11,082 research outputs found

    Time lower bounds for nonadaptive turnstile streaming algorithms

    Full text link
    We say a turnstile streaming algorithm is "non-adaptive" if, during updates, the memory cells written and read depend only on the index being updated and random coins tossed at the beginning of the stream (and not on the memory contents of the algorithm). Memory cells read during queries may be decided upon adaptively. All known turnstile streaming algorithms in the literature are non-adaptive. We prove the first non-trivial update time lower bounds for both randomized and deterministic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While there has been abundant success in proving space lower bounds, there have been no non-trivial update time lower bounds in the turnstile model. Our lower bounds hold against classically studied problems such as heavy hitters, point query, entropy estimation, and moment estimation. In some cases of deterministic algorithms, our lower bounds nearly match known upper bounds

    Cell-Probe Lower Bounds from Online Communication Complexity

    Full text link
    In this work, we introduce an online model for communication complexity. Analogous to how online algorithms receive their input piece-by-piece, our model presents one of the players, Bob, his input piece-by-piece, and has the players Alice and Bob cooperate to compute a result each time before the next piece is revealed to Bob. This model has a closer and more natural correspondence to dynamic data structures than classic communication models do, and hence presents a new perspective on data structures. We first present a tight lower bound for the online set intersection problem in the online communication model, demonstrating a general approach for proving online communication lower bounds. The online communication model prevents a batching trick that classic communication complexity allows, and yields a stronger lower bound. We then apply the online communication model to prove data structure lower bounds for two dynamic data structure problems: the Group Range problem and the Dynamic Connectivity problem for forests. Both of the problems admit a worst case O(logn)O(\log n)-time data structure. Using online communication complexity, we prove a tight cell-probe lower bound for each: spending o(logn)o(\log n) (even amortized) time per operation results in at best an exp(δ2n)\exp(-\delta^2 n) probability of correctly answering a (1/2+δ)(1/2+\delta)-fraction of the nn queries

    The Quantum Complexity of Set Membership

    Get PDF
    We study the quantum complexity of the static set membership problem: given a subset S (|S| \leq n) of a universe of size m (m \gg n), store it as a table of bits so that queries of the form `Is x \in S?' can be answered. The goal is to use a small table and yet answer queries using few bitprobes. This problem was considered recently by Buhrman, Miltersen, Radhakrishnan and Venkatesh, where lower and upper bounds were shown for this problem in the classical deterministic and randomized models. In this paper, we formulate this problem in the "quantum bitprobe model" and show tradeoff results between space and time.In this model, the storage scheme is classical but the query scheme is quantum.We show, roughly speaking, that similar lower bounds hold in the quantum model as in the classical model, which imply that the classical upper bounds are more or less tight even in the quantum case. Our lower bounds are proved using linear algebraic techniques.Comment: 19 pages, a preliminary version appeared in FOCS 2000. This is the journal version, which will appear in Algorithmica (Special issue on Quantum Computation and Quantum Cryptography). This version corrects some bugs in the parameters of some theorem

    Cell-Probe Bounds for Online Edit Distance and Other Pattern Matching Problems

    Full text link
    We give cell-probe bounds for the computation of edit distance, Hamming distance, convolution and longest common subsequence in a stream. In this model, a fixed string of nn symbols is given and one δ\delta-bit symbol arrives at a time in a stream. After each symbol arrives, the distance between the fixed string and a suffix of most recent symbols of the stream is reported. The cell-probe model is perhaps the strongest model of computation for showing data structure lower bounds, subsuming in particular the popular word-RAM model. * We first give an Ω((δlogn)/(w+loglogn))\Omega((\delta \log n)/(w+\log\log n)) lower bound for the time to give each output for both online Hamming distance and convolution, where ww is the word size. This bound relies on a new encoding scheme and for the first time holds even when ww is as small as a single bit. * We then consider the online edit distance and longest common subsequence problems in the bit-probe model (w=1w=1) with a constant sized input alphabet. We give a lower bound of Ω(logn/(loglogn)3/2)\Omega(\sqrt{\log n}/(\log\log n)^{3/2}) which applies for both problems. This second set of results relies both on our new encoding scheme as well as a carefully constructed hard distribution. * Finally, for the online edit distance problem we show that there is an O((logn)2/w)O((\log n)^2/w) upper bound in the cell-probe model. This bound gives a contrast to our new lower bound and also establishes an exponential gap between the known cell-probe and RAM model complexities.Comment: 32 pages, 4 figure

    Compressing Sparse Sequences under Local Decodability Constraints

    Full text link
    We consider a variable-length source coding problem subject to local decodability constraints. In particular, we investigate the blocklength scaling behavior attainable by encodings of rr-sparse binary sequences, under the constraint that any source bit can be correctly decoded upon probing at most dd codeword bits. We consider both adaptive and non-adaptive access models, and derive upper and lower bounds that often coincide up to constant factors. Notably, such a characterization for the fixed-blocklength analog of our problem remains unknown, despite considerable research over the last three decades. Connections to communication complexity are also briefly discussed.Comment: 8 pages, 1 figure. First five pages to appear in 2015 International Symposium on Information Theory. This version contains supplementary materia

    On Data Structures and Asymmetric Communication Complexity

    Get PDF
    In this paper we consider two party communication complexity when the input sizes of the two players differ significantly, the ``asymmetric'' case. Most of previous work on communication complexity only considers the total number of bits sent, but we study tradeoffs between the number of bits the first player sends and the number of bits the second sends. These types of questions are closely related to the complexity of static data structure problems in the cell probe model. We derive two generally applicable methods of proving lower bounds, and obtain several applications. These applications include new lower bounds for data structures in the cell probe model. Of particular interest is our ``round elimination'' lemma, which is interesting also for the usual symmetric communication case. This lemma generalizes and abstracts in a very clean form the ``round reduction'' techniques used in many previous lower bound proofs
    corecore