55,146 research outputs found

    Towards a narrative-oriented framework for designing mathematical learning

    Get PDF
    This paper proposes a narrative-oriented approach to the design of educational activities, as well as a CSCL system to support them, in the context of learning mathematics. Both Mathematics and interface design seem unrelated to narrative. Mathematical language, as we know it, is devoid of time and person. Computer interfaces are static and non-linear. Yet, as Bruner (1986; 1990) and others show, narrative is a powerful cognitive and epistemological tool. The questions we wish to explore are - - If, and how, can mathematical meaning be expressed in narrative forms - without compromising rigour? - What are the narrative aspects of user interface? How can interface design be guided by notions of narrative? - How can we harness the power of narrative in teaching mathematics, in a CSCL environment? We begin by giving a brief account of the use of narrative in educational theory. We will describe the environment and tools used by the WebLabs project, and report on one of our experiments. We will then describe our narrative-oriented framework, by using it to analyze both the environment and the experiment described

    Synergy and redundancy in the Granger causal analysis of dynamical networks

    Get PDF
    We analyze by means of Granger causality the effect of synergy and redundancy in the inference (from time series data) of the information flow between subsystems of a complex network. Whilst we show that fully conditioned Granger causality is not affected by synergy, the pairwise analysis fails to put in evidence synergetic effects. In cases when the number of samples is low, thus making the fully conditioned approach unfeasible, we show that partially conditioned Granger causality is an effective approach if the set of conditioning variables is properly chosen. We consider here two different strategies (based either on informational content for the candidate driver or on selecting the variables with highest pairwise influences) for partially conditioned Granger causality and show that depending on the data structure either one or the other might be valid. On the other hand, we observe that fully conditioned approaches do not work well in presence of redundancy, thus suggesting the strategy of separating the pairwise links in two subsets: those corresponding to indirect connections of the fully conditioned Granger causality (which should thus be excluded) and links that can be ascribed to redundancy effects and, together with the results from the fully connected approach, provide a better description of the causality pattern in presence of redundancy. We finally apply these methods to two different real datasets. First, analyzing electrophysiological data from an epileptic brain, we show that synergetic effects are dominant just before seizure occurrences. Second, our analysis applied to gene expression time series from HeLa culture shows that the underlying regulatory networks are characterized by both redundancy and synergy

    From Extrinsic Design to Intrinsic Teleology

    Get PDF
    In this paper I offer a distinction between design and teleology, referring mostly to thehistory of these two terms, in order to suggest an alternative strategy for arguments thatintend to demonstrate the existence of the divine. I do not deal with the soundness ofeither design or teleological arguments. I rather emphasise the differences between thesetwo terms, and how these differences involve radically different arguments for the existence of the divine. I argue that the term „design‟ refers to an extrinsic feature that was in history understood to be imposed by God in nature, while one may argue for an internal tendency, what I call „teleology‟. I first offer a historical tour of design arguments and how the basic notion of design was understood in extrinsic terms. I then briefly present three kinds of objections available in history to these arguments: philosophical, scientific, and theological. I finally move to discussing an intrinsicunderstanding of teleology, and how this notion differs from that of extrinsic design. Iend the paper showing how this notion could be useful in interpreting processes innature, in particular the reproductive tendencies in living beings

    EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks.

    Get PDF
    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a "reach/saccade to spatial target" cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI
    • …
    corecore