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Abstract

In this paper we consider two party communication complexity when
the input sizes of the two players di�er signi�cantly� the �asymmetric�
case� Most of previous work on communication complexity only considers
the total number of bits sent� but we study tradeo�s between the number
of bits the �rst player sends and the number of bits the second sends�
These types of questions are closely related to the complexity of static
data structure problems in the cell probe model�

We derive two generally applicable methods of proving lower bounds�
and obtain several applications� These applications include new lower
bounds for data structures in the cell probe model� Of particular interest
is our �round elimination� lemma� which is interesting also for the usual
symmetric communication case� This lemma generalizes and abstracts in
a very clean form the �round reduction� techniques used in many previous
lower bound proofs�
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� Introduction

In Yao�s model of two�party communication �Yao���� the complexity of a pro�
tocol is the total number of bits communicated between the two players	 An
additional complexity measure sometimes considered is the number of rounds
of messages	 In most applications of communication complexity� it is su
cient
to consider these two measures	

An exception is asymmetric communication problems where the input of
one player �Alice� contains much fewer bits than the input of the other player
�Bob�	 A simple example is the membership problem MEMN�l� where Alice gets
x � U  f�� 	 	 	 � N � �g� Bob gets S � U of size at most l� and the two players
must decide if x � S	 It is easy to verify that the communication complexity of
the problem is dlogNe� and the trivial one round protocol� where Alice sends
her entire input to Bob� is optimal	

However� this does not tell us all there is to know about the game	 What if
Alice does not send her entire input� but only� say�

p
logN bits� Will Bob have

to send his entire input� or will fewer bits do� In general� what is the necessary
tradeo� between the number of bits Alice sends Bob and the number of bits
that Bob sends Alice� Standard lower bound techniques such as the rank
technique �MS��� and the �large monochrome submatrix technique� �Yao���
fail to answer these questions	 Some tradeo�s for speci�c functions have been
obtained �Mil��� Mil���� but no generally applicable method for showing them
has previously appeared	

��� Asymmetric Communication and Data Structures

One motivation for studying asymmetric communication complexity is its ap�
plication to data structures in the cell probe model	 The cell probe model�
formulated by Yao �Yao���� is a model for the complexity of static data struc�
ture problems	 In a static data structure problem� we are given a domain D of
possible data� a domain Q of possible queries� and a map f on Q � D� where
f�q� d� is the answer to query q about data d	 A solution with parameters s� b
and t� is a method of storing any d � D as a data structure ��d� in the memory
of a random access machine� using s memory cells� each containing b bits� so
that any query in Q can be answered by accessing at most t memory cells	 We
are interested in tradeo�s between s� the size of the data structure� and t� the
query time �the value of b being regarded as a parameter of the model� usually
O�log jQj� or O�polylog jQj��	

A familiar example is the �existential� two dimensional orthogonal range
query problem� where D is the set of subsets S � f�� 	 	 	 � Ng� f�� 	 	 	 � Ng of a
certain size� Q is the set of rectangles �x� y�� �z� u�� and f��x� y�� �z� u�� S�  �
if and only if �x� y�� �z� u�� S � �	

It was observed in �Mil��� that lower bounds for cell probe complexity can
be derived using communication complexity� For a static data structure prob�
lem� we consider the communication problem� where Alice gets q � Q� Bob
gets d � D� and they must determine f�q� d�	 If there is solution to the data
structure problem with parameters s� b and t� then there is a protocol for

�



the communication problem� with �t rounds of communication� where Alice
sends log s bits in each of her messages and Bob sends b bits in each of his
messages	 For natural data structure problems jqj  log jQj is much smaller
than jdj  log jDj� so the communication problem is asymmetric	 Earlier lower
bounds for static data structures in the cell probe model �Ajt��� Xia��� also �t
into the communication complexity framework	

In section � we continue studying the relations between complexity in the
cell probe model and asymmetric communication complexity	 We show that�

	 When the number of rounds of communication is constant� the communi�
cation complexity also provides upper bounds for cell probe complexity	

However� by a result in �Mil���� when the number of rounds of communication
is not constant� for almost all data structure problems �with natural choices
of parameters� the cell probe complexity is signi�cantly �as much as exponen�
tially� larger than the communication complexity	 This may suggest that the
asymmetric communication complexity approach is not the best one for prov�
ing lower bounds in the cell probe model	 However� our next result shows that
obtaining better lower bounds� using any method� may be very di
cult	 The
best bounds that can be obtained �and we do obtain� using communication
complexity are t  ��n� log s�� where n  log jQj� and we show that much
better lower bounds imply time�space tradeo�s for branching programs� a long
standing open problem �see e	g	 �Weg���� pp	 ����	

	 If a function f � f�� �gn�f�� �gm 
 f�� �g can be computed by polynomial
size� read O��� times branching programs� then there is a data structure
storing d � f�� �gm using s  mO��� cells of size b each so that any query
q � f�� �gn can be answered in t  O�n� log b� queries	

We go on to provide two generally applicable techniques for showing neces�
sary tradeo�s between the number of bits that Alice sends� the number of bits
that Bob sends� and the number of rounds of communication	 We apply them
to a variety of problems� some of them motivated by cell probe complexity�
others by their intrinsic interest	

Some notation� Let f � A�B 
 f�� �g be a communication problem	
An �a� b��protocol for f is a protocol where the total number of bits that

Alice sends Bob is at most a and the total number of bits that Bob sends Alice
is at most b	

A �t� a� b�A�protocol for f is a protocol where each of Alice�s messages con�
tains at most a bits and each of Bob�s messages contains at most b bits and
at most t messages are sent� with Alice sending the �rst message	 A �t� a� b�B�
protocol is de�ned similarly	

A randomized protocol for f is a public coin protocol P where for every
x� y� Pr�P �x� y�  f�x� y�� � ���� It has one�sided error if f�x� y�  � �
Pr�P �x� y�  ��  ��

��� The Richness Technique

Our �rst general technique� presented in section �� is the use of the following
richness lemma	 Identify f with its communication matrix M with Ma�b 
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f�a� b�� i	e	 index the rows by Alice�s possible inputs� and the columns by Bob�s
possible inputs	 We say that a matrix �and a problem� is �u� v��rich if at least
v columns contains at least u ��entries	
Richness Lemma� Let f be a �u� v��rich problem	 If f has a randomized
one�sided error �a� b��protocol� then f contains a submatrix of dimensions at
least u��a�� � v��a�b�� containing only ��entries	

The lemma is easy to prove and simple to use� and it enables us to give
good lower bounds for several problems	

	 In the disjointness problem� Alice gets T � f�� 	 	 	 � n� �g of size k� Bob
gets S � f�� 	 	 	 � n� �g of size l� and they must decide if T � S  �	 �The
symmetric version of this problem is� of course� well studied	� We prove
that in any randomized one�sided error �a� b� protocol either a  ��k� or
b  ��l�	 Furthermore� if k � a � k log l� then b � l��O�a�k�� a	 We also
provide non�trivial upper bounds	

	 The membership problem is the interesting special case where k  �	 In
this case our tradeo�s are particularly tight	

	 In the span problem� Alice gets an n�dimensional vector x � Z�
n� and Bob

gets a subspace Y � Z�
n �represented� e	g	� by a basis of k  n vectors�	

They must decide whether x � Y 	 We show that essentially no non�trivial
protocol exists� in any randomized one�sided error �a� b� protocol either
a  ��n� or b  ��n��	

These communication complexity lower bounds have as direct corollaries lower
bounds in the cell probe model regarding data structures maintaining subsets
of of f����ng� or subspaces of Z�

n� respectively	

��� The Round Elimination Lemma

Our second technique� presented in section �� is a round�by�round �restriction�
of the protocol	 These types of techniques lie at the heart of all previously
known lower bounds for static data structures �Ajt��� Xia��� Mil��� BF����
and several other lower bounds in communication complexity �KW��� DGS���
HR��� NW���	 In each case they have been used in an ad�hoc way	 We obtain
a very general lemma abstracting these types of techniques	

Given f � we de�ne a new communication problem as follows� Alice gets m
strings x�� ���� xm and Bob gets a string y and an integer �  i  m	 Their
aim is to compute f�xi� y�	 Suppose a protocol for this new problem is given�
where Alice goes �rst� sending Bob a bits� where a is much smaller than m	
Intuitively� it would seem that since Alice does not know i� the �rst round of
communication can not be productive	 We justify this intuition	 Moreover� we
show that this is true even if Bob also gets copies of x�� ���� xi��� a case which
is needed in some applications	 Denote this problem by Pm�f�	
Round Elimination Lemma� Suppose there is a randomized �t� a� b�A�
protocol for solving P���a�f�	 Then there is a randomized �t � �� ���a� ���b�B�
protocol for solving f 	
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This lemma can be applied to a wide range of problems with the following
kind of �self reducibility�� Pm�f� �with given parameters� can be reduced to a
single problem f �naturally with larger parameters�	 In these cases we can use
the lemma repeatedly� each time shaving o� another round of communication	

	 Our �rst application is to obtain the �rst lower bounds for data struc�
tures for the existential two�dimensional orthogonal range query problem
described above�	 The lower bound applies also to higher dimensions� but
for the one�dimensional problem we prove a constant upper bound	 This
answers questions raised in �Mil���	

We then demonstrate the power of the lemma by easily deriving �sometimes
with somewhat weaker bounds� several of the known lower bounds both for
data structure problems and for other communication complexity problems	
These include�

	 Lower bounds for data structures for counting and modulo�counting ver�
sions of the � dimensional range query problem in the cell probe model	
Such bounds were �rst proved in �Ajt��� Xia��� Mil��� BF���	

	 The depth hierarchy for monotone constant depth circuits	 This was �rst
proved by �KPPY��� and� using Karchmer�Wigderson games �KW���� is
equivalent to a rounds problem in communication complexity �see �NW�����
which we prove a lower bound for	

	 A round�communication tradeo� for the randomized complexity of the
�greater than� problem	 �Alice and Bob each get an n�bit integer and they
must decide which is greater	� This was �rst proved by Yao �unpublished�	

� Communication Complexity vs� Cell Probe Com�

plexity

Communication complexity is the only known generally applicable method for
showing lower bounds on the cell probe complexity of static data structure
problems	 In this section we discuss how powerful it is� and the likelihood of
more powerful methods	

Let a data structure problem f on domains Q  f�� �gn and D  f�� �gm
be given	 How large tradeo�s between structure size s and query time t can be
shown�

In �Mil��� it was shown that the following communication complexity prob�
lem provides lower bounds for the query time	 Alice gets q � Q� Bob gets
d � D� and they must determine f�q� d�	

Lemma � �Mil��� If there is solution to the data structure problem with param�
eters s� b and t� then there is a ��t� dlog se� b�A�protocol for the communication
problem�

�After �rst obtaining a lower bound using the round elimination lemma� we have discovered
an alternative proof involving a simple reduction to �parity range query problems�� This
second proof also yields better lower bounds relying on the ones of �BF���
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We can provide a converse in the restricted case where the communication
complexity protocol has a constant number of rounds	

Lemma � If there is a �O���� a� b� protocol for computing f�q� d� then the data
structure problem has a solution with parameters s  �O�a�� t  O���� and b�

Proof� �sketch� There will be a cell for any possible transmission by Alice	
That cell will hold Bob�s answer	

�

A more general converse is� however� impossible	 Using communication com�
plexity� we can at most show an n� logm lower bound� since in this number of
rounds� Alice can send her entire query to Bob	 However� there are well known
data structure problem� where the best known upper bound on the query time
is much larger than n  log jQj	 A notoriously di
cult example is the partial
match query problem where we must store a subset S � f�� �gn� so that for any
q � f�� �gn� the query ��z � S�i � qi  zi�� can be answered	 No solution
is known with worst case query time even polynomial in n when the struture
size is polynomial	 Yet not only does communication complexity fail to provide
bounds better than n� logm� but for this problem� we only know how to show
a
p
log n lower bound� using the techniques of section �	 Counting arguments

show that for most data structure problems the solution which stores the non�
redundant representation of the data and the query algorithm which reads all
of it� is in fact optimal�

Theorem � �Mil�	� For a random data structure problem f � Q�D 
 f�� �g�
if s � log jQj��b cells of size b are used then query time ��log jDj�b� is neces�
sary�

Thus� for a random function there is a huge �as much as exponential� gap be�
tween cell probe complexity and communication complexity	 We don�t know
any explicitly de�ned function with a provable gap	 Finding one is an interest�
ing open problem	 The following theorem tells us that we are unlikely to get
superlinear �in n� lower bounds for explicitly de�ned functions with the current
state of the art of complexity theory	 Recall that it is still an open problem
�believed to be di
cult� whether all of NP can be computed by polynomial size�
read twice branching programs �see e	g	 �Weg���� pp	 ����	

Theorem � If a function f � f�� �gn � f�� �gm 
 f�� �g can be computed
by polynomial size� read O��� times branching programs� then there is a data
structure storing d � f�� �gm using s  mO��� cells of size b so that any query
can be answered in time t  O�n� log b��

Proof� Let us �rst show a data structure with a O�n� upper bound on the
query time� and thereafter show how to improve it to n� log b	

Given a branching program for f of size �n �m�O���  mO���� and a data
structure instance d � f�� �gm� eliminate all di�variables in the branching pro�
gram� leaving only qi�variables	 The size has not increased	 We store a pointer
structure representing this new branching program	
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Given a query q� we simulate the stored branching program on q	 Since the
branching program reads each variable only a constant number of times� the
query time is O�n�	

We now present the improved version	 Note that since the branching pro�
gram has size mc we only need c logm bits to represent pointers in the program	
Thus� we can in a single cell represent a binary tree of depth r � log b�� with
pointers to branching program locations in the nodes and indices of qi�variables
on the edges	 For each branching program location� we make such a cell� rep�
resenting the program for the next r steps	 This speeds up simulation of the
program with a factor r	

�

� The Richness Technique

��� The Richness Lemma

Given a communication problem f � A � B 
 f�� �g� we identify f with its
communication matrix M with Ma�b  f�a� b�� i	e	 we index the rows by Alice�s
possible inputs� and the columns by Bob�s possible inputs	 We say that a matrix
�and a problem� is �u� v��rich if at least v columns contain at least u ��entries	

Lemma � Let f be a �u� v��rich problem� If f has a randomized one�sided
error �a� b��protocol� then f contains a submatrix of dimensions at least u��a���
v��a�b�� containing only ��entries�

The proof is postponed to the appendix	

��� The membership problem

In the membership problem MEMn�l� Alice gets x � f�� �� 	 	 	 � n� �g� Bob gets
S � f�� �� 	 	 	 � n� �g of size at most l� and they must decide if x � S	 Assume
for convenience that n and l are powers of two� and that l  n��	 Being
asymmetric� this problem has not been studied previously	 Let us �rst look at
some upper bounds	 Between the extreme behaviors of the ��� l logn��protocol�
where Bob sends his entire input to Alice� and the �logn� ���protocol where Alice
sends his entire input to Bob� we have the following protocols	

Theorem � The non�membership problem has the following protocols


�� For a  log l� a ��a�O�l log n��a���protocol� and for a � log l� a
��a�O�logn � � log l� �a���protocol�

�� For all a  log l� a randomized one sided error �O�a�� O�l��a���protocol�

Proof� Deterministic Protocol� First consider a  log l	 Before the protocol
starts� the two players agree on a prime p between n and �n� �	 Consider the
family of hashfunctions

hk�x�  �kx mod p� mod ��a���
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Bob chooses k so that the number of collisions of hk on S is minimized	 As
shown in �FKS���� he can choose one so that the total number of collisions is
at most O�l����a�	 He sends it to Alice� who hashes her input and sends the
result to Bob� who sends Alice all those elements � S with the same hash value	
Note that if r elements have the same hash value� then the number of collisions
is greater than �r��� so he sends at most O�l��a� elements	 Finally� Alice tells
Bob if her input is among them	

For a � log l� Alice reduces the domain size by sending Bob the �rst a�� log l
bits of her input� after which they simulate the �rst protocol	

Randomized Protocol� This is just a special case of the randomized
protocol for disjointness �lemma ��	

�

Note that all of the above protocols are constant round	 We now use the
richness lemma to show lower bounds	

Theorem 	 If MEMn�l has a one�sided error �a� b��protocol� then �a�a � b� 
��l�logn�log l��� If its negation has a one�sided error �a� b��protocol� then �a�a�
b�  ��l��

Proof� The �n� l��membership function is �l� �nl ���rich� so by the richness lemma�
we can �nd a ��submatrix of dimensions at least l��a�� � �nl ���

a�b��	 Note�
however� that if the membership matrix contains a ��rectangle of dimensions
r � s� then �n�rl�r � � s so

�
n�l��a��
l�l��a�� � � �nl ���

a�b�� � �a�b�� � �n�l�l��
a�� � �a���a�b��� � l�logn�log l�

The negation of MEMn�l is �n � l� �nl �� rich� so by the richness lemma� we can
�nd a ��submatrix of dimensions �n � l���a�� � �nl ���

a�b��	 Note� however�
that if the non�membership matrix contains a ��submatrix of dimensions r� s�
then �n�rl � � s� so

�
n� n�l

�a��

l � � �nl ���
a�b�� � a� b� � � l log�

n

n� n�l
�a��

�� �a�a� b�  ��l�

�

If we are only interested in the value of a and b up to a constant� the determin�
istic upper bounds and the lower bounds for one�side error protocols are tight
for l  n��� and a  log l� It is su
cient and necessary that b  l logn����a�	
The bounds for randomized one�sided error protocols for non�membership tight
for any l  n�� and a� It is su
cient and necessary that b  l����a�	

��� The Disjointness Problem

An obvious generalization of the membership problem is the disjointness prob�
lem DISJn�k�l� k � l � n��� where Alice gets T � f�� 	 	 	 � n� �g of size k� Bob
gets S � f�� 	 	 	 � n� �g of size l� and they decide if T � S  �	 The symmetric
version of this problem is� of course� well studied	

Several upper bounds can be derived for this problem using extensions of
the protocols given for the membership problem	 Perhaps the nicest is�
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Lemma 
 DISJn�k�l� for k � l � n�� has a one�sided error randomized
�O�a�� O�l��a�k���protocol for all values of k  a  k log l� and a one�sided
error randomized �O�a�� O�l log�k�a��� protoocl for all values of �  a  k�

Proof� We use an adaptation of a protocol due to Hastad and Wigderson
�unpublished�	 First let us consider the a  ��k� case	 Here the public coin
�ips will denote a sequence of random subsets R����Ri��� of f����ng	 Each round
Alice will send to Bob the next i such that S � Ri� Bob will update his set
T � T � Ri� and will send to Alice j � i for the next j such that T � Rj

�the new T �� and then Alice will update S � S � Rj 	 If at any point during
the protocol S or T become empty then the original sets were disjoint	 The
expected number of bits sent by Alice �resp	 Bob� in each round is the current
size of S �resp	 T �	 If S and T are disjoint then the expected size of both S
and T decreases by a factor of exactly � each round	 Thus the total expected
number of bits sent by Alice �resp	 Bob� is still O�k� �resp	 O�l��	 If S and T
do not become empty after so many bits have been sent then� w	h	p� S and T

were not disjoint	
If a � k then Alice starts by sending Bob O�a�k� indices i as before	 This

allows Bob to reduce the size of T �assuming that it is disjoint from S� by an
expected factor of exactly �a�k	 Then they continue with the previous protocol	
If a  k then Bob starts by sending Alice log�k�a� indices i as before� reducing
the size of S to O�a�	

�

Theorem � If the disjointness problem has a randomized one�sided error �a� b��
protocol� then either a  ��k� or b  ��l�� Moreover� for a � k� b  ��l��a�k�
a�

Proof� The �n� l��disjointness function is ��n�lk �� �nl ���rich� so by Lemma �� we
can �nd a ��rectangle of dimensions at least �n�lk ���a � �nl ���

a�b	 Let the rows
be indexed by the sets T�� T�� 	 	 	 � Tr and let the columns be indexed by the sets
S�� S�� 	 	 	 � Ss	 We then have that Si�Tj  � for all i� j	 Let t  �n�l�k���a�k	
Since �tk� � �n�lk ���a� we must have �Ti � t and therefore �Si � n � t� i	e	
�a�b � � n

n�t�
l	

�

The disjointness problem is interesting from a cell probe perspective	 Recall
that by perfect hashing �FKS���� one can store a set S � U using O�jSj� cells�
each containing an element of U � so that membership queries can be answered
in constant time	 Now suppose we have k elements� and we want to �nd out
whether any of them are in S	 Is there a data structure for S and a way of
preprocessing the query so that after preprocessing� we can do this in o�k� time�
As a corollary to the above theorem� we can show that there is not	

��� The Span Problem

The membership and disjointness problems exhibits a smooth tradeo� between
the number of bits that Alice sends Bob and the number of bits that Bob sends
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Alice	 Using the richness technique� we can show that this is not the case for
the problem INSPANn� where Alice gets x � Z�

n� Bob gets a vector subspace
Y � Z�

n� �the subspace may be represented by a basis of k  n vectors� thus
requiring O�n�� bits� and they must decide whether x � Y 	 We omit the proof
of the following theorem	

Theorem �� In any �a� b� one�sided error randomized protocol for INSPANn

either a  ��n� or b  ��n���

� The Round Elimination Technique

��� Round Elimination Lemma

Let f�x� y� be a communication problem on domain X � Y 	 Let Pm�f� be the
following problem� Alice gets m strings x�� ���� xm � X � Bob gets an integer
i � f���mg� a string y � Y and a copy of the strings x�� ���� xi��	 Their aim is
to compute f�xi� y�	

Lemma �� Suppose there is a randomized �t� a� b�A�protocol for solving P���a�f��
Then there is a randomized �t� �� ���a� ���b�B�protocol for solving f �

The proof of this main lemma is quite involved and is postponed to the ap�
pendix	

��� Range query problems

We consider the cell probe complexity of existential� r�dimensional orthogonal
range query problems on domain U  f�� 	 	 	 � �n � �g� for �xed r � �	

The problem is as follows� Given a data set S � U r� construct a static data
structure using at most s  jSjO��� memory cells� each containing b  nO���

bits� so that for any box q  �u�� v��� � � � �ur� vr�� we can answer the query �Is
q � S  ��� e
ciently	

Previously� only counting range queries �where the query is �What is jq �
Sj���� andmodulo�counting range queries �where the query is �Is jq�Sj mod r 
���� have been considered in the cell probe model	 An upper bound on the
query time in the one�dimensional problem� for all types of queries� is O�logn��
with s  O�jSj�� b O�n� �Wil���	 It is easy to generalize this to a solution for
the r�dimensional problem with query time O�logn� and s  O�jSjr�� b  O�n�	
The best known lower bound for counting �Xia��� and modulo�counting �Mil���
BF��� range queries is ��logn� log logn� for any dimension r � �	 ��Xia��� and
�Mil��� BF��� were done independently�	 The complexity of existential queries
was left as an open problem in �Mil���	

Here� we show a O��� upper bound on the query time for existential range
queries in the one�dimensional case� and an ��

p
logn� lower bound on d�

dimensional queries for r � �	
For the upper bound� by Lemma �� we only need to �nd a protocol for the

communication problem OERQn�l� where Alice gets an interval �q�� q��� Bob gets
a set S � U of size at most l and they have to decide if �q�� q�� � S  �	

�



Theorem �� OERQn�l has an �O���� O�log l�� n���protocol�

Proof� If jSj  n� Bob can send his entire input to Alice in one round� so
assume S � n	 Identify q� and q� with their binary representation� and let
i � f�� 	 	 	 � ng be the �rst bit where q� and q� di�er� and let w be their common
pre�x of length i� �	 Since q� � q�� we have q�i  � and q�i  �	 We can write
�q�� q��  �q�� z � �� � �z� q��� where z  w��n�i��	 Our protocol determine if
�q�� q�� � S  � by checking if �q�� z � �� � S  � and if �z� q��� S  �	 We only
describe the second part� the �rst is similar	

Alice sends i to Bob using dlog ne  O�log l� bits	 They now determine
if there an element in S starting with the pre�x w�	 This is done by the
deterministic �O�log l�� O�logn���membership protocol of Section �	 If there
isn�t such an element �z� q��� S is empty	 Otherwise� the membership protocol
also tells Bob exactly what w is� and he can send Alice the smallest of his
element y with pre�x w�	 Alice then checks if q� is smaller than y� in which
case �z� q�� � S is empty� otherwise it isn�t	 This completes the protocol	

�

We now turn to show lower bounds on r�dimensional queries for r � �	 We
assume without loss of generality that r  �� and consider the communication
problem ERQn�l where Alice gets �x� y� � U�� Bob gets S � U� of size at most
l and they must determine if ���� x�� ��� y�� � S  �	 Our lower bound is an
immediate corollary of the following theorem�

Theorem �� Let any c � � be given� For a suciently large n� let l 
��logn�

�
� a  �logn��� b  nc� t 

p
logn���� Then ERQn�l does not have an

�t� a� b��protocol�

Proof� For a communication problem f � let Pm�f� be de�ned as Pm�f� but
with the roles of Alice and Bob reversed	 The round elimination lemma enables
us to reduce instances of ERQ to Pm�ERQ� or Pm�ERQ�� eliminating one round	
We also need to reduce instances of Pm�ERQ� or Pm�ERQ� to ERQ	 The
following two reductions take care of that�

Suppose that m divides n	 A communication protocol for ERQn�l can be
used as a protocol for Pm�ERQn�m�l� as follows� Alice� given �x�� y�� 	 	 	 � �xm� ym��
computes the concatenations x�  x� � x� � � � � xm and y�  y� � y� � � � � ym	 Bob�
given i� S� and �x�� y��� 	 	 	 � �xi��� yi��� computes S�  f�x� �x� � � � �xi�� �u� y� �
y� � � ��yi�� �v�j�u� v�� Sg� Since ��� x��� ��� y���S�  � i� ��� xi�� ��� yi��S  ��
they get the correct result by simulating the ERQn�l protocol	

Suppose m is a power of two	 A communication protocol for ERQn�l can be
used as a protocol for Pm�ERQn�logm�l�m� as follows� Alice� given �x� y� and
i� computes x�  �i � �� � x and y�  �n � i� � y� where ��� denotes the binary
notation of a number	 Bob� given S�� S�� 	 	 	 � Sm computes S�

i  f � �i � �� �
u� �n � i� � v � j �u� v� � Si g and S�  �mi	�Si	 Since ��� x�� � ��� y�� � S�  �
i� ��� x�� ��� y�� Si  �� they get the correct result by simulating the ERQn�l

protocol	

��



We are now ready for the main part of our proof	 Given a protocol for
ERQn�l� we use the �rst reduction above to get a �t� a� b�A�protocol for

P���a�ERQ n
���a � l

�

	 We use the round elimination lemma to get a �t� �� ���a� ���b�B�protocol for

ERQ n
���a � l

�

The second reduction above gives us a �t� �� ���a� ���b�B�protocol for

P �����b�ERQ n
���a�log������b�� l�������b�

��

Using the round elimination lemma again� we get a �t��� ����a� ����b�A�protocol
for

ERQ n
���a�log������b�� l�������b�

�

By doing this two round elimination repeatedly� and combining with the fact
that there is clearly no ��� a�� b��� protocol for ERQn�����l���� for any a

�� b�� we are
done	

�

We can also use our technique to derive ��
p
logn� lower bounds for the one�

dimensional counting and modulo�counting problems� and� in fact� for all the
problems considered in �Mil���	 The proofs are similar to the above and are
omitted from this extended abstract	

��� The �Greater Than� Problem

The GTn function is de�ned as follows� Alice and Bob each gets an n�bit integer�
x and y� resp	� and they must decide whether x � y	 It is easy to see that
the deterministic communication complexity of GTn is linear� and it is known
that the randomized complexity is O�logn� �Ni���	 The upper bound requires
O�logn� rounds of communication� and it is not hard to obtain a k�round
protocol using O�n��k log n� bits of communication	 Yao� in an unpublished
result� shows that this is close to optimal	 We can easily rederive his lower
bound �in a somewhat weaker form� from the round elimination lemma	

Theorem �� There does not exist a randomized �k� n��k����k� n��k����k� pro�
tocol for GTn�

Proof� The proof is by induction on k	 We will show that a
�k� n��k����k� n��k����k� protocol for GTn implies a similar one for Pn��k �GTn���
for n�  n�k����k	 Using the round elimination lemma this implies a �k �
�� n��k����k��� n��k����k��� protocol for GTn� 	 A contradiction to the induc�
tion hypothesis is obtained since n��k  n����k���	

Here is the required reduction� To solve Pn��k �GTn�� using a protocol for
GTn� Alice constructs an n�bit integer  x� by concatenating x�� ���� xm	 Bob
constructs an n�bit integer  y by concatenating x�� ���� xi��� y and another �n��k�
i�n� one bits	 One can easily verify that  x �  y i� xi � y	

�

��



��� Depth Hierarchy for Monotone AC�

Let Tn
k be the boolean function on nk variables de�ned inductively as follows�

Tn
��x�  x� for odd k� Tn

k is the OR of n copies of Tn
k��� and for even k� Tn

k is
the AND of n copies of Tn

k��	 Each of the copies is a disjoint set of variables	
Thus Tn

k is de�ned by an AND�OR tree of fanin n and depth k	
It is clear that Tn

k can be computed by a monotone depth k formula of size
N  nk � with the bottom gates being OR gates	 In �KPPY��� it is proved that
monotone depth k circuits with bottom gates being AND gates require expo�
nential size to compute Tn

k	 This lower bound is equivalent to a lower bound
in communication complexity using the equivalence due to �KW���� �see also
�NW����	 Our lemma allows us to re�derive this lower bound �in a somewhat
weaker form�	

Theorem �� �KPPY��� Any monotone depth k formula with bottom gates be�
ing AND gates requires size ��n����k�  ��N��k����k� size to compute Tn

k�

Comment� An exponential lower bound for depth k circuits directly follows
by the straight forward simulation of depth k circuits by depth k formulae	
Proof� Let fn

k be the communication problem associated with the monotone
formula complexity of Tn

k ��KW���� see also �NW����	 �Here Alice is the AND
player ! holding a maxterm of Tn

k	� We will prove by induction on k that fn
k

does not have �k� n����k� n����k�A protocols �we assume k is even� the odd case
is simply dual�	 This clearly su
ces to prove the theorem	

Inspection of fn
k reveals that it is completely equivalent to Pn�fn

k���� only
that Bob does not also get copies of the �rst i � � strings of Alice	 Using the
round elimination lemma we see that a �k� n����k� n����k�A protocol for fn

k

implies a �k � �� n����k��� n����k���B protocol for fn
k��� which by induction

does not exist	

�
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Appendix

Proof of the Richness Lemma

Proof� We �rst show the following� slightly stronger statement for deterministic
protocols�

	 Let f be a �u� v��rich problem	 If f has a deterministic �a� b��protocol� then
f contains a submatrix of dimensions at least u��a � v��a�b containing
only ��entries	

The proof is by induction in a� b	 If a� b  �� no communication takes place�
so f must constant� and� since it is �u� v��rich� we must have jAj � u� jBj � v

and f�x� y�  � for all x� y	
For the induction step� assume �rst that Alice sends the �rst bit in the

protocol	 Let A� be the inputs for which she sends �� and A� be the inputs for
which she sends �	 Let f� be the restriction of f to A� � B and let f� be the
restriction of f to A� � B	 By a simple averaging argument either f� or f� is
�u��� v����rich	 Assume WLOG that it is f�	 Now� f� has an �a��� b��protocol�
so by the induction hypothesis� f� contains a ��matrix of dimensions at least
�u�����a��� �v�����a���b which is what we are looking for	

Assume next that Bob sends the �rst bit� at let B�� B�� f�� f� be de�ned
analogously	 Either f� or f� is �u� v��� rich so either f� or f� contains by the
induction hypothesis a ��matrix of dimensions u��a � �v�����a�b�� which is
what we are looking for	 This completes the induction	

Now assume a randomized one�sided error protocol for f is given	 By �x�
ing the random coin tosses made by the protocol� we can convert it into a
deterministic protocol computing a function f � with the following properties�

	 f�x� y�  �� f ��x� y�  �

	 f � is �u��� v����rich	

By applying the deterministic version of the lemma to f �� we are done	

�

Proof of the Round Elimination Lemma

Proof� Let m  ���a and let I  f�� 	 	 	 � mg	
Assume a randomzied protocol for Pm�f� with error probability ���	 By

repeating it ��� times in parallel� and taking majority of the results� we get the
error probability down to less than ������	

For any distribution D on X � Y we will construct a deterministic t � �
round algorithm for f that errs on at most ��$ of the inputs weighted according
to the distribution D	 A randomized algorithm for f follows from Yao�s version
of the von Neuman minmax theorem �Yao���	

De�ne a distribution D� on Xm � I � Y as follows� For each �  j  m
we choose �independently� �xj � yj� according to distribution D� and we choose
i uniformly at random in I 	 We set y  yi �and throw away all other yj �s�	

��



Let A be a deterministic algorithm for Pm�f� that errs on a fraction of at
most ������ of the input weighted by distribution D� �such an algorithm exists
by the easy direction of the minmax theorem�	

De�ne S to be the set of �hx�� 	 	 	 � xmi � i� for which

Pr
D�

�A errs j hx�� 	 	 	 � xmi � i�  �����

Consider the set R of x  hx�� 	 	 	 � xmi for which �x� i� � S for at least
������ of the possible values of i	 Using the Markov inequality we see that
PrDm�R� � �

� 	
Since Alice sends a bits in her �rst message� she partitions R into at most

�a sets� let T be the subset of R that has maximum weight� its weight is at
least PrDm�T � � PrDm�R�

�a � ���a��	
We now claim

	 There exists i � I � a�� a�� 	 	 	 � ai�� � X � and a set G � X with the
following properties�

�	 PrD�G� � ���

�	 For any x � G� we can �nd xi��� xi��� 	 	 	 � xm� so that

ha�� 	 	 	 � ai��� x� xi��� 	 	 	 � xmi � T

and
�ha�� 	 	 	 � ai��� x� xi��� 	 	 	 � xmi � i� � S�

Before we prove this claim� we show that it implies our lemma	 Here is a t� �
round algorithm for f on inputs x and y�

	 Alice� given x� constructs an input for A as follows� If x � G then she
picks a sequence x that starts with with a�� 	 	 	 � ai��� x such that x � T

and �x� i� � S	 Such a sequence exists by the de�nition	 If x �� G then
she picks an arbitrary sequence	

	 Bob� given y� constructs his input for A as follows� i is already de�ned�
xj  aj for all j � i� y is given to him	

	 The two players run the algorithm A but skipping the �rst round of com�
munication� instead assuming that the �rst message Alice sent was the
one yielding T 	

The probability that the algorithm errs when �x� y� are chosen according to D
is given by PrD� error �  PrD�x �� G� � PrD� error jx � G�	 The �rst term is
bounded from above by �

�� � and to bound the second term we observe that for
x � G� the sequence �x� i� is in S� so the probability of error for a random y�
given x is at most �

�� 	 Thus the total probability of error is at most ����	
We now prove the claim� by showing that the procedure in Figure � is

guaranteed to �nd i and ha�� a�� 	 	 	 � ai��i with the correct properties	 Assume
that it fails	 Note that by the de�nition of R �of which T is a subset�� the �rst

��



i � �
T� � T
do

T �
i � fx � Tij�x� i� � Sg

T �
i � fx � Tij�x� i� �� Sg

if Pr�T �
i jTi� � ���� then

Fix ai so that Pr�xi  aijx � T �
i � is maximized	

Ti�� � fx � T �
i jxi  aig

elseif PrD�xj�xi��� 	 	 	 � xn � �a�� 	 	 	 � ai��� x� xi��� 	 	 	 � xn� � T �
i � � ���

then

halt� f�a�� 	 	 	 � ai���g is the sought after vector
else

Fix ai so that Pr�xi  aijx � T �
i � is maximized	

Ti�� � fx � T �
i jxi  aig

fPrDm�i�Ti��� � PrDm�i���Ti� � ��������g
endif

i � i� �
od

Figure �� Procedure for constructing ha�� a�� 	 	 	 � ai � �i

clause in the if�statement can be satis�ed at most m���� times� which means
that

Pr
D
�Tm� � Pr

Dm
�T � � ������m���� � ����������

m����

� ���a������������� � ����������

��������a � ���a�����a � ��

a contradiction	

�
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