833 research outputs found

    Cell-Probe Lower Bounds for Succinct Partial Sums

    Full text link

    Succinct Indexable Dictionaries with Applications to Encoding kk-ary Trees, Prefix Sums and Multisets

    Full text link
    We consider the {\it indexable dictionary} problem, which consists of storing a set S{0,...,m1}S \subseteq \{0,...,m-1\} for some integer mm, while supporting the operations of \Rank(x), which returns the number of elements in SS that are less than xx if xSx \in S, and -1 otherwise; and \Select(i) which returns the ii-th smallest element in SS. We give a data structure that supports both operations in O(1) time on the RAM model and requires B(n,m)+o(n)+O(lglgm){\cal B}(n,m) + o(n) + O(\lg \lg m) bits to store a set of size nn, where {\cal B}(n,m) = \ceil{\lg {m \choose n}} is the minimum number of bits required to store any nn-element subset from a universe of size mm. Previous dictionaries taking this space only supported (yes/no) membership queries in O(1) time. In the cell probe model we can remove the O(lglgm)O(\lg \lg m) additive term in the space bound, answering a question raised by Fich and Miltersen, and Pagh. We present extensions and applications of our indexable dictionary data structure, including: An information-theoretically optimal representation of a kk-ary cardinal tree that supports standard operations in constant time, A representation of a multiset of size nn from {0,...,m1}\{0,...,m-1\} in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports (appropriate generalizations of) \Rank and \Select operations in constant time, and A representation of a sequence of nn non-negative integers summing up to mm in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports prefix sum queries in constant time.Comment: Final version of SODA 2002 paper; supersedes Leicester Tech report 2002/1

    Succinct Partial Sums and Fenwick Trees

    Get PDF
    We consider the well-studied partial sums problem in succint space where one is to maintain an array of n k-bit integers subject to updates such that partial sums queries can be efficiently answered. We present two succint versions of the Fenwick Tree - which is known for its simplicity and practicality. Our results hold in the encoding model where one is allowed to reuse the space from the input data. Our main result is the first that only requires nk + o(n) bits of space while still supporting sum/update in O(log_b n) / O(b log_b n) time where 2 <= b <= log^O(1) n. The second result shows how optimal time for sum/update can be achieved while only slightly increasing the space usage to nk + o(nk) bits. Beyond Fenwick Trees, the results are primarily based on bit-packing and sampling - making them very practical - and they also allow for simple optimal parallelization

    Succinct Representations of Permutations and Functions

    Get PDF
    We investigate the problem of succinctly representing an arbitrary permutation, \pi, on {0,...,n-1} so that \pi^k(i) can be computed quickly for any i and any (positive or negative) integer power k. A representation taking (1+\epsilon) n lg n + O(1) bits suffices to compute arbitrary powers in constant time, for any positive constant \epsilon <= 1. A representation taking the optimal \ceil{\lg n!} + o(n) bits can be used to compute arbitrary powers in O(lg n / lg lg n) time. We then consider the more general problem of succinctly representing an arbitrary function, f: [n] \rightarrow [n] so that f^k(i) can be computed quickly for any i and any integer power k. We give a representation that takes (1+\epsilon) n lg n + O(1) bits, for any positive constant \epsilon <= 1, and computes arbitrary positive powers in constant time. It can also be used to compute f^k(i), for any negative integer k, in optimal O(1+|f^k(i)|) time. We place emphasis on the redundancy, or the space beyond the information-theoretic lower bound that the data structure uses in order to support operations efficiently. A number of lower bounds have recently been shown on the redundancy of data structures. These lower bounds confirm the space-time optimality of some of our solutions. Furthermore, the redundancy of one of our structures "surpasses" a recent lower bound by Golynski [Golynski, SODA 2009], thus demonstrating the limitations of this lower bound.Comment: Preliminary versions of these results have appeared in the Proceedings of ICALP 2003 and 2004. However, all results in this version are improved over the earlier conference versio

    Tight Cell Probe Bounds for Succinct Boolean Matrix-Vector Multiplication

    Full text link
    The conjectured hardness of Boolean matrix-vector multiplication has been used with great success to prove conditional lower bounds for numerous important data structure problems, see Henzinger et al. [STOC'15]. In recent work, Larsen and Williams [SODA'17] attacked the problem from the upper bound side and gave a surprising cell probe data structure (that is, we only charge for memory accesses, while computation is free). Their cell probe data structure answers queries in O~(n7/4)\tilde{O}(n^{7/4}) time and is succinct in the sense that it stores the input matrix in read-only memory, plus an additional O~(n7/4)\tilde{O}(n^{7/4}) bits on the side. In this paper, we essentially settle the cell probe complexity of succinct Boolean matrix-vector multiplication. We present a new cell probe data structure with query time O~(n3/2)\tilde{O}(n^{3/2}) storing just O~(n3/2)\tilde{O}(n^{3/2}) bits on the side. We then complement our data structure with a lower bound showing that any data structure storing rr bits on the side, with n<r<n2n < r < n^2 must have query time tt satisfying tr=Ω~(n3)t r = \tilde{\Omega}(n^3). For rnr \leq n, any data structure must have t=Ω~(n2)t = \tilde{\Omega}(n^2). Since lower bounds in the cell probe model also apply to classic word-RAM data structures, the lower bounds naturally carry over. We also prove similar lower bounds for matrix-vector multiplication over F2\mathbb{F}_2

    Static Data Structure Lower Bounds Imply Rigidity

    Full text link
    We show that static data structure lower bounds in the group (linear) model imply semi-explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound of tω(log2n)t \geq \omega(\log^2 n) on the cell-probe complexity of linear data structures in the group model, even against arbitrarily small linear space (s=(1+ε)n)(s= (1+\varepsilon)n), would already imply a semi-explicit (PNP\bf P^{NP}\rm) construction of rigid matrices with significantly better parameters than the current state of art (Alon, Panigrahy and Yekhanin, 2009). Our results further assert that polynomial (tnδt\geq n^{\delta}) data structure lower bounds against near-optimal space, would imply super-linear circuit lower bounds for log-depth linear circuits (a four-decade open question). In the succinct space regime (s=n+o(n))(s=n+o(n)), we show that any improvement on current cell-probe lower bounds in the linear model would also imply new rigidity bounds. Our results rely on a new connection between the "inner" and "outer" dimensions of a matrix (Paturi and Pudlak, 2006), and on a new reduction from worst-case to average-case rigidity, which is of independent interest

    Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation

    Get PDF
    Given a static reference string RR and a source string SS, a relative compression of SS with respect to RR is an encoding of SS as a sequence of references to substrings of RR. Relative compression schemes are a classic model of compression and have recently proved very successful for compressing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of relative compression in a dynamic setting where the compressed source string SS is subject to edit operations. The goal is to maintain the compressed representation compactly, while supporting edits and allowing efficient random access to the (uncompressed) source string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static pattern matching problem
    corecore