165 research outputs found

    Droplet: A New Denial-of-Service Attack on Low Power Wireless Sensor Networks

    Get PDF
    In this paper we present a new kind of Denial-of-Service attack against the PHY layer of low power wireless sensor networks. Overcoming the very limited range of jamming-based attacks, this attack can penetrate deep into a target network with high power efficiency. We term this the Droplet attack, as it attains enormous disruption by dropping small, payload-less frame headers to its victim's radio receiver, depriving the latter of bandwidth and sleep time. We demonstrate the Droplet attack's high damage rate to full duty-cycle receivers, and further show that a high frequency version of Droplet can even force nodes running on very low duty-cycle MAC protocols to drop most of their packets

    KALwEN: A New Practical and Interoperable Key Management Scheme for Body Sensor Networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks(BSNs) pose several challenges -- some inherited from wireless sensor networks(WSNs), some unique to themselves -- that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new lightweight scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports global broadcast, local broadcast and neighbor-to-neighbor unicast, while preserving past key secrecry and future key secrecy. The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike

    AN ENERGY EFFICIENT DEACTIVATION TECHNIQUE FOR REACTIVE JAMMERS IN WIRELESS SENSOR NETWORKS

    Get PDF
    In recent days, reactive jamming attack has emerged as a great security threat to wireless sensor network [WSN]. Several strategies are developed to identify the trigger nodes, whose legitimate transmission activates any reactive jammer. After identifying the trigger node, the node will be shut down to deactivate the jammer and its routing information is deleted from the routing table, then the node can’t be used again in the network. Since the node can’t be used again in the network it is one of the major drawbacks. Hence to overcome the problem, In this paper we propose a novel approach, where the identified trigger nodes are put in to the scanning mode, so that we can reuse the trigger nodes, after deactivating the jammer node in the network

    Detection and Localization of Wireless Jammer

    Get PDF
    In recent years, wireless technology has become more advanced, popular and affordable. Because of this broad class of new applications such as traffic monitoring, patient tracking, patient monitoring, video conferencing, video surveillance cameras monitoring of places like public buildings, banks, malls, railway stations etc. has increased which utilizes wireless networks. These applications are totally depends on wireless communication for their successful deployment. Security is most important issue to avoid nuisance in both routine and critical communications services. One threat for the security of wireless network is jamming attack. Jamming attacks can severely affect the performance of Wireless Networks due to their broadcast nature. The most reliable solution to reduce the impact of such attacks is to detect and localize the source of the attack. This will help to take further security actions. This project aims to find the location of wireless jammer by simulation method using MATLAB software

    Detection and Localization of Wireless Jammer using XBee module

    Get PDF
    Now days, wireless technologies has becomes more popular and affordable. In every field e.g. government sector, education, business, military, medical etc. use of wireless network have been increased which enables broad class of new applications. These applications make work easier and faster but one threat which is harmful i.e. jamming attack. The wireless jammer continually emits a radio signal along the same frequency that the wireless nodes use. Jamming technology generally does not discriminate between desirable and undesirable communication. A jammer can block all radio communication on any device that operates on radio frequencies within its range which create nuisance in our critical communication services. Most reliable solution to avoid nuisance is detection and localization of wireless jammer which helps to take further security actions. This project aims to detect wireless jammer and find the location of wireless jammer by experimental setup. DOI: 10.17762/ijritcc2321-8169.15017

    Maximize resource utilization based channel access model with presence of reactive jammer for underwater wireless sensor network

    Get PDF
    Underwater sensor networks (UWSNs) are vulnerable to jamming attacks. Especially, reactive jamming which emerged as a greatest security threat to UWSNs. Reactive jammer are difficult to be removed, defended and identified. Since reactive jammer can control and regulate (i.e., the duration of the jam signal) the probability of jamming for maintaining high vulnerability with low detection probability. The existing model are generally designed considering terrestrial wireless sensor networks (TWSNs). Further, these models are limited in their ability to detect jamming correctly, distinguish between the corrupted and uncorrupted parts of a packet, and be adaptive with the dynamic environment. Cooperative jamming model has presented in recent times to utilize resource efficiently. However, very limited work is carried out using cooperative jamming detection. For overcoming research challenges, this work present Maximize Resource Utilization based Channel Access (MRUCA). The MRUCA uses cross layer design for mitigating reactive jammer (i.e., MRUCA jointly optimizes the cooperative hopping probabilities and channel accessibility probabilities of authenticated sensor device). Along with channel, load capacity of authenticated sensor device is estimated to utilize (maximize) resource efficiently. Experiment outcome shows the proposed MRUCA model attain superior performance than state-of-art model in terms of packet transmission, BER and Detection rate

    A novel multi-fold security framework for cognitive radio wireless ad-hoc networks

    Get PDF
    Cognitive Radio (CR) Technology has emerged as a smart and intelligent technology to address the problem of spectrum scarcity and its under-utilization. CR nodes sense the environment for vacant channels, exchange control information, and agree upon free channels list (FCL) to use for data transmission and conclusion. CR technology is heavily dependent on the control channel to dialogue on the exchanged control information which is usually in the Industrial-Scientific-Medical (ISM) band. As the ISM band is publically available this makes the CR network more prone to security vulnerabilities and flaws. In this paper a novel multi-fold security framework for cognitive radio wireless ad-hoc networks has been proposed. Multiple security levels, such as, encryption of beacon frame and privately exchanging the FCL, and the dynamic and adaptive behaviour of the framework makes the proposed protocol more resilient and secure against the traditional security attacks when compared with existing protocols

    On jamming detection methods for satellite Internet of Things networks

    Get PDF
    Despite the fast growth of machine-type communications via satellite, the vulnerability of such networks to intentional interference and malicious jamming attacks is a raising concern. Specifically, in this paper, we address a class of jamming attacks in which the adversary uses the underlying knowledge of the satellite physical and access protocol to increase the jamming impact. In particular, we focused on a type of camouflage jamming attack (using publicly known preamble) to deceive the receiver, which rapidly leads to poor performance. Compared to conventional constant jamming attacks, these jamming strategies are known to be more effective and potentially more harmful to the targeted communication network. We analyze methods to detect such jamming attacks and provide examples of jamming detection techniques for the satellite Internet of Things (IoT) networks. Results indicate the effective performance of the jamming detection techniques for a variety of representative system parameters. More specifically, we introduce a simple (counting) jamming detection method along with numerical results for realistic system parameters, which confirms system design vulnerability as well as how the jammer may improve her strategy
    corecore