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Abstract--The study of failure behaviour of a diverse
population of cables is challenging. Previous attempts have
failed to capture the complexity of cable system failures due to
an independent analysis of multiple failure causes or
influential factors. In this paper, the Multiple Correspondence
Analysis (MCA) is proposed for simultaneous analyses of
multiple variables responsible for the cable failures and
classification of cables into homogeneous groups in terms of
past failure behaviour. The proposed classification method is
less subjective as it gives equal consideration to all the cable
features. The methodology has been applied to the main cable
section and cable joint failure data of a diverse population of
cables obtained from a Chinese utility company. The failure
data have six categorical variables related to cable features
and failure characteristics. The application of MCA provided
an enriched view and understanding of failure behaviour by
allowing visual exploration of the failure patterns and
associations. Based on the past failure, the cable sections and
joints were classified into three and four groups, respectively.
The failure trend of each classified group is evaluated
separately. Results show that failure history and trend of each
classified group is different. Thus, they must be analyzed and
treated differently in the forecasting or maintenance planning
procedures.

Index Terms--Study, performance, clustering, grouping,
failure

I. INTRODUCTION

he cable population within a utility always has a diverse
list of features due to variation in designs, physical size

and length, usage of different kind of accessories, and
different installation and joining practices. The study of the
failure behaviour of a diverse population of cables is very
challenging. The most common interest among utilities is
to have a broad understanding of cable failure behaviour so
that their maintenance engineers can realistically forecast
the failures and optimize maintenance strategies in terms of
the cost and availability of the cable asset. The study of
cable failures is a data driven approach where diagnostic
tests, condition monitoring and failure data are utilized.
Previous efforts have been made to apply diagnostic test
and condition monitoring to enhance the reliability of cable
assets. However, there has been limited success in its
application to a wide population of cables, mainly due to
constraints in the valid interpretation of the results and cost
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consideration [1]. Therefore, a detailed study of available
failure data of a cable population is most useful in making
an informed decision and judgment about the future failure
possibilities.

Most utilities utilize failure mode and effect analysis
(FMEA) for the detailed study the failure data. However, it
does not consider the fact that the failure occurrence in a
diverse population of cables is a multivariate process, in
which the variables (failure cause or influencing factors)
responsible for failures are often interrelated and
correlated. The correlation between these variables is due
to association, also called associative correlation [2]. The
associative correlation in the multivariate failure process
occurs because of the influence of some unobserved or
undetectable failure causing phenomena. For example, it is
observed that, degradation due to water tree increases over
time in unjacketed XLPE cables [3]. However, degradation
could additionally be influenced by other factors which
sometimes are undetectable such as, manufacturing defect,
poor installation, design issues, etc. The correlation
between degradation due to water tree and service time is
one of the associations. The variables responsible for
failures therefore are dependent on each other due to
associative correlation because of which they must be
analyzed together. The Cox-Proportionality hazard model
has been proposed by [4] for the simultaneous analysis of
variables which has a significant effect on the failures of
the power cables. In real failure situations the model mostly
violates the assumption of non-collinearity between
variables and constant effect of influential factors
(variables) with time. Hence, a detailed study of the failure
data of a population is important before application of
statistical models.

A failure dataset can have information about cable
design and constructional features (voltage rating, types of
insulation, size, length, etc.), installation, past failure and
maintenance history. All this information is presented by
the set of variables. These variables can have multiple
categories due to the presence of a diverse variety of cables
in the population. For example, a population of cable can
have different voltage levels, core cross-sections, and
failure causes, etc. The increase in the number of cables
and categorical variables within a data set increases the
dimensionality of the dataset. The analysis of high
dimensional data is very complex and time consuming [5].
The high dimensional data can be analyzed by utilizing
data mining techniques which enable quick analysis of the
data without any involvement of expensive human
intervention.

The clustering is one of most famous data mining
technique. It can group similar objects together. It has been
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applied to group the load pattern of the diverse distributed
network customers [6], assess the condition by
classification of fault or health data [7] and failure mode
identification [8]. Before grouping the correlated high
dimensional data by clustering it can analysed and
visualized by dimension reduction techniques, such as
Principal Component Analysis (PCA) for numerical data
and, Simple Correspondence Analysis (CA) and Multiple
Correspondence Analysis (MCA) for categorical data. The
MCA is an extension of CA which enables analysis of
more than two categorical variables. It is originally utilized
in the social science field [9][10] and biomedical
engineering [11] as a practical exploratory tool which
provides best and easiest way to gain useful insights of the
information hidden in the high dimensional data.
Additionally, it helps to understand the interrelations,
patterns and association between categories of variables
and enables identification of influential factors. The
application of MCA is incipient in the field of electrical
power engineering. Its counterpart PCA has been applied in
recent research works such as fault classification in the
power transmission line network [12] and earth fault
protection [13].

This work presents the application of MCA to study the
failure behaviour of a diverse population of a cable. It
demonstrates the visual assessment of the underlying
relational structure of the cable features and failure
characteristics. In addition, the paper extends to quantify
the past performance of each type of the cable in the
population and classify the cables into groups.

II. METHODOLOGY

The Multiple Correspondence Analysis (MCA) allow
the visualization of the structure of high dimensional data
and the pattern of association between categorical variables
in a two or three-dimensional plot. The visual interpretation
of high dimensional data is not possible due to lack of
human imagination beyond three dimensions.

A. Multiple Correspondence Analysis for Cable Data

Raw cable data is first organized in a ൈܫ ܬ matrix
where, ܫ is number of cables with ݅ൌ ͳܫ�ݐ� and, ܬ is
number of variables with�݆ ൌ ͳܬ�ݐ�. Let the number of
categories in a variable be�. The total number of

categories of all the variables in a raw matrix is�ܲ ൌ

∑ 

ୀଵ . The raw data matrix is then converted to an

indicator matrix�ሺࢆሻ, in which data is represented in binary
form (0-1). Following are the steps for MCA:

MCA 1:- Indicator Matrix
The indicator matrix�ሺࢆሻ is a ൈܫ ܲ binary matrix as

shown in Table I. The element in the matrix is denoted by

ǡݖ where,�݅ ൌ ͳܫ�ݐ� and� ൌ ͳܲ�ݐ� . It is either 1 or 0,

depending on whether a cable ݅belongs or do not belongs to
category� of a variable. The row sum is equal to number of
variablesܬ��because each cable belongs to only one of the

category of a variable. The column sum is equivalent to�݅,

which shows the numbers of cables which belong to
category�.

MCA 2:- Relative Frequency Matrix

The relative frequency matrix ሺࡲሻ is obtained by
dividing all the elements of indicator matrix by its grand
total sumܬܫ�as shown in Equation (1).

ࡲ ൌ
ࢆ

ூ
(1)

The elements in frequency matrix are denoted by�݂ǡ.

The row sum ሺݓݎ) and column sum

ሺܿ ݈ ) are called row mass and column mass, respectively.

The expression for row and column mass is

=ݓݎ ∑ ݂ǡ

ୀଵ =

ଵ


, Ͳ ݅ ܫ (2)

݈ܿ  = ∑ ݂ǡ
ூ
ୀଵ =

ು

ூ
, Ͳ  ܲ (3)

MCA 3:- Chi-square Decomposition

The association between row (cable�݅) and column
(variable categories�) is obtained by chi-square test of
independence. It compares the observed value with the
expected value. The relative frequency matrix is the chi-
square table with െܫ) ͳ)(ܲ െ ͳ) degree of freedoms. The

observed value in the relative frequency table is ݂ǡ and its

expected value is the product of row and column
masses�ሺݓݎൈ ݈ܿ ). The test statistics is

∑ ∑ ܵǡ
ଶ

ୀଵ
ூ
ୀଵ (4)

where,

ܵǡ
ଶ =

ǡିሺ௪ൈ)

ඥ௪ൈ
(5)

here, ܵǡ is called standardized residual. From expression

(5) we get matrix ࡿ of standardized residuals. If there is no
association between cable and its categorical variables then
standardized residual will be equal to zero. The non-zero
value of standardized residual exhibit presence of some
association.

MCA 4:- Singular Value Decomposition (SVD)

SVD restructures the high dimensional variable data to
lower dimensional data space without any information loss
by conversion of correlated variables to uncorrelated
variables. SVD Let, ܭ be the number of dimensions to
which it can reduce the dimensionality of the data. The
value of ܭ is obtained by the following expression:

ܭ ൌ ����ሺܫെ ͳǡܲ െ ͳሻ (6)

The matrix ࡿ is decomposed or factorized into three
matrixes�ܷ , ܸ and Ε by singular value decomposition, Ǥ݅݁ Ǥ

ூൈࡿ ൌ ൈࢂ�ൈࡱ�ூൈࢁ
் (7)

whereࢁ� and ࢂ areܫ�ൈ ܭ and ܭ ൈ ܲ matrices which are
composed of Eigen vectors of rows (cables�݅) and columns
(categorical variables�) and Ε is a ܭ ൈ ܭ diagonal matrix
in which diagonal is composed of Eigen values ሺߣሻ in
descending order ଵߣ  ଶߣ�  ڮ  ߣ . The computation of
the SVD by characteristic polynomial is shown in [11]. The

TABLE I
INDICATOR MATRIX (ࢆ)

Categorical Variables

Cable ࢆ … ࡶࢆ
1 ଵܼଵ ଵܼଶ … ଵܼೕ

… ଵܼ ܬ

. . . … . . .

 ܼଵ ܼଶ … ଵܼೕ
… ܼ ܬ

. . . … . . .

ࡵ ூܼଵ ூܼଶ … ଵܼೕ
… ூܼ ܬ

ଵ݅ ଶ݅ … ݅ೕ
… ݅ ܬܫ



variance of the whole cloud of the data is equivalent to 1.0
(or 100 % when converted into percentage). The sum of all
Eigen values or variance of all the ܭ dimensions is
equivalent to 1:

∑ ߣ

ୀଵ = 1 (8)

The high Eigen values or variances of a dimension
correspond to the thickest direction which has most
variance, such dimensions must be retained because they
represent of high magnitude of information. The small
Eigen values correspond to the thinnest directions where the
variance is least, such dimensions can be ignored because
they have relatively little information.

MCA 5:- Principle Coordinates

The matrices ࢁ and ࢂ are composed of Eigen vectors of
unit length. It is necessary to resale the unit vector in ࢁ and
ࢂ to get the principle coordinates which can be plotted to
create a perceptual map. The principle coordinates for row
(cable�݅) and column categories (variable categories�) are
defined as:

߶, =
௨,ೖ�ఒೖ

ඥ௪
, 0≤ ݅≤ andܫ 0 ≤ ݅≤ ܭ (9)

,ߠ =
௩,ೖ�ఒೖ

ඥ
, 0≤ ≥ ܲ and 0 ≤ ݅≤ ܭ (10)

where, ,ݑ and ,ݒ are elements of matrix ࢁ and ࢂ which

are scaled by the Eigen values ߣ which is diagonal element
of matrix .ࡱ The expression (9) and (10) are divided by the
row and column mass, respectively to transform the chi-
square space to Euclidean space for the purpose of graphical
representation of points. The first column of ߶ and ߠ is the
first dimension of row (cable�݅) and column (variable
categories�). Similarly, the second column of ߶ and ߠ is
the second dimension of row and column and so on till last
dimensionܭ�. Usually first two dimensions are utilized to
study the structure of data by interpreting the association
between variables. However, if the variance (ߣ) is low in
first two dimensions then the third dimension is considered.

B. Classification of cables by performance score

By following the procedure in the previous section,
most of the information from original high dimensional
space can be condensed into first two dimensions which
have the highest variability. The variability of the first
dimension is higher than the second dimension, ଵߣ�) > (ଶߣ
which produces elliptical shaped data as shown in Fig. 1.
The mean of the data is the center (0,0) of the ellipse. The
cable design & constructional features and failure

characteristics which are close to the mean have high
failure tendency and high influence on failure, respectively.
Therefore, the mean point is called ideal failure
circumstance point. The distance between a category and
mean point quantifies a category contribute towards the
ideal failure circumstances. The distance from the center in
ellipsoidal shaped data is found using Mahalanobis
distance [2][14]. It weights the difference in variation along
the axes of elongation of data by utilizing covariance and
variance. The Euclidean distance is a special case of
Mahalanobis distance when the variance of both the
dimensions is same.

Let, ଵଶݏ be the covariance between dimension 1 and
dimension 2 and, ଵݏ and ଶݏ are the variance of dimension 1
and dimension 2, respectively. The Mahalanobis distance

of a category which has principle coordinate ൫ߠ,ଵ ,ଶ൯ߠ,

from ideal failure circumstance point (mean,�̅ߠ= (0,0)) is:

ܦܯ
ଶ =

ଵ

ଵି
�ቈቀ

ఏ,భିఏഥ

௦భ
ቁ
ଶ

+ ቀ
ఏ,మିఏഥ

௦మ
ቁ
ଶ

− ቀݎ2
ఏ,భିఏഥ

௦భ
ቁቀ

ఏ,మିఏഥ

௦భ
ቁ (11)

where, =ݎ
௦భమ

௦భ௦మ
is the correlation coefficient.

The Mahalanobis distance is utilized to quantify the
performance of each type of cable in a diverse cable
population. The diversity in cable population is due to a
large variety of constructional features in the cables.
Suppose, �ܳ �number of variables in the indicator matrix
(explained in Part A) are constructional features and each

variable has� number of categories where, =ݍ ܳ�ݐ�1 as

shown in Table II. The population can have total��ܶ �different

types of cable, where�ܶ ଵ�= … ×  × ொ… .

The classification of cables is important in the
identification of the type of cables which had similar
performance in the past. The Mahalanobis distance
quantifies the performance of each cable type as a
performance score. Usually, cables are classified based on
one or two constructional features, for example, cables
which have a similar cross section or voltage level or both
[15]. The classification method proposed in this section
classifies a population of cables into groups based on their
past performance by providing equal consideration to all the
constructional features.

Table III shows the cable type and performance score
formulation. Each type of a cable belongs to one of the
several possible categories of variables. The score of each
cable type is obtained by the sum of Mahalanobis distance
of all the categories. A low score reflects poor past
performance whereas high score reflects good performance.
The set of scores of each cable type is�ܵܥ =
ݏܿ} ଵ, ݏܿ ଶ, … ݏܿ ௧, … , ݏܿ ்}, =ݐ ܶ�ݐ�1 .

TABLE II
CATEGORIES OF CONSTRUCTIONAL FEATURES

Variables =ݍ) 1 to ܳ)

=ݍ 1 =ݍ 2 … =ݍ ܳ

ଵܼ ଶܼ … ܼభ (ܼభାଵ) … (ܼభା
… (ܼ∑ೂషభାଵ) … (ܼ∑ೂ )

:ଵ number of
categories

:ଶ number of
categories

… ொ : number of

categories

Fig. 1. Ideal failure circumstance point



The Agglomerative Hierarchical Clustering (HC)
method is utilized to classify the types of cables into
separate groups based on their past performance. Following
are steps for Agglomerative Hierarchical Clustering (HC).

Suppose, there are three scores ݏܿ ௧భ, ݏܿ ௧మand�ܿݏ ௧య ∈ ܥܵ in

three individual clusters A, B and C, respectively.

HC 1:- Compute the initial dissimilarity matrix of
scores: The dissimilarity matrix for all pair of scores�ܿݏ ௧,
ݏܿ ௧ᇲ ∈ ܥܵ is calculated by the following formula:

௧݀௧ᇲ = ඥ(ܿݏ ௧− ݏܿ ௧ᇲ)
ଶ (12)

The dissimilarity matrix obtained from the formula (12):

A B C

ݏܿ ௧భ ݏܿ ௧మ ݏܿ ௧య

A ݏܿ ௧భ
0 ௧݀భ,௧మ ௧݀య,௧భ

B ݏܿ ௧మ ௧݀భ,௧మ
0 ݀௧య௧మ

C ݏܿ ௧య ௧݀య,௧భ ௧݀య,௧మ
0

HC 2:- Merge two clusters with minimum dissimilarity
in scores: Suppose, the dissimilarity of scores in matrix

have following order�݀ ௧భ௧మ < ݀௧భ௧య < ௧݀మ௧య, then cluster A

and B of score ݏܿ ௧భ and�ܿݏ ௧మ, respectively are merged into a

single cluster AB.

HC 3:- Update dissimilarity matrix after merging: The
dissimilarity matrix must be updated to reflect the proximity
of newly formed cluster and the remaining cluster. The
Lance William formula of wards method must be utilized to
calculate the dissimilarity between ݏܿ ௧భమ and ݏܿ ௧య[16]:

݀௧భమ,௧య =
ା

ାା ௧݀భ௧య +
ା

ାା ௧݀మ௧య −


ାା ௧݀భ௧మ (13)

In equation (13) ଶݐ,ଵݐ and ଷݐ are number of scores in cluster
A, B and C, respectively. Go to HC2. Compute until one
cluster remains.

HC 4:- The optimal number of clusters can be

determined by ܴଶ index which measures the dissimilarity
between clusters. If a cluster contains a group of
homogenous cables then it could have a large difference
from other clusters which contain different cables, when

measured by ܴଶ [17]. In the presented work, the number of
clusters is determined from the freely downloadable
statistical software package “R”.

III. APPLICATION OF PROPOSED METHODOLOGY TO A
CABLE FAILURE DATASET

A. Failure data description

The detailed information about a population of pipe laid
underground XLPE insulated cables has been collected
from a China utility. The total distributed network of this
population of cables is 13327.64 km which has a total of
1889 XLPE cable circuits. A total of 424 failures were

observed in the period 2012 to 2014, out of which 194 were
main cable sections and 230 were cable joint failures,
shown in Table IV.

The dataset has constructional features and failure
characteristics of the cables. It has six variables and each
variable has a set of categories, shown in Table V. All the
variables in the data set are categorical variables. Two
numerical variables, age and cable length have been
converted into categorical variables because MCA is
designed to analyze dataset which has categorical variables.
Both age and cable length were binned in three categories
A1, A2, A3 and L1, L2, L3, respectively. Three bins for
both numerical variables were assumed most appropriate in
this case because too few bins lead to too much bias
whereas, too many bins lead to little bias with a loss of
information and high variability.

The population consists of 82.68 % and 17.32 % of
10�ܸ݇ and 20�ܸ݇ cables, respectively. The number of
failures in 10�ܸ݇ cables is higher than 20�ܸ݇, shown in Fig
2. However, a greater proportion of 20�ܸ݇ have failed
compared to 10�ܸ݇. Here, the proportion is the number of
failures in relation to the whole number of cables. Most

cables have 400�݉ ݉ ଶ, 500�݉ ݉ ଶ and 300�݉ ݉ ଶ core cross-
sectionals accounting for 86.92%, 8.57% and 4.18%,
respectively of the population. The remaining 0.32 % cables
have 95�݉ ݉ ଶ, 100�݉ ݉ ଶ, 150�݉ ݉ ଶ and 240�݉ ݉ ଶ core

TABLE III
TYPE OF CABLES

Type Cable type Performance Score ( (ܥܵ

1 ଵܼ, (ܼభାଵ),…, (ܼ∑ೂషభାଵ) ݏܿ ଵ:ܦܯଵ + (భାଵ)ܦܯ + ⋯ + (ೂషభାଵ∑)ܦܯ

2 ଵܼ, (ܼభାଶ),… , (ܼ∑ೂషభାଵ) ݏܿ ଶ:ܦܯଵ + (భାଶ)ܦܯ + ⋯ + (ೂషభାଵ∑)ܦܯ

.

.

.

.

.

.

T ଵܼ, (ܼభାమ),…, (ܼ∑ೂ ) ݏܿ ்: ଵܦܯ + (భାమ)ܦܯ + ⋯ + ೂ∑)ܦܯ )

TABLE IV
YEARLY FAILURES OF XLPE CABLES

Year Cable
Section

Joint

2012 68 50
2013 77 95
2014 49 85

Total 194 230

TABLE V
CATEGORICAL VARIABLE OF XLPE CABLES

Constructional Features

Variables Categories Abbreviates
Composition
of population

%
Voltage level

(ܸ݇ )
10 ܸ݇
20 ܸ݇

V10
V20

82.68 %
17.31 %

Core cross-
sectional area
(݉݉ ଶ)

95
100
150
240
300
400
500

C95
C100
C150
C240
C300
C400
C500

0.053 %
0.053 %
0.053 %
0.159 %
4.18 %
86.92 %
8.57 %

Cable length
(݇݉ )

0-10
10-20
20-35

L1
L2
L3

79.30 %
17.84 %
2.85 %

Failure Characteristics

Variables Categories Abbreviates
Cause Manufacturing

Installation
Operational
Environmental
External damage

MFG
INST
OPER
ENVIR
EXT_DMG

Mode Open circuit
Conductor short circuit to ground
Conductor to conductor short
circuit

OC
SH_GR

SH_CON
Age
ݕ݁) (ݏݎܽ

0-5
5-15
15-25

A1
A2
A3



cross-section. The number of failures is highest in the cables
with 400 ݉݉ ଶ core cross section. The large cross-sectioned
cables have a high number of failures; however, small
cross-section cables have a high proportion of failures. The
cable length is the third variable of cable constructional
features. Longer cables have more joints and higher
probability of degradation with the increase in length [18].
Here in this case Fig 2 shows that the number of failures
decreases sharply with the increase in length, however,
failure proportion of longer cable is much higher than
compared shorter cables. The percentage (proportion) of
XLPE cable population, which has failed in L1, L2 and L3
category is 18.22%, 36.49% and 35.29%.

A large number of cables have experienced failure at 0-5
years (A1) of age. Although, most cable had experienced
failures are at 5-15 years (A2) of age. Cable sections have a
high failure due to external damage and manufacturing
defects whereas, joints failures were mostly due to
installation and manufacturing defects.

B. Data preparation

The raw data matrix of both cable sections and joints
consist of following six variables: voltage, core cross-
section, length, failure cause, failure mode and age. The
categories in each variable are listed in Table V. The raw
data was cleaned before application of MCA. The variables
which were common in all the cables such as, XLPE
insulation (insulation type) and pipe buried installation
(installation method) were excluded from the analysis. Also,
some of the data points which were very rare or unique
were treated as outliers. The outliers could bias the results
thus; they must be removed before the application of MCA.
The outliers removed from the data were one 240�݉ ݉ ଶ, two
150�݉ ݉ ଶ and two 100�݉ ݉ ଶ core cross-section cables and
one cable which had failure due to operational stress and
environmental stress. After cleaning the raw data matrix
was converted to indicator data matrix. An example of
indicator matrix is shown in Table VI.

C. Results

Each row in indicator matrix corresponds to a cable and
each column corresponds to a category of a variable. The
cable section and joint have 189 × 16 and 228 × 16 (row ×
column), respectively, sized indicator matrix. The
application of MCA has reduced the both dataset to a 10-

dimensional data. The variance of first and second
dimension of cable section is 29.23 % and 18.06% (hence a
total of 47.29%), respectively, and, the variance of first and
second dimension in the joint is 28.84 % and 17.92% (hence
a total of 46.76%), respectively. All remaining eight
dimensions in both cable section and joint do not have more
than 11% of the variance, shown in Fig. 3. Therefore, first
two dimensions are good enough to visually interpret the
data from the perceptual map. It is important to note that
only one or two dimensions can be plotted for visual
interpretation more than two are hard to examine visually.
The principle coordinates ߶ of rows (cables) and ߠ of
columns (categories of variables) are obtained from
Equation (9) and (10), respectively. The first two principle
coordinates of ߶ and ߠ were utilized to plot two-
dimensional perceptual map of cable section and joints,
shown in Fig. 4.

Cables in perceptual map: - In map each dot corresponds
to an individual cable. The cables which have similar profile
in terms of constructional features and failure characteristics
appear closer to each other and cables which have very
different profile appear far away from each other. Some of
the cables which have exactly same profile overlap each
other in the map. Apart from this, cables which are in close
proximity to the mean (0,0) have common profile, while
cables which are far away from the mean have uncommon
or rare profile. For example, in both cable section and joint
map, the most common constructional features of the cables

are 400 ݉݉ ଶ core cross-sections (C400), 10 kV (V10)
voltage level and length L1, the cables which appear in
close proximity to the mean have either all or at least one of
these constructional features. The rarest cables in the cable
section map can be seen at bottom left and top right of 300

݉݉ ଶ (C300) and 500�݉ ݉ ଶ (C500) core cross section,
respectively and the rarest cables in joint map are at left

hand side of 300 ݉݉ ଶ (C300) of core cross-section.

Fig. 3. Percentage of variance in explained by each dimension

Fig. 2. Constructional features and Failure characteristics of failed XLPE cables

TABLE VI
INDICATOR MATRIX

Cable no. V10 V20 C300 C400 C500 L1 L2 L3 EXT_DMG INST MFG SH_GR OC A1 A2 A3
1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0
2 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0
3 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0
4 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0



Constructional features in perceptual map: -The distance
of constructional features towards the mean (0,0) indicate
the high failure tendency or frequency in the cables which
have those features. In both cable section and joint map,
length L1 is closest to the mean then L2 and L3 which
indicates that failures were highest in cables with L1 length
and lowest with L3 length. Similarly, voltage level 10 kV

(V10) is closer to the mean than 20 kV (V20) and 400 ݉݉ ଶ

core cross section are very close to the mean than any other
size of core cross-section.

Failure characteristics in perceptual map: - The distance
of a failure characteristic towards the mean determines its
contribution towards failure circumstances. A short distance
from mean exhibits high contribution, as distance increases
contribution decreases. In the cable section map, external
damage (EXT_DMG) is in close proximity with the mean.
In joint map installation (INST) and manufacturing defect
(MFG) is close and almost equidistance from the mean
which shows that both have almost same failure influence
on joint failure. A pattern in failure age can be seen in both
maps, the failure age A2 is close to the mean then A1 and
finally A3 which indicates that number of failure were high
in age A1, then age A2 and least at age A3.

The distance of a constructional feature and failure
characteristics from the mean is shown in Table VII. This

distance of a constructional feature from the mean is
utilized to quantify the past performance of each type of the
cable in the population.

The constructional features voltage level, core cross
section and cable length are not same in all the cables. This
discrepancy is responsible for the large variety of cables in
this population of the cables. There are two voltage, three
core cross section and three cable length levels in the
population. Thus, the cable population can have a total of 18
(2 × 3 × 3) different types of cable. The Table VIII shows
the performance score of 18 different types of cables. The
cable type T12, T15, T17 and T18 does not exist in the
population; therefore, they are removed after the
classification of cables. The hierarchical clustering method
was applied to the performance score of each cable type to
classify them in separate groups. The cable section and

Fig. 4. 2-D perceptual map

TABLE VIII
TYPES OF CABLES

Type Constructional Features of
each type of cable

Performance
Score

Core
cross

section

Voltage Length Cable
section

Joint

T1 C400 V10 L1 0.73 1.27
T2 C400 V10 L2 2.83 4.67
T3 C400 V10 L3 14.23 11.59
T4 C400 V20 L1 8.61 2.75
T5 C400 V20 L2 2.62 6.15
T6 C400 V20 L3 14.02 13.07
T7 C500 V10 L1 12.95 8.12
T8 C500 V10 L2 15.05 11.52
T9 C500 V10 L3 26.44 18.44
T10 C500 V20 L1 20.82 9.61
T11 C500 V20 L2 22.92 13
T12 C500 V20 L3 34.31 19.92
T13 C300 V10 L1 15.12 10.37
T14 C300 V10 L2 17.22 13.77
T15 C300 V10 L3 28.62 20.68
T16 C300 V20 L1 22.99 11.85
T17 C300 V20 L2 25.09 15.25
T18 C300 V20 L3 36.49 22.16

TABLE VII
DISTANCE FROM THE MEAN (MAHALANOBIS DISTANCE)

Constructional
features

Cable
section

Joint Failure
characteristics

Cable
section

Joint

V10 0.14 0.38 EXT_DMG 0.67 14.73
V20 8.01 1.86 MFG 3.00 2.16
C400 0.07 0.04 INST 14.88 2.59
C500 12.28 6.89 OC 0.69 6.69
C300 14.45 9.14 GR_SH 2.65 0.97

L1 0.52 0.84 A1 1.53 3.03
L2 2.62 4.24 A2 1.03 1.16
L3 14.02 11.16 A3 3.14 10.027



joints are classified in three and four groups, respectively,
with the decreasing order of their past performance,
G1<G2<G3<G4 in Fig 6 and 8.

The failures were observed only in the period 2012 to
2014. They were not recorded from the installation year
1994 to 2011. The unavailability of failure observations
before the year 2012 indicates that, the data is left truncated.
The observation period had two types of failure type A and
B. Fig. 5 shows the type of failure data in the observation
period and number cables which were installed in each year.
The type A is the failure of the cables which were installed
before the observation period and failed in the observation
period and type B is the failure of the cables which were
installed in the observation period and failed in the
observation period. The failure of type C is not available.
The type C is the failure of the cables which were installed
in the unobserved period and failed in the unobserved
period. Therefore, observation period has cables which
failed at different ages.

The age-based failure trend of each group of the cable
can be captured by the Power Law Non-Homogenous
Poisson Process model (NHPP) [3][19]. The Power Law
NHPP model has two parameters, shape ሺߚሻand scaleሺߙሻ.
The shape parameter shows the failure trend. The age-based
failure trend of the classified groups of cables in both cable
section and joint has decreasing failure trend withߚ� ൏ ͳ.
The group G2 in the joint has fairly constant failure
trendߚ� ؆ ͳ. The decreasing failure trend with age as shown
in Fig. 7 and 9 are consistent with the bath-tub curve
reported by earlier researchers [20][21]. The classified
groups of cables suffered from “infant mortality failures” in
their early age and “random failures” after few years of
service life. These groups have not yet manifested “wear-

out” or “ageing failures”, which is expected from the young
population of cables. Therefore, it is interesting to observe
that, in this cable population, the highest failures were not
observed from the cables which were relatively older (old
installations), as the population has not reached the age
when aging-related failures would occur in volume. In
future, most failure occurrences will be in the cables which
are new. The failure causes of all groups are described in
Table IX. All cable section groups had most failures due to
external damage (EXT_DMG). Only group G2 of cable
section had almost equal number of failures due
manufacturing (MFG) and external damage (EXT_DMG).
All joint groups had most failures due to installation (INST)
and manufacturing defects (MFG). The cable type T1, T2,
T4 and T5 are common in group G1 of both cable section
and joint which clearly indicates that these cables had very
high cable section and joint failures in the past three years
(2012 to 2014).

Fig. 5. Observed period and number of installations

Fig. 6. Cable section groups Fig. 7. Failure trend of cable section groups

Fig. 8. Joint groups Fig. 9. Failure trend of joint groups



IV. CONCLUSION

In this paper, it is shown how MCA helps to enrich the
view and understanding of cable failure behaviour by
allowing the user to visualize the preliminary pattern and
associations which get obscured in high dimensional
multivariate data.

The methodology presented in this paper can be used as
a tool to study the failure behaviour of a diverse population
of the cables. The MCA has been successfully implemented
on the failure data of the Chinese utility company. The
categorical failure data related to cable features and failure
characteristics were analyzed together and performance of
each type of the cable in the population was quantified. The
quantified performance enabled the classification of cables.
The proposed classification method is less subjective and
can be used to pre-study cable failure data before executing
statistical analysis for failure prediction and planning the
maintenance strategy.

The MCA has certain limitations; it assumes that all the
categorical variables which influence the cable failure are
included in the analysis. It is an exploratory data analysis
method, therefore; it is not suitable for statistical testing.
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TABLE IX
FAILURE CAUSE OF EACH GROUP

Cable Section (%) Joint (%)
Failure cause G1 G2 G3 G1 G2 G3 G4
EXT_DMG 67.60 52.63 100.00 1.55 0.00 0.00 0.0

MFG 30.49 42.11 0.00 53.61 47.06 35.29 0.0
INST 1.83 5.26 0.00 44.85 52.94 64.71 0.0


