2 research outputs found

    Coloured Petri net-based traffic collision avoidance system encounter model for the analysis of potential induced collisions

    Get PDF
    The Traffic Alert and Collision Avoidance System (TCAS) is a world-wide accepted lastresort means of reducing the probability and frequency of mid-air collisions between aircraft. Unfortunately, it is widely known that in congested airspace, the use of the TCAS may actually lead to induced collisions. Therefore, further research regarding TCAS logic is required. In this paper, an encounter model is formalised to identify all of the potential collision scenarios that can be induced by a resolution advisory that was generated previously by the TCAS without considering the downstream consequences in the surrounding traffic. The existing encounter models focus on checking and validating the potential collisions between trajectories of a specific scenario. In contrast, the innovative approach described in this paper concentrates on quantitative analysis of the different induced collision scenarios that could be reached for a given initial trajectory and a rough specification of the surrounding traffic. This approach provides valuable information at the operational level. Furthermore, the proposed encounter model can be used as a test-bed to evaluate future TCAS logic changes to mitigate potential induced collisions in hot spot volumes. In addition, the encounter model is described by means of the coloured Petri net (CPN) formalism. The resulting state space provides a deep understanding of the cause-and-effect relationship that each TCAS action proposed to avoid an actual collision with a potential new collision in the surrounding traffic. Quantitative simulation results are conducted to validate the proposed encounter model, and the resulting collision scenarios are summarised as valuable information for future Air Traffic Management (ATM) systems.Peer ReviewedPostprint (author's final draft

    UAV technology inclusion model for preventing high-risk jobs in construction industries based on the IVAS methodology

    Full text link
    [ES] La evaluaci贸n de riesgos se hace vital al momento de prevenir accidentes laborales, los m茅todos tradicionales de evaluaci贸n de riesgos inician normalmente con la identificaci贸n y reconocimiento de riesgos. Uno de los m茅todos m谩s utilizados para evaluar riesgos laborales es el m茅todo de Investigaci贸n, Valuaci贸n, An谩lisis y Selecci贸n (IVAS). La presente investigaci贸n tuvo el prop贸sito de construir y probar un modelo de inclusi贸n tecnol贸gica con ayuda de la herramienta UAV, la cual permiti贸 robustecer y hacer m谩s eficaz la tarea de identificaci贸n y reconocimiento de riesgos, al adoptarla se lograr谩 prevenir y reducir los accidentes laborales. Es importante comentar que el modelo dise帽ado como inclusi贸n tecnol贸gica utiliz贸 reconstrucci贸n 3D y se implement贸 en la industria de la construcci贸n, logrando resultados satisfactorios para la generaci贸n de una innovaci贸n de tipo incremental para la mejora del m茅todo de an谩lisis de riesgos IVAS.[EN] Risk assessment is vital when prevent accidents, the traditional methods of risk assessment typically starts with the identification and recognition of risks. One of the most used methods to assess occupational hazards is the method of Research, Valuation, Analysis and Selection (I.V.A.S.). This research was intended to build and test a model of technological inclusion using the UAV tool, which allowed to strengthen and make more effective the task of identification and recognition of risks will be achieved by adopting prevent and reduce accidents. It is important to note that the model designed as a technology including 3D reconstruction used and implemented in the construction industry, achieving satisfactory results for the generation of a type incremental innovation to improve the risk analysis method (IVAS).Toriz P., A.; Raygoza B., M.; Mart铆nez N., D. (2017). Modelo de inclusi贸n tecnol贸gica UAV para la prevenci贸n de trabajos de alto riesgo, en industrias de la construcci贸n basado en la metodolog铆a IVAS. Revista Iberoamericana de Autom谩tica e Inform谩tica industrial. 14(1):94-103. https://doi.org/10.1016/j.riai.2016.09.004OJS94103141Acebedo, J. J., Arrue, B. C., Maza, I., Ollero, A., 2011. Distribuci贸n 贸ptima de m煤ltiples robots en vigilancia de per铆metros. Actas ROBOT 2011, 228- 232.Aracil, R., Saltar茅n, S., Ferre, M., Yime, E., 脕lvarez, C., Garc铆a, V., 2005. Design, modelling and hydrodynamic simulation of a robot of variable geometry for actuations on maritime disasters. Symposium on Marine Accidental Oil Spills.Astigarraga, E., 2008. El m茅todo Delphi. Universidad Deusto. San Sebasti谩n.Azcu茅naga, L. M., 2004. Gu铆a para la implementaci贸n de un sistema de prevenci贸n de riesgos laborales (3a. ed.). Fundaci贸n CONFEMETAL. Madrid.Benjaoran, V., Bhokha, S., 2010. Un integrados de gesti贸n de seguridad con gesti贸n de la construcci贸n mediante el modelo 4D CAD. Ciencia de seguridad 48, 395-403.Billy, H., Cameron, A., Roy D., 2006. La exploraci贸n de la integraci贸n de la salud y la seguridad con la construcci贸n de la planificaci贸n previa. Ingenier铆a, Construcci贸n y Gesti贸n de Arquitectura. Vol. 13, pp 438 -. 450.Bravo, M. d., Arrieta, J. J., 2005. El m茅todo Delphi. Su implementaci贸n en una estrategia did谩ctica para la ense帽anza de las demostraciones geom茅tricas. Revista Iberoamericana de Educaci贸n, 1-10.Brice帽o, M. M., Romero, R. T., 2012. Aplicaci贸n del M茅todo Delphi para la validaci贸n de los instrumentos de evaluaci贸n del libro electr贸nico multimedia. ANALES de la Universidad Metropolitana, 37-67.Bristeau, P.-J., Callou, F., Vissiere, D., 2011. The Navigation and Control Technology inside the AR.Drone micro UAV. IFAC, 1477- 1484. DOI:10.3182/20110828-6-IT-1002.02327Carles, J., 2013. Los drones 'se alistan' al servicio civil. T茅cnica Industrial 303, 18-19.Cavalcanti, A., Shirinzadeh, B., Freitas, J., Hogg, T., 2008. Nanorobot architecture for medical target Identification. Nanotechnology 19, 1 - 15. DOI: 10.1088/0957-4484/19/01/015103Civera, J., Davison, A., Montiel, J., 2008. Inverse Depth Parameterization for Monocular SLAM. IEEE Transactions on Robotics 24, 932 - 945. DOI:10.1109/TR0.2008.2003276Clarke, R., 2014. Understanding the Drone Epidemic. Computer Law & Security Report 3, 230-246. DOI: 10.1016/j.clsr.2014.03.002DGAC. 2015. Secretaria de Comunicaciones y Transportes-Direcci贸n General de Aeron谩utica Civil.D铆az, J. M., 2007. T茅cnicas de prevenci贸n de riesgos laborales: seguridad e higiene del trabajo, 9na Edici贸n. T脡BAR, Madrid.F谩brega, J. C., 2009. An谩lisis del riesgo en instalaciones industriales.Universidad Polit茅cnica de Catalunya, Catalunya.F茅lez, E. A., 2013. Drones: una nueva era de la vigilancia y de la privacidad. Ciberseguridad e infraestructuras cr铆ticas, 48-57.Florian, S., B眉rkle, A., Kollmann, M., Sch枚nbein, R., 2011. Instantaneous Autonomous Aerial Reconnaissance for Civil Applications. The Sixth International Conference on Systems, 72-76.Hallowell, M.R., Gambatese, J., 2007. A Formal Model for Construction Safety Risk Management. The construction and building research conference of the Royal Institution of Chartered Surveyors, 1-15.INSHT, 1997. Evaluaci贸n de riesgos laborales. Instituto Nacional de Seguridad e Higiene en el Trabajo.Jannadi, O.A., Almishari, S., 2003. Evaluaci贸n de Riesgos en la construcci贸n. Diario de Ingenier铆a y Gesti贸n 129 , Construcci贸n 492-500.Jim茅nez, A., Mart铆nez, J. R., De San Bernab茅, A., N煤帽ez, G., Ollero, A 2014. Un Banco de Pruebas Remoto para Experimentaci贸n en Rob贸tica Ubicua. Revista Iberoamericana de Autom谩tica e Inform谩tica industrial, 68- 79. DOI:10.1016/j.riai.2013.09.007Jim茅nez, V. A., Flores, J. A., Rocha, L. A., 2011. Aplicaci贸n del modelo "Antecedente-Comportamiento-Consecuencia" en la construcci贸n de lumbreras y t煤neles. Revista Ingenier铆a de Construcci贸n, 171-186. DOI: 10.4067/S0718-50732011000200003Jim茅nez, N. Y., Alvear, M. G., 2005. Accidentes de trabajo: Un perfil general. Revista Facultad de Medicina de la UNAM 48, 139-146.Knegtering, B., Jasman, H., 2009. Safety of the process industries in the 21st century: A changing need of process safety management for a changing industry. Journal of Loss Prevention in the Process Industries, 162 - 168. DOI:10.1016/j.jlp.2008.11.005Kangari, R., Riggs, L.S., 1989. Construction risk assessment by linguistics. IEEE Transactions on Engineering Management 36, 126 - 131. DOI:10.1109/17.18829Manelele, I., Muya, M., 2008, Risk identification on community-based construction projects in Zambia. Journal of Engineering Design and Technology 6, 145-161. DOI: 10.1108/17260530810891289Markowski, A., Mannan, B. A., Bigoszewska, A., 2009. Fuzzy logic for process safety analysis. Journal of Loss Prevention in the Process Industries 22, 695-702. DOI: 10.1016/j.jlp.2008.11.011Mendenhall, W., Scheaffer, R. L., Wackerly, D. D., 1986. Estad铆stica Matem谩tica con Aplicaciones. Iberoam茅ricana, M茅xico, D.F.Montero, R., Victores, J., Mart铆nez, S., Jard贸n, A., Balaguer, C., 2015. Past, present and future of robotic tunnel inspection. Automation in Construction, 99-112. DOI:10.1016/j.autcon.2015.02.003De Silva, N., Wimalaratne, P., 2012, OSH management framework for workers at construction sites in Sri Lanka. Engineering Construction & Architectural Management 19, 369 -392. DOI: 10.1108/09699981211237094DeGarmo, M., Nelson, G., 2004. Prospective Unmanned Aerial Vehicle Operations in the Future National Airspace System. AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum. DOI: 10.2514/6.2004-6243Neira, J., Tard贸s, J., 2001. Data Association in Stochastic Mapping using the Jount Compatibility Test. IEEE Transaction on Robotics and Automation 16, 890-897. DOI:10.1109/70.976019Piera, M., Ramos, J., Moreno, R., Narciso, M., 2014. Causal simulation models for facing third millennium air transport sustainability. Simulation 90, 162-170. DOI: 10.1177/0037549712469247Rajendran, S., 2006. Sustainable Construction Safety and Health Rating System. PhD Dissertation, Oregon State University, Corvallis, OR.Rozenfeld, O., Sacks, R., Rosenfeld, Y., Baum, H., 2010. Construction Job Safety Analysis. Safety Science 48, 491-498. DOI: 10.1016/j.ssci.2009.12.017Rubio, J. C., 2004. M茅todos de evaluaci贸n de riesgos laborales. Ediciones Diaz de Santos, S.A, Madrid.Pineda, U., 2014. Plataforma Avanzada de Comunicaciones para Redes de mini-UAV (drones) Aplicadas a la Prevenci贸n, Control y Reacci贸n R谩pida en Situaciones de Emergencia. Consejo Nacional de Ciencia y Tecnolog铆a (CONACyT), M茅xico.Pinto, A., Nunes, I., Ribeiro, R., 2011. Occupational Risk Assesment in Construction Industry - Overview and Reflection. Safety Science, 616- 624. DOI:10.1016/j.ssci.2011.01.003Rebollo, J., Maza, I., Ollero, A., 2009. Planificaci贸n de Trayectorias Libres de Colisi贸n para M煤ltiples UAVs usando el Perfil de Velocidad. Revista Iberoamericana de Automatica e Informatica Industrial 6, 51-60. DOI: 10.1016/S1697-7912(09)70108-6Rosales, C., Scaglia, G., Carelli, R., Jordan, M., 2011. Seguimiento de trayectoria de un mini-helic贸ptero de cuatro rotores basado en m茅todos num茅ricos. XIV Reuni贸n de Trabajo Procesamiento de la Informaci贸n y Control, 495 - 500.Rubio Romero, J. C., Rubio G谩mez, M., 2005. Manual de coordinaci贸n de seguridad y salud en las obras de construcci贸n. D铆az de Santos, Madrid.Sagues, C., Mosteo, A. R., Tardioli, D., Murillo, A. C., Villarroel, J. L., Montano, L., 2012. Sistema multi-robot para localizacion e identificacion de veh铆culos. Revista Iberoamericana de Autom谩tica e Inform谩tica industrial, 69-80. DOI:10.1016/j.riai.2011.11.012Salla, L., Sanna, N., 2008. Occupational risks in industrial maintenance. Journal of Quality in Maintenance Engineering 14, 194 - 204. DOI: 10.1108/13552510810877683Sol铆s Carca帽o, R. G., Sosa Chagoy谩n, A. R., 2013. Gesti贸n de riesgos de seguridad y salud en trabajos de construcci贸n. Revista Educaci贸n en Ingenier铆a 8, 161-170.Watts, A., Ambrosia, V., Hinkley, E., 2012. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sensing, 1671-1692. DOI: 10.3390/rs406167
    corecore