2 research outputs found

    Cell Cycle and Tumor Growth in Membrane Systems with Peripheral Proteins

    Get PDF
    AbstractMembrane systems with peripheral proteins are essentially standard membrane systems with the possibility of having multisets of objects (proteins) embedded in the membranes and with the presence of rules that control the transport and the change of configurations of these proteins. The model intends to abstract the activities of the receptors embedded in the cellular membranes. In this paper we use an extension of this paradigm to model and simulate some of the mechanisms underlying cell cycle and breast tumor growth. In particular we have defined a membrane system that abstracts the G2/M cell cycle phase transition and extends the corresponding Reactome model. The model has been then simulated by using the software Cyto-Sim and we have monitored the interplay between activators and inhibitors of the cell cycle

    Programmable models of growth and mutation of cancer-cell populations

    Full text link
    In this paper we propose a systematic approach to construct mathematical models describing populations of cancer-cells at different stages of disease development. The methodology we propose is based on stochastic Concurrent Constraint Programming, a flexible stochastic modelling language. The methodology is tested on (and partially motivated by) the study of prostate cancer. In particular, we prove how our method is suitable to systematically reconstruct different mathematical models of prostate cancer growth - together with interactions with different kinds of hormone therapy - at different levels of refinement.Comment: In Proceedings CompMod 2011, arXiv:1109.104
    corecore