4,248 research outputs found

    Comparative study of the catalytic growth of patterned carbon nanotube films

    Full text link
    Three different catalysts (Fe, Ni, Co nitrates dissolved in ethanol) were patterned on a SiO2/Si substrate and multi-wall carbon nanotubes were grown by catalytic decomposition of acetylene. We compare the growth of the carbon nanostructures in the temperature range between 580C and 1000C. With our experimental set-up the catalyst solutions of cobalt and nickel were found to be less efficient than the one of iron. An optimal production of multi-wall nanotubes was observed at temperatures between 650C and 720C with the iron solution as catalyst. We found a tendency towards thicker structures with higher temperatures. Finally, we suggest a mechanism for the growth of these carbon structures.Comment: 5 pages, 5 figure

    Production of carbon nanotubes over Fe-FSM-16 catalytic material: effect of acetylene flow rate and CVD temperature

    Get PDF
    In this article, a high-yield synthesis of high-quality CNTs using Fe catalysts trapped within channels of Folded Sheet Mesoporous Materials, FSM-16 by Chemical Vapor Deposition CVD using acetylene as a hydrocarbon source is reported. The effect of reaction temperature and acetylene flow rate on the formation of CNTs was investigated. It was found that the yield, diameter and quality of CNTs synthesized strongly depend on reaction temperature during CVD. The resulting materials were characterized by scanning electron microscopy (SEM), Raman spectroscopy, and thermogravimetric analysis (TGA). Our research found that carbon deposition, diameter and quality of the CNTs strongly depend on CVD temperature. However acetylene flow rate did not have any significant effect on diameter distribution. Raman measurement indicated that the synthesized products were MWCNTs. High-resolution transmission electron micrographs of samples reveal the multilayer sidewalls of individual MWCNTs with a diameter of 40 nm, in which hollow and tubal structures were observed

    Production of carbon nanotubes over Fe-FSM-16 catalytic material: effect of acetylene flow rate and CVD temperature

    Get PDF
    In this article, a high-yield synthesis of high-quality CNTs using Fe catalysts trapped within channels of Folded Sheet Mesoporous Materials, FSM-16 by Chemical Vapor Deposition CVD using acetylene as a hydrocarbon source is reported. The effect of reaction temperature and acetylene flow rate on the formation of CNTs was investigated. It was found that the yield, diameter and quality of CNTs synthesized strongly depend on reaction temperature during CVD. The resulting materials were characterized by scanning electron microscopy (SEM), Raman spectroscopy, and thermogravimetric analysis (TGA). Our research found that carbon deposition, diameter and quality of the CNTs strongly depend on CVD temperature. However acetylene flow rate did not have any significant effect on diameter distribution. Raman measurement indicated that the synthesized products were MWCNTs. High-resolution transmission electron micrographs of samples reveal the multilayer sidewalls of individual MWCNTs with a diameter of 40 nm, in which hollow and tubal structures were observed

    Hydrocarbon sources for the carbon nanotubes production by chemical vapour deposition: a review

    Get PDF
    The synthesis of carbon nanotubes (CNTs) using a chemical vapour deposition (CVD) method requires the use of hydrocarbon as the carbon precursor. Among the commonly used hydrocarbons are methane and acetylene, which are both light gas-phase substances. Besides that, other carbon-rich sources, such as carbon monoxide and coal, have also been reportedly used. Nowadays, researches have also been conducted into utilising heavier hydrocarbons and petrochemical products for the production of CNTs, such as kerosene and diesel oil. Therefore, this article reviews the different kind of hydrocarbon sources for CNTs production using a CVD method. The method is used for it allows the decomposition of the carbon-rich source with the aid of a catalyst at a temperature in the range 600-1200°C. This synthesis technique gives an advantage as a high yield and high-quality CNTs can be produced at a relatively low cost process. As compared to other processes for CNTs production such as arc discharge and laser ablation, they may produce high quality CNTs but has a disadvantage for use as large scale synthesis routes

    Growth and Properties of Carbon Microcoils and Nanocoils

    Get PDF
    Various types of coiled carbon filaments have been synthesized using chemical vapor deposition and other methods. These carbon filaments exhibit unique electrical and mechanical properties due to their versatile shapes and structures. To form coiled shapes, different types of catalyst compositions and reactive gases have been explored. Generally, coiled carbon filaments are classified by coil diameter and shape (e.g., microcoil and nanocoil). In this review, coiled carbon filaments are classified into three growth mechanism categories: (1) bidirectional double helical growth; (2) bidirectional twisted growth; and (3) tip single helical or twisted growth. Next, their synthesis methods and hypothetical growth mechanisms are discussed. Then, their electrical and mechanical properties are listed. Finally, potential applications and uses of coiled carbon filament are mentioned

    Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition

    Get PDF
    As a new carbon material in the twenty-first century, carbon nanotubes (CNTs) have excellent optical, electrical, magnetic, thermal, chemical, and mechanical properties. There are many synthesis methods to produce CNTs. Compared with other methods, chemical vapor deposition (CVD) is the most effective method that has broad prospects for large-scale control of CNTs in recent years due to its simple equipment, simple operation, and lower cost. In order to gain a comprehensive understanding of the controlling parameters about the formation of CNTs, this chapter reviews the latest progress in the preparation of CNTs by CVD from three of the most important influencing factors: carbon sources, catalysts, and substrates. Among them, the catalyst is the most influential factor for the morphology, structure, and properties of CNTs. It should be pointed out that many growth factors can control the particle size distribution, composition, and structure of the catalysts, such as catalyst substrate, metal transition components added, calcination temperature, etc

    Large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition : a parametric study

    Get PDF
    A parametric study investigating the impact of temperature, run duration, total pressure, and composition of the gaseous phase on the catalytic growth of multi-walled carbon nanotubes (MWNT) has been performed. MWNT have been produced very selectively on the multi gram scale by catalytic chemical vapor deposition from ethylene in a fluidized bed reactor. The kinetics of MWNT growth is fast and, with the catalyst used, no induction period has been observed. The kinetic law is positive order in ethylene concentration and the process is limited by internal diffusion in the porosity of the catalyst. The formation of MWNT in the macroporosity of the catalyst induces an explosion of the catalyst grains. Such a process, thanks to the absence of temperature gradient and to the efficient mixing of the grains allows a uniform and selective treatment of the catalyst powder leading to very high selectivity towards MWNT formation. High purity MWNT have been obtained after catalyst dissolution. Depending on the temperature of production, the specific surface area of this material ranged between 95 and 455 m2/g

    Growth Of Single-Walled Carbon Nanotubes Through Pengethanol Colloidal Solution

    Get PDF
    Since the discovery of carbon nanotubes (CNTs), powder form catalyst support becomes the dominant in this field. But powder form catalyst support possesses some shortcoming such as difficulty in catalyst size monitoring and required subsequent purification. In this study, CNTs were grown over iron nanoparticles prepared by spin coated iron nitrate that diluted in colloidal solution of absolute ethanol and polyethylene glycol (PEG). The colloidal solution was later spin coated on silicon wafer and through catalytic chemical vapor deposition (CCVD) to grow CNTs. This approach competently overcomes the shortcomings aforementioned. In order to understand the effects of various process parameters on the topography of iron nanoparticles obtained and morphology of the as-grown CNTs, all the process parameters were studied separately. The parametric study was done in three stages, representing colloidal solution (composition of colloidal solution and concentration of iron nitrate), spin coating (spin speed, angular acceleration and spin period) and CCVD (reaction temperature, methane partial pressure and reaction period) study. Iron nitrate with concentration of 40mmol/L diluted in colloidal solution at a ratio 1:1 (v/v) of absolute ethanol to PEG-400, spin coated on silicon wafer at 8000 rpm for 30 seconds and under angular acceleration of 300rpm/sec was the best parameter to distribute iron nanoparticles evenly and in small size. This catalyst sample could grow single-walled CNTs (SWCNTs) with the highest selectivity and uniformity in diameter. Piranha solution was found useful to render the hyrophobicity of silicon oxide by introducing –OH group on the wafer

    SINTESIS DAN PURIFIKASI CARBON NANOTUBE DARI ETANOL

    Get PDF
    An application of nanoparticle technology is carbon nanotube (CNT). CNT gives more some advantages than the other materials. These advantages make the research about CNT have many attentions. This research aims to determine the better type of catalyst supported between natural zeolit and y type zeolit in CNT synthesis from ethanol using CVD (chemical vapor deposition) method with Fe - Co as the catalysts. In addition, the research aims to determine the optimum concentration of acid in CNT purification. In CNT synthesis using CVD method, the carbon source that obtained from the ethanol was reacted with H 2 gas and Co - Fe catalysts. Fe - Co catalyst was impregnated in catalyst supported and dried in oven at 80 0 C for one day and then it was calcinated in furnace at 500 0 C on the air flow for 60 minutes. The synthesis process was done that the catalyst was put on the ceramic boat and entered in the quartz reactor. The reactor was vacuumed by vacuum pump. The N 2 gas was flowed with flow rate 200 cm 3 /minutes in room temperature. The furnace was flamed and set at 900 0 C. Ethanol was flowed into the reactor and the flow rate of the N 2 gas was decreased to 6,19 cm 3 /minutes and H2 began to be flowed, then it was reacted for 30 minutes. Acid contacted method was used to purification CNT. The nitrate acid was diluted up to obtain 3N, 2N and 1N nitrate acid. These nitrate acid were mixed with CNT in beaker glass for 10 minutes, then they were put into oven for 24 hours. The CNT from synthesis process and CNT from purification process were analyzed by Scanning Electron Microscopy (SEM). The results of the research show that natural zeolit is better than y type zeolit for CNT synthesis from ethanol of CVD method with Fe - Co catalyst and the optimum acid concentration in purification of CNT by acid contacted method was 3N. Keywords: CNT, synthesis, purification, SEM, ethano
    corecore