9,156 research outputs found

    Conditional t-SNE: Complementary t-SNE embeddings through factoring out prior information

    Get PDF
    Dimensionality reduction and manifold learning methods such as t-Distributed Stochastic Neighbor Embedding (t-SNE) are routinely used to map high-dimensional data into a 2-dimensional space to visualize and explore the data. However, two dimensions are typically insufficient to capture all structure in the data, the salient structure is often already known, and it is not obvious how to extract the remaining information in a similarly effective manner. To fill this gap, we introduce \emph{conditional t-SNE} (ct-SNE), a generalization of t-SNE that discounts prior information from the embedding in the form of labels. To achieve this, we propose a conditioned version of the t-SNE objective, obtaining a single, integrated, and elegant method. ct-SNE has one extra parameter over t-SNE; we investigate its effects and show how to efficiently optimize the objective. Factoring out prior knowledge allows complementary structure to be captured in the embedding, providing new insights. Qualitative and quantitative empirical results on synthetic and (large) real data show ct-SNE is effective and achieves its goal

    Sustainable R&D portfolio assessment.

    Get PDF
    Research and development portfolio management is traditionally technologically and financially dominated, with little or no attention to the sustainable focus, which represents the triple bottom line: not only financial (and technical) issues but also human and environmental values. This is mainly due to the lack of quantified and reliable data on the human aspects of product/service development: usability, ecology, ethics, product experience, perceived quality etc. Even if these data are available, then consistent decision support tools are not ready available. Based on the findings from an industry review, we developed a DEA model that permits to support strategic R&D portfolio management. We underscore the usability of this approach with real life examples from two different industries: consumables and materials manufacturing (polymers).R&D portfolio management; Data envelopment analysis; Sustainable R&D;

    Finding Groups in Large Data Sets

    Get PDF
    This paper aims to give an overview of methods to find groups in large data sets, such as household expenditure survey data. These methods are grouped in three: cluster analysis, dimension reduction and basic explorative methods. The emphasis is put on a critical analysis and potential drawbacks, especially of inputs that have to be provided by the researcher. These may impose some structure not present in the data, thus defeating the purpose of revealing intrinsic patterns. In general, the more elaborate methods, such as cluster analysis, are delicate to apply, especially in the context of social sciences. Often, it may be best to limit oneself to more transparent approaches such as comparisons of basic statistics.

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous
    • 

    corecore