331 research outputs found

    Cells in ExperimentaL Life Sciences (CELLS-2018): capturing the knowledge of normal and diseased cells with ontologies

    Full text link
    Abstract Cell cultures and cell lines are widely used in life science experiments. In conjunction with the 2018 International Conference on Biomedical Ontology (ICBO-2018), the 2nd International Workshop on Cells in ExperimentaL Life Science (CELLS-2018) focused on two themes of knowledge representation, for newly-discovered cell types and for cells in disease states. This workshop included five oral presentations and a general discussion session. Two new ontologies, including the Cancer Cell Ontology (CCL) and the Ontology for Stem Cell Investigations (OSCI), were reported in the workshop. In another representation, the Cell Line Ontology (CLO) framework was applied and extended to represent cell line cells used in China and their Chinese representation. Other presentations included a report on the application of ontologies to cross-compare cell types and marker patterns used in flow cytometry studies, and a presentation on new experimental findings about novel cell types based on single cell RNA sequencing assay and their corresponding ontological representation. The general discussion session focused on the ontology design patterns in representing newly-discovered cell types and cells in disease states.https://deepblue.lib.umich.edu/bitstream/2027.42/148823/1/12859_2019_Article_2721.pd

    Conceptualization of Computational Modeling Approaches and Interpretation of the Role of Neuroimaging Indices in Pathomechanisms for Pre-Clinical Detection of Alzheimer Disease

    Get PDF
    With swift advancements in next-generation sequencing technologies alongside the voluminous growth of biological data, a diversity of various data resources such as databases and web services have been created to facilitate data management, accessibility, and analysis. However, the burden of interoperability between dynamically growing data resources is an increasingly rate-limiting step in biomedicine, specifically concerning neurodegeneration. Over the years, massive investments and technological advancements for dementia research have resulted in large proportions of unmined data. Accordingly, there is an essential need for intelligent as well as integrative approaches to mine available data and substantiate novel research outcomes. Semantic frameworks provide a unique possibility to integrate multiple heterogeneous, high-resolution data resources with semantic integrity using standardized ontologies and vocabularies for context- specific domains. In this current work, (i) the functionality of a semantically structured terminology for mining pathway relevant knowledge from the literature, called Pathway Terminology System, is demonstrated and (ii) a context-specific high granularity semantic framework for neurodegenerative diseases, known as NeuroRDF, is presented. Neurodegenerative disorders are especially complex as they are characterized by widespread manifestations and the potential for dramatic alterations in disease progression over time. Early detection and prediction strategies through clinical pointers can provide promising solutions for effective treatment of AD. In the current work, we have presented the importance of bridging the gap between clinical and molecular biomarkers to effectively contribute to dementia research. Moreover, we address the need for a formalized framework called NIFT to automatically mine relevant clinical knowledge from the literature for substantiating high-resolution cause-and-effect models

    Discovering lesser known molecular players and mechanistic patterns in Alzheimer's disease using an integrative disease modelling approach

    Get PDF
    Convergence of exponentially advancing technologies is driving medical research with life changing discoveries. On the contrary, repeated failures of high-profile drugs to battle Alzheimer's disease (AD) has made it one of the least successful therapeutic area. This failure pattern has provoked researchers to grapple with their beliefs about Alzheimer's aetiology. Thus, growing realisation that Amyloid-ÎČ and tau are not 'the' but rather 'one of the' factors necessitates the reassessment of pre-existing data to add new perspectives. To enable a holistic view of the disease, integrative modelling approaches are emerging as a powerful technique. Combining data at different scales and modes could considerably increase the predictive power of the integrative model by filling biological knowledge gaps. However, the reliability of the derived hypotheses largely depends on the completeness, quality, consistency, and context-specificity of the data. Thus, there is a need for agile methods and approaches that efficiently interrogate and utilise existing public data. This thesis presents the development of novel approaches and methods that address intrinsic issues of data integration and analysis in AD research. It aims to prioritise lesser-known AD candidates using highly curated and precise knowledge derived from integrated data. Here much of the emphasis is put on quality, reliability, and context-specificity. This thesis work showcases the benefit of integrating well-curated and disease-specific heterogeneous data in a semantic web-based framework for mining actionable knowledge. Furthermore, it introduces to the challenges encountered while harvesting information from literature and transcriptomic resources. State-of-the-art text-mining methodology is developed to extract miRNAs and its regulatory role in diseases and genes from the biomedical literature. To enable meta-analysis of biologically related transcriptomic data, a highly-curated metadata database has been developed, which explicates annotations specific to human and animal models. Finally, to corroborate common mechanistic patterns — embedded with novel candidates — across large-scale AD transcriptomic data, a new approach to generate gene regulatory networks has been developed. The work presented here has demonstrated its capability in identifying testable mechanistic hypotheses containing previously unknown or emerging knowledge from public data in two major publicly funded projects for Alzheimer's, Parkinson's and Epilepsy diseases

    Knowledge Management approaches to model pathophysiological mechanisms and discover drug targets in Multiple Sclerosis

    Get PDF
    Multiple Sclerosis (MS) is one of the most prevalent neurodegenerative diseases for which a cure is not yet available. MS is a complex disease for numerous reasons; its etiology is unknown, the diagnosis is not exclusive, the disease course is unpredictable and therapeutic response varies from patient to patient. There are four established subtypes of MS, which are segregated based on different characteristics. Many environmental and genetic factors are considered to play a role in MS etiology, including viral infection, vitamin D deficiency, epigenetical changes and some genes. Despite the large body of diverse scientific knowledge, from laboratory findings to clinical trials, no integrated model which portrays the underlying mechanisms of the disease state of MS is available. Contemporary therapies only provide reduction in the severity of the disease, and there is an unmet need of efficient drugs. The present thesis provides a knowledge-based rationale to model MS disease mechanisms and identify potential drug candidates by using systems biology approaches. Systems biology is an emerging field which utilizes the computational methods to integrate datasets of various granularities and simulate the disease outcome. It provides a framework to model molecular dynamics with their precise interaction and contextual details. The proposed approaches were used to extract knowledge from literature by state of the art text mining technologies, integrate it with proprietary data using semantic platforms, and build different models (molecular interactions map, agent based models to simulate disease outcome, and MS disease progression model with respect to time). For better information representation, disease ontology was also developed and a methodology of automatic enrichment was derived. The models provide an insight into the disease, and several pathways were explored by combining the therapeutics and the disease-specific prescriptions. The approaches and models developed in this work resulted in the identification of novel drug candidates that are backed up by existing experimental and clinical knowledge

    Integrating omics data from phenotypically-related genodermatoses. A Cytoscape approach using biological networks

    Get PDF
    The ongoing advance of high-throughput sequencing technologies is bringing to the biomedical research community the opportunity to disclose relatively uncharted and poorly addressed domains in genetic disorders. Specifically, this project aims to shed new light on the molecular mechanisms of three rare skin diseases: Recessive Dystrophic Epidermolysis Bullosa (RDEB), Kindler Syndrome (KS) and Xeroderma pigmentosum type C (XPC). To accomplish this, biological network construction is leveraged herein, by providing a convenient approach to integrate and downstream analyze molecular omics data obtained from the comparison of these three genodermatoses (RDEB, KS & XPC) against healthy control samples. Concretely, microRNAs, RNAs and protein datasets are conjointly combined in the form of graphs whose structure and arrangement can be analyzed. On this basis, and upon computational procedures, the representation of high-throughput omics data across networks serves for both a topological and functional characterization of the molecular entities embedded within the graphs. Cytoscape software harbors the toolkits needed to exploit the massive omics information presented in this work, closely operating with online ontologies containing crucial annotations on the molecular entities under the network conglomerates. Cytoscape platform is going to carry out the bioinformatics computational endeavours, conducting then to new insights where common mechanisms and candidate biomarkers shared by the three genodermatoses will be highlighted. In this manner, STRING, BiNGO and ClueGO (Cytoscape plug-ins) will assist in the finding of enriched functions (such as “cell adhesions” and “epidermal growth factor signaling”), whereas the topological analysis will rely on STRING and NetworkAnalyzer, following the principles of graph theory to identify candidate molecules like TFAP2A and L1CAM. With the aid of manual curations, these two approaches will stand for a narrowing-down strategy from which biological interpretations are obtained.IngenierĂ­a BiomĂ©dic

    Systems Analytics and Integration of Big Omics Data

    Get PDF
    A “genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This “Big Data” is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene–environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome

    Alveolar Progenitor Cells in Lung Damage and Regeneration in Pulmonary Fibrosis

    Get PDF
    • 

    corecore