6 research outputs found

    Improving Search Engine Results by Query Extension and Categorization

    Get PDF
    Since its emergence, the Internet has changed the way in which information is distributed and it has strongly influenced how people communicate. Nowadays, Web search engines are widely used to locate information on the Web, and online social networks have become pervasive platforms of communication. Retrieving relevant Web pages in response to a query is not an easy task for Web search engines due to the enormous corpus of data that the Web stores and the inherent ambiguity of search queries. We present two approaches to improve the effectiveness of Web search engines. The first approach allows us to retrieve more Web pages relevant to a user\u27s query by extending the query to include synonyms and other variations. The second, gives us the ability to retrieve Web pages that more precisely reflect the user\u27s intentions by filtering out those pages which are not related to the user-specified interests. Discovering communities in online social networks (OSNs) has attracted much attention in recent years. We introduce the concept of subject-driven communities and propose to discover such communities by modeling a community using a posting/commenting interaction graph which is relevant to a given subject of interest, and then applying link analysis on the interaction graph to locate the core members of a community

    Hand gesture recognition in uncontrolled environments

    Get PDF
    Human Computer Interaction has been relying on mechanical devices to feed information into computers with low efficiency for a long time. With the recent developments in image processing and machine learning methods, the computer vision community is ready to develop the next generation of Human Computer Interaction methods, including Hand Gesture Recognition methods. A comprehensive Hand Gesture Recognition based semantic level Human Computer Interaction framework for uncontrolled environments is proposed in this thesis. The framework contains novel methods for Hand Posture Recognition, Hand Gesture Recognition and Hand Gesture Spotting. The Hand Posture Recognition method in the proposed framework is capable of recognising predefined still hand postures from cluttered backgrounds. Texture features are used in conjunction with Adaptive Boosting to form a novel feature selection scheme, which can effectively detect and select discriminative texture features from the training samples of the posture classes. A novel Hand Tracking method called Adaptive SURF Tracking is proposed in this thesis. Texture key points are used to track multiple hand candidates in the scene. This tracking method matches texture key points of hand candidates within adjacent frames to calculate the movement directions of hand candidates. With the gesture trajectories provided by the Adaptive SURF Tracking method, a novel classi�er called Partition Matrix is introduced to perform gesture classification for uncontrolled environments with multiple hand candidates. The trajectories of all hand candidates extracted from the original video under different frame rates are used to analyse the movements of hand candidates. An alternative gesture classifier based on Convolutional Neural Network is also proposed. The input images of the Neural Network are approximate trajectory images reconstructed from the tracking results of the Adaptive SURF Tracking method. For Hand Gesture Spotting, a forward spotting scheme is introduced to detect the starting and ending points of the prede�ned gestures in the continuously signed gesture videos. A Non-Sign Model is also proposed to simulate meaningless hand movements between the meaningful gestures. The proposed framework can perform well with unconstrained scene settings, including frontal occlusions, background distractions and changing lighting conditions. Moreover, it is invariant to changing scales, speed and locations of the gesture trajectories

    Categorisation by Context

    No full text
    Assistance in retrieving of documents on the World Wide Web is provided either by search engines, through keyword based queries, or by catalogues, which organise documents into hierarchical collections. Maintaining catalogues manually is becoming increasingly difficult due to the sheer amount of material on the Web, and therefore it will be soon necessary to resort to techniques for automatic classification of documents. Classification is traditionally performed by extracting information for indexing a document from the document itself. The paper describes the technique of categorisation by context, which exploits the context perceivable from the structure of HTML documents to extract useful information for classifying the documents they refer to. We present the results of experiments with a preliminary implementation of the technique

    Categorisation by context

    No full text
    Assistance in retrieving of documents on the World Wide Web is provided either by search engines, through keyword based queries, or by catalogues, which organise documents into hierarchical collections. Maintaining catalogues manually is becoming increasingly difficult due to the sheer amount of material, and therefore it will be necessary to resort to techniques for automatic classification of documents. Classification is traditionally performed by extracting information for indexing a document from the document itself. The paper describes the technique of categorisation by context, which exploits the context perceivable from the structure of HTML documents to extract useful information for classifying the documents they refer to. We present the results of experiments with a preliminary implementation of the technique

    Categorization by context

    No full text
    Assistance in retrieving of documents on the World Wide Web is provided either by search engines, through keyword based queries, or by catalogues, which organise documents into hierarchical collections. Maintaining catalogues manually is becoming increasingly difficult due to the sheer amount of material on the Web, and therefore it will be soon necessary to resort to techniques for automatic classification of documents. Classification is traditionally performed by extracting information for indexing a document from the document itself. The paper describes the technique of categorisation by context, which exploits the context perceivable from the structure of HTML documents to extract useful information for classifying the documents they refer to. We present the results of experiments with a preliminary implementation of the technique
    corecore