensors
are set to transmit at quite a low power and, thus, the value for PSNR is set quite
high, PSNR = 0.02. This means that 2% of packets are lost regardless of the traffic
intensity at MAC layer.

To model the packet loss resulting from congestion in the network, a method
from article [35] is used. A contention-based MAC scheme is considered where the
sensors, which have a packet to send, compete for the used of the communication
channel. The active period, discussed above, is split into S time slots for analysis.
Denote the number of sensors, which have a packet to send, as B. At each time slot,
each of the B sensors transmit with probability p. If two or more sensors try to send
during the same time slot, all their transmissions fail, and they have to try again
at later time slots. A packet is lost if it is not successfully transmitted during the
active period, i.e., during the S time slots. According to [35], the probability that
a packet is lost due to congestion in the communication channel, for each packet
individually, can be approximated by

Pr {packet lost} =
(
(1− p) + p(1− (1− p)B−1)

)S
. (62)

The optimal value for p under the assumptions in [35] is approximately

popt ≈
2

B + 2
. (63)

However, the sensors do not know the number of sensors that have something to
send, B. In the simulations, sensors assume the worst-case scenario and use the
number of sensors in the network, N , instead of B, in equation (63). The number
of time slots, S, used in simulations is S = 100. The shape of function (62) with
S = 100, network size N = 20, and p = 2

N+2
= 2

20+2
= 1

11
is shown in Figure 8.

This approach to modeling the nonideal communication between sensors is actu-
ally appropriate only for sensors communicating directly with the fusion center, and
the networking aspect, different transmit power levels, different number of hops of
different packets in the network, or different distances between the sensors are not
modeled. A more elaborate scheme would have to be devised to account for these.
This simple model used in simulations is justified by that fact that the primary
interest is on the percentage of lost packets. It is not relevant, which packets are
dropped and which are received.

6.4 Default settings for the simulation

A sound power level for the target was set from [4, figure 4]. The value chosen for
the sound power level is 115 dB which corresponds to a sound pressure level of 104
dB at a distance of 1 m according to the rule of thumb [39]

LP1m [dB relative to 20 µPa] = LW [dB relative to 1 pW]− 11, (64)

where LP1m denotes the sound pressure level at a distance of 1 m from the source,
and LW denotes the sound power level of the source.
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Figure 8: Probability of packet loss for a single packet as a function of the number
of sensors having something to send for the settings of simulation scenario described
in Chapter 6.1.

The acoustic background noise is modeled by a normal distribution, see Chapter
4.2. Therefore, two parameters have to be set for the noise, mean and variance. The
mean was set to 1.1 mPa, which corresponds to a sound pressure level of 35 dB, and
the variance was set to 10−7 Pa2. It is assumed the sensors have very good estimates
of the mean and the variance of the background noise, i.e., the estimation errors are
ignored, and the sensors use the true values instead.

All sensors were set to the same level of probability of false alarm in the simula-
tions. For the combining standard deviations scheme, the probability of false alarm
for the fusion center is fully determined by the false alarm rate of the sensors. Mul-
tiplier of the fusion center threshold for the combining standard deviations scheme,
β, is set to its default value of two. For a desired level of PFA at the fusion center,
the PFA of the sensors was searched by iteration from function (52).

For the maximum likelihood scheme, the thresholds for the sensors and the fusion
center were searched by iteration with the Matlab script of Appendix A. First,
the threshold for the sensors, ρ, was set to yield approximately the same PFA at
the sensors as in the combining standard deviations scheme. After ρ was set, the
threshold for the fusion center, α, was searched which yields approximately the
desired PFA.
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K is set to one for all sensors, i.e., sensors use only their current measurement
at each time instant in their decision-making. The sensors take measurements and
run their detection algorithm at intervals of one second. The fusion center also
makes a decision of presence or absence of the target once in a second. Some of the
settings presented here or in Chapter 6.1 are changed in some of the simulations.
The changes are discussed in the chapters discussing results for the corresponding
simulation.

6.5 Simulation 1 — Performance at different rates of PFA

In this simulation, the detection performance of the combining standard deviations
scheme and the maximum likelihood scheme is compared. As described in Chapter
6.4, in both schemes the sensors were set to the same level of PFA, and the same
level of PFA was set to the fusion center. The simulation was run with three different
rates of PFA at the fusion center, 10−4, 10−5, and 10−6. These rates were chosen
since they represent a reasonable compromise between number of false alarms and
detection sensitivity for the main scenario. The detection thresholds corresponding
to these rates in both schemes are listed in Table 2.

Table 2: Settings of the fusion center and the sensors in simulation 1.

Setting number 1 2 3

PFA of fusion center 10−4 10−5 10−6

PFA of sensors 7.29 · 10−4 2.30 · 10−4 7.27 · 10−5

ρ 301 878 2640
α 117 295 900

A thousand simulations were run with each false alarm rate for both schemes.
The average number alarms was computed from the results for each false alarm
rate and for both schemes. A larger number of alarms is considered to be better,
although there probably are false alarms included in these alarms. However, these
are ignored for two reasons:

� Most of the alarms are actual detections of the target.

� Simulations are run to compare the relative performance of the two schemes,
and the fusion center is set to the same PFA for both schemes. The expected
number of false alarms is same for both schemes. Thus, the false alarms do
not play a large role in comparison of the two schemes.

The results of this simulation are shown in Figure 9. In all three levels of PFA,
the combining standard deviations scheme performs significantly better than the
maximum likelihood scheme. Although the maximum likelihood scheme is semi-
optimal in a more ideal scenario, i.e., where all the sensors are at an equal distance
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Figure 9: Number of alarms in the simulation scenario for three different rates of
PFA for both detection schemes.

from the target, its performance is not good in this type of more practical scenario.
This shows it is not robust against deviations from assumptions since it performs
clearly worse than an heuristic scheme without optimality properties.

6.6 Simulation 2 — Different noise distribution

The sensors assume in their detection algorithms that the background acoustic noise
is normal distributed. In this simulation, the performance of the proposed schemes
is studied if this assumption does not hold. The background noise in this simulation
is gamma distributed [41] with the same expected value and variance as the normal
distributed noise in simulation 1, i.e., expected value µ = 1.1 mPa and variance
σ2 = 10−7 Pa2. The gamma distribution has two parameters, shape parameter
kG > 0, and scale parameter θG > 0. Its expected value equals kGθG, and its variance
equals kGθ

2
G. Setting the same expected value and variance for the background noise

as in simulation 1 means setting kG and θG such that

{
kGθG = µ
kGθ

2
G = σ2.

(65)
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Solving for kG and θG yields {
kG = µ2

σ2

θG = σ2

µ
.

(66)

The probability density function of a gamma distributed variable X is of the form

fG(x) = xkG−1 e−x/θG

Γ(kG)θkGG
, x ∈ [0,∞), (67)

where Γ(kG) is the so-called gamma function, Γ(kG) =
∫∞

0
tkG−1e−tdt. The gamma

distribution has a longer tail than the normal distribution, i.e., it is relatively likely
to draw values from gamma distribution that are quite far from the expected value.
Thus, for a fixed variance, false alarms are more likely in the case where the back-
ground noise is gamma distributed than in the case where it is normal distributed.
The probability density functions of a normal distribution and a gamma distribu-
tion with the parameters used in the simulations are plotted in Figure 10. In the
x-axis, µ is the mean value and σ is the standard deviation of the normal distribu-
tion. To illustrate better the long tail of the gamma distribution, Figure 11 shows
the same two distributions zoomed into an interval µ + 3σ . . . µ + 6σ. There it
can be seen that the probability of the background noise causing measurement val-
ues that are several standard deviations over the mean is clearly larger under the
gamma distribution than under the normal distribution. Setting, e.g., PFA = 10−4

for a single sensor in the combining standard deviations scheme and considering
only a single measurement corresponds to making a local alarm if the measurement
x > µ+Q−1(10−4)σ = µ+ 3.72σ. This is the type of measurement that causes false
alarms, so PFA is larger under the gamma distribution.

The simulation was run with the same three settings of Table 2 for both detection
schemes as in Simulation 1. The only difference is the gamma distributed noise. The
sensors and the fusion center still assume, now incorrectly, the same PFA as before.
The true rates of PFA for the sensors and the fusion center were estimated with
Matlab script of Appendix A. The settings and the probabilities of false alarm are
presented in Tables 3 and 4.

Table 3: Settings and the probabilities of false alarm of the fusion center and the
sensors in simulation 2 for the combining standard deviations scheme.

Setting number 1 2 3

Assumed PFA of fusion center 10−4 10−5 10−6

True PFA of fusion center 3.5 · 10−3 1.0 · 10−3 3.2 · 10−4

Assumed PFA of sensors 7.29 · 10−4 2.30 · 10−4 7.27 · 10−5

True PFA of sensors 4.3 · 10−3 2.3 · 10−3 1.3 · 10−3

As anticipated, the false alarm rates grow significantly in both schemes when the
background noise is changed from normal distributed to gamma distributed. There
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Figure 10: The probability density functions of a normal distribution and a gamma
distribution with the parameters used in the simulations.

Table 4: Settings and the probabilities of false alarm of the fusion center and the
sensors in simulation 2 for the maximum likelihood scheme.

Setting number 1 2 3

ρ 301 878 2640
α 117 295 900

Assumed PFA of fusion center 10−4 10−5 10−6

True PFA of fusion center 3.0 · 10−3 1.9 · 10−3 7.6 · 10−4

Assumed PFA of sensors 7.29 · 10−4 2.30 · 10−4 7.27 · 10−5

True PFA of sensors 5.3 · 10−3 1.6 · 10−3 9.1 · 10−4

seems to be no large difference in the change of the false alarm rate between the two
detection schemes, i.e., both schemes seem to be equally robust or sensitive to this
change in the noise distribution. Both schemes are robust in the sense that they
still work as intended but, on the other hand, sensitive in the sense that their false
alarm rates change significantly from the intended ones.

The same scenario as in simulation 1, now with a different background noise
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Figure 11: The probability density functions of a normal distribution and a gamma
distribution with the parameters used in the simulations in an interval µ+3σ . . . µ+
6σ.

distribution, was run a thousand times for each setting for both schemes, and the
average number of alarms in each case was computed. The results of simulation
2 are shown in Figure 12. Although there are more false alarms now, the vast
majority of the alarms are still valid detections of the target. Therefore, detection
performance can be compared by looking at the total number of alarms. It can
be seen by comparing Figures 9 and 12 that the number of alarms went up for
all settings in both detection schemes as the background noise distribution was
changed to a gamma distribution. Also, as can be seen from Tables 3 and 4, the
probability of false alarm increased because of the long tail of the noise distribution.
There is essentially no change in the relative performance of the two schemes with
the corresponding settings. Thus, changing the background noise distribution from
normal to gamma distribution resembles the situation of decreasing the thresholds
in order to have a larger probability of detection at the cost of having a larger PFA.
However, ratio of the number of alarms and PFA is worse in the case of gamma
distributed noise. This means that detecting the target in gamma distributed noise
is a more difficult problem than detecting it in normal distributed noise.



38

1 2 3
0

100

200

300

400

500

600

700

800

Setting number

N
u
m
b
er

of
al
ar
m
s

 

 
Combining standard deviations
Maximum likelihood

Figure 12: Number of alarms in simulation 2 for three different settings for both
detection schemes.

6.7 Simulation 3 — Binary sensors

6.7.1 Introduction

Quantization of the data the sensors send to the fusion center is discussed in Chapter
3.1. It is argued there that the energy savings achieved by quantizing the measure-
ments are likely to be minor. In this simulation, the performance of the combining
standard deviations scheme is studied in the situation, where the sensors quantify
their measurements to a single bit, i.e., the sensors give only a local yes/no decision
of presence of the target.

Consider the combining standard deviations scheme without quantization. As
explained in Chapter 4.4.2, the probability of a single sensor giving a large enough
value to set off the fusion center threshold by itself is negligibly small. Also, two
sensors making a local decision the target is present and giving any value always
sets off the alarm. Therefore, if a scheme with extreme quantization, i.e., binary
sensors, is considered, setting the fusion center to decide the target is present when
two sensors give an alarm yields approximately the same PFA at the fusion center.
Thus, the two situations can be compared and the effect of binary sensors on the
detection performance can be seen. Although the PFA at the fusion center is the
same in both situations, the detecion performance is expected to be worse with
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binary sensors. This stems from the fact that a single sensor cannot produce a large
value which would set off the alarm at the fusion center, even if the target were right
next to the sensor.

6.7.2 Main scenario

The main scenario, described in Chapter 6.1, was run with both the basic combining
standard deviations scheme and binary sensors. In both cases, PFA of the fusion
center was set to 10−4. In case of the binary sensors, the fusion center sets off the
alarm when it recieves local alarms from at least two sensors.

For both setups, the simulation was run a thousand times, and the average
number of alarms in the basic combining standard deviations scheme was 698.2,
and in the binary sensors setup, the average number of alarms was 698.2. In both
setups, the performance is the same within rounding error. This is due to the
network topology in the main scenario. The sensors are grouped so close to each
other that many sensors detect the approaching target almost at the same time.
When one sensor has so strong a signal from the target that it would cause the
fusion center to set off the alarm by itself, the measurement of at least one other has
risen above its detection threshold, and it sends a local alarm to the fusion center,
too.

6.7.3 Linear array

To illustrate the possible degredation of detection performance when the sensors
give binary information instead of more accurate information to the fusion center,
another simulation scenario is considered. In this scenario, there are only 5 sensors,
and they are grouped to a linear equidistant array. The distance between sensors
is 400 m, whereas in the main scenario the distance is ca. 200 m. The sensors are
grouped along the y-axis of the coordinate system and the target approaches along
the y-axis as well. The speed of the target is ca. 30 km/h and it moves 8 km during
the simulation. This scenario is illustrated in Figure 13.

The sensitivity of the network is set to the same level as in the binary sensor
simulation of the main scenario, i.e., PFA of the fusion center is set to 10−4. As
shown in Table 2, setting PFA of the sensors to 7.29 · 10−4 results in PFA of 10−4

at the fusion center in the main scenario. Now the network has a different size, N ,
so according to equation (52), a different sensitivity has to be set to the sensors to
get the desired PFA of 10−4 at the fusion center. By iteration, it was found that
setting the sensors to PFA = 3.18 · 10−3 yields approximately PFA = 10−4 at the
fusion center.

This simulation was run one thousand times with both basic and binary sensors
in the combining standard deviations scheme. The average number of alarms in the
basic combining standard deviations scheme was 270.4, and in the binary sensors
setup, the average number of alarms was 268.0. Unlike in the main scenario with
binary sensors, discussed in Chapter 6.7.2, now there is a notable difference in the
number of alarms between the basic and the binary setup. This difference would
likely grow larger if the distance between sensors were increased. On the other hand,
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Figure 13: Sensor setup and the route of the target in simulation 3b: linear array.

the difference would likely become smaller if the target approached from some other
direction. This scenario, where the target approaches from the same direction along
which the sensors are grouped, is essentially a worst-case scenario from the viewpoint
of the detection performance of the binary sensors setup.

6.8 Simulation 4 — Effect of β

6.8.1 Introduction

As discussed in Chapter 4.4.2, the fusion center threshold parameter, β, of the
combining standard deviations scheme can be adjusted a little lower than its default
value of 2. Adjusting beta this way allows a single sensor to set off easier the global
alarm at the fusion center. If β is adjusted by a sufficiently small amount, this can
be done with a very small increase in the PFA of the fusion center. In this simulation,
the effect of β on the detection performance of the combining standard deviations
scheme is studied.

6.8.2 Main scenario

The main scenario was run with the combining standard deviations scheme and
with two different values of β. In both cases, PFA of the fusion center was set to
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approximately 10−4. The default value of β is 2, so this is the baseline for comparison
with a lower value of β. An increase in PFA that is two orders of magnitude smaller
than PFA was deemed a negligible change. According to equation (55), setting
β = 1.67 in the main scenario increases PFA by 1.06 · 10−6, so β = 1.67 was used as
the lower value.

For both settings, the simulation was run a thousand times, and the average
number of alarms was computed. With β = 2, the average number of alarms was
698.2 and with β = 1.67, the average number of alarms was 698.5. The increase in
the number of alarms is very small and may be caused only by the tiny increase in
the number of false alarms. This is the same result as in the simulation with binary
sensors, described in Chapter 6.7.2, and the reasons are the same, too. The sensors
are grouped relatively close to each other, and the target approaches from such a
direction, that the measurement of the sensor closest to the target does not have
the time to rise to a level in which it would set off the alarm of the fusion center
by itself, even though the threshold is now lower. Other nearby sensors give their
alarms before that happens and, thus, a lower value of β does not help here.

6.8.3 Linear array

To show that decreasing β might be beneficial in some cases, the linear array scenario
with 5 sensors, described in Chapter 6.7.3, was run with the same PFA of the fusion
center and two different values of β, the default value of 2 and a lower value. Now
there is a different number of sensors and a different PFA of the sensors, so a new
value for β has to be found. According to equation (55), setting β = 1.85 increases
PFA by 1.12 · 10−6, so β = 1.85 was used as the lower value.

As before, for both settings, the simulation was run one thousand times, and
the average number of alarms was computed. The results are shown in Figure 14,
and parameters for the different settings are summarized in Table 5. With β = 2,
the average number of alarms was 270.4 and with β = 1.85, the average number of
alarms was 271.8. Now there is a tangible difference in the detection performance
between the setups with different values of β. This goes to show that detection
performance can be improved in some cases by adjusting β slightly lower than its
default value of 2.

Table 5: Summary of the parameters for the different settings in the linear array
scenario.

Setting β Sensor PFA Approximate fusion center PFA

Basic 2 3.18 · 10−3 10−4

Alternative 1 1.85 3.18 · 10−3 10−4 + 10−6

Alternative 2 2 3.19 · 10−3 10−4 + 10−6

The increase in the number of alarms by adjusting β in this scenario is larger
than the one achieved by directly increasing PFA of the sensors. To show this, a
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Figure 14: Average number of alarms from a thousand simulation runs in the linear
array scenario with 5 sensors using three different settings in the combining standard
deviations scheme.

batch of simulations was run where the PFA of the fusion center was increased by
approximately the same amount as decreasing β to 1.85 yielded. As stated above,
setting β = 1.85 increases PFA by 1.12 ·10−6. According to equation (52), increasing
PFA of the sensors from 3.18·10−3 to 3.19·10−3 increases the PFA of the fusion center
by approximately 1.11 · 10−6. A simulation was run one thousand times with β = 2
and PFA = 3.19 · 10−3. The result of the simulation is shown in Figure 14 and the
parameters discussed above are listed in Table 5. The average number of alarms was
270.5, which is smaller than the number of alarms obtained by setting β = 1.85, even
though the increase in PFA is the same. This shows that, in some cases, adjusting
β is results in a better detection performance than directly adjusting the PFA of the
sensors. However, β can be adjusted only by a little. For larger modifications to the
sensitivity of the sensors, their PFA has to be adjusted directly.

6.9 Discussion of simulation results

Results of the simulations conducted in Simulink indicate that the combining stan-
dard deviations scheme performs better in the main scenario. Simulations also show
that the proposed schemes work appropriately under a long tailed background noise
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distribution. Although performance decreases for both schemes, it still remains at
an acceptable level. The difference in the performance of the two schemes is ap-
proximately the same under the long tailed noise distribution, i.e., the combining
standard deviations scheme still performs considerably better than the maximum
likelihood scheme.

It is quite surprising that the heuristic combining standard deviations scheme
works so much better in the main scenario than the maximum likelihood scheme,
which semi-optimal in a more idealistic scenario. The motivation for developing the
combining standard deviations scheme was to devise a somewhat simpler scheme
with easier setup of parameters. In addition these benefits, performance in the
main scenario is significantly better than that of the maximum likelihood scheme.
Also, the combining standard deviations scheme is equally robust against a long
tailed noise distribution as the maximum likelihood scheme.
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7 Conclusions and future work

A summary of the thesis is given is this chapter. Also, usefulness of the schemes are
discussed here, and suggestions are given for future research.

7.1 Conclusions

Decentralized detection is an area of research which focuses on detection of targets
with a network of sensors. The research conducted in this area often concentrates
on theoretical issues and ideal situations, whereas this thesis discusses the problems
in a realistic scenario. The main scenario of this thesis is detecting a vehicle in a
forest using acoustic sensors.

The main problem with many of the detection schemes developed for ideal sce-
narios is the requirement that all sensors observe the exactly same phenomena. The
fact that the target is at a different distance from the sensors is typically not taken
into account. Another assumption, which is often made, is the assumption of nor-
mal distributed background noise. In the derivations of the detection schemes of
this thesis, the same assumption is made, but one of the simulations is conducted
with another noise distribution. This thesis studies the performance of two schemes
in the aforementioned main scenario. One of the schemes is the maximum likelihood
scheme which has some optimality properties under certain assumptions. The other
one is a heuristic scheme named combining standard deviations, based on classical
detection theory, with no optimality properties.

The combining standard deviations scheme offers easier setup of threshold val-
ues and the approximation of false alarm rates for given thresholds using simple
equations. Based on simulation results, it also seems to offer better performance.
The main objective of this thesis was to find a practically viable detection scheme
for the realistic main scenario. While both presented schemes can be used for this
scenario, the combining standard deviations scheme offers better performance and
easier setup in the type of scenario considered here.

7.2 Directions of future work

Neither scheme properly utilizes information from sensors, which send nothing, and
the geometry of the network. Consider a situation in which sensors are placed so
densely that their detection regions overlap, and only a sensor in the center of the
network gives a local alarm. This alarm is almost certainly a false alarm since none
of the other sensors nearby detect anything. On the other hand, if a sensor in
the edge of the network gives a local alarm, and none of the nearby sensors detect
anything, it is much more likely to be real detection of a target approaching the
network. The fusion center does not use this information any way in its decision
rule. A viable direction for future work could be to try to find a way to use this
information in the decision rule of the fusion center.

Another natural step would be to use actual measurements as the acoustic back-
ground noise in simulations, or better yet, employ a network of sensors in a forest,
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and conduct a live experiment. It would be of interest to try different detection
schemes in different background noise conditions, for example, in a windy or rainy
environment. To realistically assess the performance in these type of conditions, the
analysis would have to be based on actual measurements in the desired conditions.
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Appendix A — Matlab simulation script

The listing below presents the Matlab script that was used in the simulations. If no
target is used, outputs are estimated probabilities of false alarm for a single sensor
and the fusion center. If a target is included in the simulation, the script prints
out the average number of alarms at the fusion center. This script works only for
sensors which take one measurement into account at a time, i.e., for setting K = 1.
Also, all sensors are assumed to be set to have the same PFA.

1 %% The simulation
2

3 % This simulation works only for the case K = 1!
4

5 clear all;
6

7

8 %% Parameters
9

10 scenario = 0; % Select scenario: 0:main, 1: linear array
11 drop packets = 1; % Dropping some of the packets: 0:no, 1:yes
12 use target = 1;
13 scheme = 0; % Select detection scheme: 0:CSD, 1:ML, 2:binary−CSD
14 noise = 0; % Select noise distribution: 0:normal, 1:gamma
15 I = 1000; % Number of simulation runs
16

17 mu = 0.0011; % Mean of the background noise
18 var = 10ˆ(−7); % Variance of the background noise
19 spower = 115; % Sound power level of the target
20

21 P FA = 7.29*10ˆ(−4); % P FA which the sensors assume in CSD scheme
22 % Threshold of the sensors in the CSD scheme
23 threshold = sqrt(var)*qfuncinv(P FA) + mu;
24 beta = 2; % FC threshold parameter in CSD scheme
25

26 rho = 2640; % Sensor threshold of the ML scheme
27 alpha = 900; % Fusion center threshold of the ML scheme
28

29 if noise == 1
30 % Gamma distribution parameters
31 k = muˆ2/var;
32 theta = var/mu;
33 end
34

35

36 %% Locations, target route, sound pressures & communication ...
parameters

37

38 % Locations of the sensors
39 if scenario == 0
40 sensors = [1000 1450; 1100 1190; 840 1160; 550 1120; 440 ...

1010; 820 1020;...
41 1040 1010; 590 930; 1280 940; 860 890; 1170 780; 760 ...
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750; 1330 750;...
42 640 710; 960 670; 1440 660; 1250 610; 790 580; 1160 480; ...

1430 400];
43 T = 2000; % Number of time instances in simulation
44 N = 20; % Number of sensors in the network
45 else
46 sensors = [500 1900; 500 1500; 500 1100; 500 700; 500 300];
47 T = 1000; % Number of time instances in simulation
48 N = 5; % Number of sensors in the network
49 end
50

51 % Genrate route of the target
52 location = zeros(T,2);
53 if scenario == 0
54 for time = 1:T
55 if time < 1000
56 location(time,2) = ...

(3000−20*0.2*(time−500))+200*sin(0.1*0.2*(time−500));
57 location(time,1) = ...

(3500−23*0.2*(time−500))+300*cos(0.1*0.2*(time−500));
58 elseif time ≥ 1000 && time ≤ 1100
59 location(time,2) = ...

(3000−20*0.2*500)+200*sin(0.1*0.2*500);
60 location(time,1) = ...

(3500−23*0.2*500)+300*cos(0.1*0.2*500);
61 else
62 location(time,2) = 3*(time−1100) + ...

(3000−20*0.2*500)+200*sin(0.1*0.2*500);
63 location(time,1) = 10*(time−1100) + ...

(3500−23*0.2*500)+300*cos(0.1*0.2*500);
64 end
65 end
66 else
67 for t = 1:T
68 location(t,1) = 500;
69 location(t,2) = 9100 − 8*t;
70 end
71 end
72

73 % Compute distance of the target from all sensors,
74 % sound pressure levels [dB] and sound powers [Pa] at all time ...

instances
75 distances = zeros(T,N);
76 spl = zeros(T,N); % Sound pressure levels
77 sp = zeros(T,N); % Sound pressures
78 for t = 1:T
79 for n = 1:N
80 distances(t,n) = distance(location(t,1),location(t,2),...
81 sensors(n,1),sensors(n,2));
82 if distances(t,n) < 1
83 distances(t,n) = 1;
84 end
85 spl(t,n) = soundpressure(spower,distances(t,n));
86 sp(t,n) = 20*10ˆ(−6)*10ˆ(spl(t,n)/20);
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87 end
88 end
89

90 % Wireless communication model parameters
91 S = 100; % Number of time slots in the MAC scheme
92 p = 2/(N+2); % Probability of sending data in one time slot
93 P SNR = 0.02; % Probability of packet loss due to low SNR
94

95

96 %% Data generation & processing
97

98 sensor alarms = 0;
99 FCalarms = 0;

100 lost packets = zeros(T,1);
101

102 for i = 1:I
103 % Noise of the sensors
104 if noise == 0
105 x = mu + sqrt(var).*randn(T,N); % Normal distributed noise
106 else
107 x = gamrnd(k,theta,T,N); % Gamma distributed noise
108 end
109

110 % Generate the data for sensors
111 if use target == 0
112 sensor data = x;
113 else
114 sensor data = sp + x;
115 end
116

117 % Sensor processing
118 sent data = zeros(T,N); % The data for fusion center
119 if scheme == 0 | | scheme == 2 % CSD scheme (binary included)
120 for t = 1:T
121 for n = 1:N
122 if sensor data(t,n) > threshold
123 sent data(t,n) = ...

(sensor data(t,n)−mu)/sqrt(var);
124 sensor alarms = sensor alarms + 1;
125 end
126 end
127 end
128 else % ML scheme
129 for t = 1:T
130 for n = 1:N
131 mu1 = sensor data(t,n);
132 x0 = (sensor data(t,n)−mu)ˆ2;
133 x1 = (sensor data(t,n)−mu1)ˆ2;
134 Lambda = exp(−1/(2*var).*x1)./exp(−1/(2*var).*x0);
135 if Lambda > rho
136 sent data(t,n) = Lambda;
137 sensor alarms = sensor alarms + 1;
138 else
139 sent data(t,n) = rho;
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140 end
141 end
142 end
143 end
144

145 % Wireless communication simulation, i.e. dropping packets
146 if drop packets == 1
147 B = zeros(T,1); % Number of transmissions at a given time
148 if scheme == 0 | | scheme == 2 % CSD and binary−CSD schemes
149 for t = 1:T
150 B(t) = nnz(sent data(t,:));
151 for n = 1:N
152 if sent data(t,n) > 0
153 if rand < ((1−p)+p*(1−(1−p)ˆ(B(t)−1)))ˆS
154 sent data(t,n) = 0;
155 lost packets(t) = lost packets(t) + 1;
156 elseif rand < P SNR
157 sent data(t,n) = 0;
158 lost packets(t) = lost packets(t) + 1;
159 end
160 end
161 end
162 end
163 else % ML scheme
164 for t = 1:T
165 B(t) = nnz(sent data(t,:)−rho);
166 for n = 1:N
167 if sent data(t,n) > rho
168 if rand < ((1−p)+p*(1−(1−p)ˆ(B(t)−1)))ˆS
169 sent data(t,n) = rho;
170 lost packets(t) = lost packets(t) + 1;
171 elseif rand < P SNR
172 sent data(t,n) = rho;
173 lost packets(t) = lost packets(t) + 1;
174 end
175 end
176 end
177 end
178 end
179 end
180

181 % Fusion center processing
182 if scheme == 0 % CSD scheme
183 for t = 1:T
184 if sum(sent data(t,:)) > beta*qfuncinv(P FA)
185 FCalarms = FCalarms + 1;
186 end
187 end
188 elseif scheme == 1 % ML scheme
189 for t = 1:T
190 if prod(sent data(t,:)) > alpha*rhoˆN
191 FCalarms = FCalarms + 1;
192 end
193 end
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194 else % Binary−CSD scheme
195 for t = 1:T
196 % Modify the sent data into binary form
197 binary sent data = (sent data > 0);
198 if sum(binary sent data(t,:)) ≥ 2
199 FCalarms = FCalarms + 1;
200 end
201 end
202 end
203

204 i
205 end
206

207 if use target == 0
208 % Estimated probability of false alarm of one sensor
209 P FA sensors = sensor alarms/(I*T*N)
210 % Estimated probability of false alarm of the fusion center
211 P FA FC = FCalarms/(I*T)
212 else
213 % Average number of fusion center alarms
214 FCalarms average = FCalarms/I
215 end
216

217 % Average number of lost packets
218 lost packets average = lost packets/I;
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