353,764 research outputs found

    Cell cycle-dependent expression of Kv3.4 channels modulates proliferation of human uterine artery smooth muscle cells

    Get PDF
    Producción CientíficaAims: Vascular smooth muscle cell (VSMC) proliferation is involved in cardiovascular pathologies associated with unwanted arterial wall remodelling. Coordinated changes in the expression of several K+ channels have been found to be important elements in the phenotypic switch of VSMCs towards proliferation. We have previously demonstrated the association of functional expression of Kv3.4 channels with proliferation of human uterine VSMCs. Here, we sought to gain deeper insight on the relationship between Kv3.4 channels and cell cycle progression in this preparation. Methods and results: Expression and function of Kv3.4 channels along the cell cycle was explored in uterine VSMCs synchronized at different checkpoints, combining real-time PCR, western blotting, and electrophysiological techniques. Flow cytometry, Ki67 expression and BrdU incorporation techniques allowed us to explore the effects of Kv3.4 channels blockade on cell cycle distribution. We found cyclic changes in Kv3.4 and MiRP2 mRNA and protein expression along the cell cycle. Functional studies showed that Kv3.4 current amplitude and Kv3.4 channels contribution to cell excitability increased in proliferating cells. Finally, both Kv3.4 blockers and Kv3.4 knockdown with siRNA reduced the proportion of proliferating VSMCs. Conclusion: Our data indicate that Kv3.4 channels exert a permissive role in the cell cycle progression of proliferating uterine VSMCs, as their blockade induces cell cycle arrest after G2/M phase completion. The modulation of resting membrane potential (VM) by Kv3.4 channels in proliferating VSMCs suggests that their role in cell cycle progression could be at least in part mediated by their contribution to the hyperpolarizing signal needed to progress through the G1 phase.Ministerio de Sanidad, Consumo y Bienestar Social - Instituto de Salud Carlos III (grants R006/009 and PI041044)Ministerio de Ciencia, Innovación y Universidades (grants BFU2004-05551 and BFU2007-61524)Junta de Castilla y León (grant GR242

    Systems Biology of the Eukaryotic Cell Cycle

    Get PDF

    Tracking of Normal and Malignant Progenitor Cell Cycle Transit in a Defined Niche.

    Get PDF
    While implicated in therapeutic resistance, malignant progenitor cell cycle kinetics have been difficult to quantify in real-time. We developed an efficient lentiviral bicistronic fluorescent, ubiquitination-based cell cycle indicator reporter (Fucci2BL) to image live single progenitors on a defined niche coupled with cell cycle gene expression analysis. We have identified key differences in cell cycle regulatory gene expression and transit times between normal and chronic myeloid leukemia progenitors that may inform cancer stem cell eradication strategies

    Acanthamoeba induces cell-cycle arrest in host cells

    Get PDF
    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba–host cell interactions may help in developing novel strategies to treat Acanthamoeba infections

    DYRK1A and the Cell Cycle

    Get PDF
    The ability to halt the cell cycle is critical for cells to maintain tissue and organ size, to suppress tumors and abnormal growth, and exists as a helpful mechanism to pause the cell cycle for DNA repair. DYRK1A is (dual specificity tyrosine-(Y)-phosphorylation regulated kinase 1A) a human gene found on the long (q) arm of chromosome 21, which is known to be involved with nervous system development, cell growth and division, and neuronal differentiation. In glioblastoma cells grown in vitro (T98G cell line), there are three copies of DYRK1A, which have dosage- dependent effects on the cell, including association with cognitive delays in Down Syndrome (Trisomy 21), and relevance to cancer (loss of DYRK1A leads to oncogenic transformation of fallopian tube epithelial cells by Ras and p53). In terms of DYRK1A’s role in the cell cycle, it is known as a putative tumor suppressor, mainly through its critical role in phosphorylating a Serine 28 residue on protein LIN52, leading to the formation of the DREAM complex. DREAM promotes exit from the cell cycle and cell quiescence (arrest in G0 phase). Surprisingly, DYRK1A-KO (knockout) cells actually slowed down cell proliferation, which is an unexpected result when knocking out a tumor suppressor. Through several experiments, involving cell cycle flow cytometry, western blotting for protein cell cycle markers, and EdU staining to determine whether these cells were actively undergoing DNA synthesis, we were able to determine that DYRK1A-KO T98G cells were entering the cell cycle and undergoing DNA synthesis more slowly that control cells.https://scholarscompass.vcu.edu/gradposters/1068/thumbnail.jp
    corecore