1,730 research outputs found

    Partition Statistics Equidistributed with the Number of Hook Difference One Cells

    Full text link
    Let λ\lambda be a partition, viewed as a Young diagram. We define the hook difference of a cell of λ\lambda to be the difference of its leg and arm lengths. Define h1,1(λ)h_{1,1}(\lambda) to be the number of cells of λ\lambda with hook difference one. In the paper of Buryak and Feigin (arXiv:1206.5640), algebraic geometry is used to prove a generating function identity which implies that h1,1h_{1,1} is equidistributed with a2a_2, the largest part of a partition that appears at least twice, over the partitions of a given size. In this paper, we propose a refinement of the theorem of Buryak and Feigin and prove some partial results using combinatorial methods. We also obtain a new formula for the q-Catalan numbers which naturally leads us to define a new q,t-Catalan number with a simple combinatorial interpretation

    Pattern avoidance in "flattened" partitions

    Get PDF
    To flatten a set partition (with apologies to Mathematica) means to form a permutation by erasing the dividers between its blocks. Of course, the result depends on how the blocks are listed. For the usual listing--increasing entries in each block and blocks arranged in increasing order of their first entries--we count the partitions of [n] whose flattening avoids a single 3-letter pattern. Five counting sequences arise: a null sequence, the powers of 2, the Fibonacci numbers, the Catalan numbers, and the binomial transform of the Catalan numbers.Comment: 8 page

    Restricted ascent sequences and Catalan numbers

    Full text link
    Ascent sequences are those consisting of non-negative integers in which the size of each letter is restricted by the number of ascents preceding it and have been shown to be equinumerous with the (2+2)-free posets of the same size. Furthermore, connections to a variety of other combinatorial structures, including set partitions, permutations, and certain integer matrices, have been made. In this paper, we identify all members of the (4,4)-Wilf equivalence class for ascent sequences corresponding to the Catalan number C_n=\frac{1}{n+1}\binom{2n}{n}. This extends recent work concerning avoidance of a single pattern and provides apparently new combinatorial interpretations for C_n. In several cases, the subset of the class consisting of those members having exactly m ascents is given by the Narayana number N_{n,m+1}=\frac{1}{n}\binom{n}{m+1}\binom{n}{m}.Comment: 12 page

    Enumerations of Permutations Simultaneously Avoiding a Vincular and a Covincular Pattern of Length 3

    Get PDF
    Vincular and covincular patterns are generalizations of classical patterns allowing restrictions on the indices and values of the occurrences in a permutation. In this paper we study the integer sequences arising as the enumerations of permutations simultaneously avoiding a vincular and a covincular pattern, both of length 3, with at most one restriction. We see familiar sequences, such as the Catalan and Motzkin numbers, but also some previously unknown sequences which have close links to other combinatorial objects such as lattice paths and integer partitions. Where possible we include a generating function for the enumeration. One of the cases considered settles a conjecture by Pudwell (2010) on the Wilf-equivalence of barred patterns. We also give an alternative proof of the classic result that permutations avoiding 123 are counted by the Catalan numbers.Comment: 24 pages, 11 figures, 2 table
    corecore