4 research outputs found

    Design and Development of an Inspection Robotic System for Indoor Applications

    Get PDF
    The inspection and monitoring of industrial sites, structures, and infrastructure are important issues for their sustainability and further maintenance. Although these tasks are repetitive and time consuming, and some of these environments may be characterized by dust, humidity, or absence of natural light, classical approach relies on large human activities. Automatic or robotic solutions can be considered useful tools for inspection because they can be effective in exploring dangerous or inaccessible sites, at relatively low-cost and reducing the time required for the relief. The development of a paradigmatic system called Inspection Robotic System (IRS) is the main objective of this paper to demonstrate the feasibility of mechatronic solutions for inspection of industrial sites. The development of such systems will be exploited in the form of a tool kit to be flexible and installed on a mobile system, in order to be used for inspection and monitoring, possibly introducing high efficiency, quality and repetitiveness in the related sector. The interoperability of sensors with wireless communication may form a smart sensors tool kit and a smart sensor network with powerful functions to be effectively used for inspection purposes. Moreover, it may constitute a solution for a broad range of scenarios spacing from industrial sites, brownfields, historical sites or sites dangerous or difficult to access by operators. First experimental tests are reported to show the engineering feasibility of the system and interoperability of the mobile hybrid robot equipped with sensors that allow real-time multiple acquisition and storage

    Single-Loop Full R Joints of Multi-Mode Omnidirectional Ground Mobile Robot

    Get PDF
    In order to solve the problem of loss of locomotion ability due to overturning and instability during the movement of a mobile robot, a multi-mode omnidirectional ground mobile robot with a deformable structure is proposed. Single-loop is used as the unit, and the three-direction geometric deformation can be realized by controlling its R joints in time sharing. The 4-RRRRRR parallel mobile robot formed by two closed-loops orthogonally has four different rolling modes, and each mode can be switched between each other. Once the robot is overturned and unstable during the movement, it can be deformed into other modes and continue to move. After the description of the robot, the DOF (degree-of-freedom) is calculated based on the screw theory. Gait planning and locomotion feasibility analysis indicate that the robot can realize four locomotion modes and their mutual switching. Finally, the simulations and prototype experiments are presented to verify the feasibility of the different locomotion modes and the ability of the obstacle crossing

    Evaluation of navigability in skid-steer mobile robots with passive trailers moving on sloping terrain

    Full text link
    [EN] The use of trailers allows robots to increase their load capacity to perform multiple tasks, but their use carries multiple risks. In this research, three metrics are developed to assess the navigability of robots with coupled trailers when moving at low speeds on inclined surfaces: an index that predicts the initiation of rollover in the robot or trailers; another index that estimates the start of the total slip due to the slopes of the terrain, either in the robot or the trailers; and finally, an index that quantifies the robot's ability to address itself and follow a path. These three metrics were developed based on the reaction forces of the wheels with the ground and were validated through  simulation and experimental tests using a Skid Steer robot called Lázaro, demonstrating their effectiveness in estimating the risk condition for which they were designed.[ES] El uso de remolques permite a los robots aumentar su capacidad de carga para realizar múltiples tareas, pero su uso conlleva múltiples riesgos. En esta investigación, se desarrollan tres métricas para evaluar la navegabilidad de robots con remolques acoplados cuando se mueven a bajas velocidades sobre superficies inclinadas: un í­ndice que predice el inicio del vuelco en el robot o los remolques; otro í­ndice que estima el inicio del deslizamiento total debido a las inclinaciones del terreno, ya sea en el robot o los remolques; y finalmente, un í­ndice que cuantifica la capacidad del robot para direccionarse y seguir una trayectoria. Estas tres métricas fueron desarrolladas con base en las fuerzas de reacción de las ruedas con el suelo y fueron validados a través de simulación y pruebas experimentales utilizando un robot Skid Steer llamado Lázaro, demostrándose su efectividad al estimar la condición de riesgo para la cual fueron diseñados.Este trabajo ha sido realizado parcialmente gracias al apoyo del Decanato de Investigación de la Universidad Nacional Experimental del Táchira bajo los proyectos No. 01-025-2016 y 01-004-2019.García, JM.; Yánez, P.; Martínez, JE. (2022). Evaluación de la navegabilidad en robots móviles skid-steer con remolques pasivos moviéndose sobre terrenos inclinados. Revista Iberoamericana de Automática e Informática industrial. 20(1):13-24. https://doi.org/10.4995/riai.2022.17161132420

    Suspension effect in tip-over stability and steerability of robots moving on terrain discontinuities

    Full text link
    [ES] En este artículo se estudia el efecto que produce el sistema de suspensión sobre la estabilidad al vuelco y la capacidad de direccionamiento en un robot móvil Skid Steer, cuando este se enfrenta a distintas discontinuidades del terreno: descenso (frontal y lateral) y ascenso sobre escalones, además del desplazamiento sobre zanjas. Específicamente, se estudió el instante cuando se generan cargas de impacto producto del movimiento del robot sobre la irregularidad del terreno. En cada caso se hizo un análisis correlacional del efecto sobre la estabilidad al vuelco y el direccionamiento (cuantificadas con métricas fundamentadas en las fuerzas de reacción de las ruedas con el suelo), al variar cuatro parámetros que definen el sistema de suspensión: constante de rigidez en los resortes, constante de amortiguamiento en los amortiguadores y las constantes de rigidez y amortiguamiento en las ruedas. Por último se estimó para cada caso, qué magnitudes deberían adquirir estos parámetros para garantizar una mejor estabilidad y direccionamiento del robot.[EN] This article studies the effect produced by the suspension system in tip-over stability and steerability of a Skid Steer mobile robot, when it faces different terrain discontinuities: descent (front and side) and ascent on steps, plus displacement over ditches. Specifically, the moment was studied when impact loads producted by the robot's movement on the irregularity of the terrain are generated. In each case, a correlational analysis was made about the effect in tip-over stability and steerability (quantified with metrics based on the reaction forces of the wheels with the ground), by varying four parameters that define the suspension system: stiffness constant in the springs, damping constant in the dampers and the stiffness and damping constants in the wheels. Finally, it was estimated for each case, what magnitudes these parameters should acquire to ensure better stability and steerability of robot.Este trabajo ha sido realizado parcialmente gracias al apoyo del Decanato de Investigación de la Universidad Nacional Experimental del Táchira bajo los proyectos 01-025-2016 y 01-008-2018.García, JM.; Valero, A.; Bohórquez, A. (2020). Efecto de la suspensión en la estabilidad al vuelco y direccionamiento de robots moviéndose sobre discontinuidades de terreno. Revista Iberoamericana de Automática e Informática industrial. 17(2):202-214. https://doi.org/10.4995/riai.2020.12308OJS202214172Abo-Shanab, R., & Sepehri, N., 2005. Tip-over stability of manipulator-like mobile hydraulic machines. Journal of Dynamic Systems, Measurement and Control , 127 (2), 295-301. https://doi.org/10.1115/1.1898239Bluethmann, B., Herrera, E., Hulse, A., Figuered, J., Junkin, L., Markee, M., y otros., 2010. An active suspension system for lunar crew mobility. IEEE Aerospace Conference, (págs. 1-9). Big Sky. https://doi.org/10.1109/AERO.2010.5446895Bruzzone, L., Fanghella, P., & Quaglia, G., 2017. Experimental performance assessment of mantis 2, hybrid leg-wheel mobile robot. International Journal of Automation Technology , 11 (3), 396-403. https://doi.org/10.20965/ijat.2017.p0396Chen, S., Li, X., Zhou, J., Wu, W., Yuan, S., & Liu, S., 2017. Modelling the vertical dynamics of unmanned ground vehicle with rocker suspension. Proceedings of IEEE International Conference on Mechatronics and Automation, (págs. 370-375). Takamatsu. https://doi.org/10.1109/ICMA.2017.8015845Chokor, A., Talj, R., Charara, A., Shraim, H., & Francis, C., 2016. Active suspension control to improve passengers comfort and vehicle's stability. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), (págs. 296-301). Rio de Janeiro. https://doi.org/10.1109/ITSC.2016.7795570Cordes, F., Kirchner, F., & Babu, A., 2018. Design and field testing of a rover with an actively articulated suspension system in a Mars analog terrain. Journal of Field Robotics , 35 (7), 1149-1181. https://doi.org/10.1002/rob.21808Cordos, N., & Todorut, A., 2019. Influences of the suspensions characteristics on the vehicle stability. En N. Burnete, & B. Varga (Ed.), Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018) (págs. 808-813). Cham: Springer. https://doi.org/10.1007/978-3-319-94409-8_94Deremetz, M., Lenain, R., & Thuilot, B., 2017. tiffness and damping real-time control algorithms for adjustable suspensions : A strategy to reduce dynamical effects on vehicles in off-road conditions. IFAC-PapersOnLine , 50 (1), 1958-1964. https://doi.org/10.1016/j.ifacol.2017.08.1565Ellery, A., 2016. Rover mobility and locomotion. En Planetary Rovers, Springer Praxis Books (págs. 71-132). Berlin: Springer, Heidelberg. https://doi.org/10.1007/978-3-642-03259-2_4Funde, J., Wani, K., Dhote, N., & Patil, S., 2019. Performance analysis of semi-active suspension system based on suspension working space and dynamic tire deflection. En U. Chandrasekhar, L. Yang, & S. Gowthaman (Ed.). (págs. 1-15). Singapure: Springer. https://doi.org/10.1007/978-981-13-2697-4_1García, J. M., Gil, A., & Sánchez, E. (2018). Desarrollo de una arquitectura de software para el robot móvil Lázaro. Ingeniare , 26 (3), 376-390. https://doi.org/10.4067/S0718-33052018000300376García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A., 2017b. Caster-leg aided maneuver for negotiating surface discontinuities with a wheeled skid-steer mobile robot. Robotics and Autonomous Systems , 91, 25-37. https://doi.org/10.1016/j.robot.2016.12.007García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A., 2015b. Steerability analysis on slopes of a mobile robot with a ground contact arm. Proc. 23rd Mediterranean Conference on Control and Automation, (págs. 267-272). Torremolinos, Spain. https://doi.org/10.1109/MED.2015.7158761García, J. M., Medina, I., Cerezo, A. G., & Linares, A., 2015a. Improving the static stability of a mobile manipulator using its end effector in contact with the ground. IEEE Latin American Transactions , 13 (10), 3228-3234. https://doi.org/10.1109/TLA.2015.7387226García, J., Medina, I., Martínez, J., García-Cerezo, A., Linares, A., & Porras, C., 2017a. Lázaro: robot móvil dotado de brazo para contacto con el suelo. Revista Iberoamericana de Automática e Informática industrial , 14 (1), 174-183. https://doi.org/10.1016/j.riai.2016.09.012Goga, V., & Kl'úcik, M., 2012. Optimization of vehicle suspension parameters with use of evolutionary computation. Procedia Engineering , 48, 174-179. https://doi.org/10.1016/j.proeng.2012.09.502Hurel, J., Mandow, A., & García-Cerezo, A., 2013. Los sistemas de suspensión activa y semiactiva: una revisión. Revista iberoamericana de automática e informática , 10 (2), 121-132. https://doi.org/10.1016/j.riai.2013.03.002Kang, S., Lee, W., Kim, M., & Shin, K., 2005. Robhaz-rescue: Rough-terrain negotiable teleoperated mobile robot for rescue mission. IEEE International Workshop on Safety, Security and Rescue Robotics, (págs. 105-110). Kobe.Lei, X., Zhang, G., Li, S., Qian, H., & Xu, Y., 2017. Dual-spring AGV shock absorption system design: Dynamic analysis and simulations. IEEE International Conference on Robotics and Biomimetics (ROBIO), (págs. 1-7). Macau. https://doi.org/10.1109/ROBIO.2017.8324559Li, B., Ma, S., Liu, J., Wang, M., Liu, T., & Wang, Y., 2009. Amoeba-I: a shape-shifting modular robot for urban search and rescue. Advanced Robotics , 23 (9), 1057-1083. https://doi.org/10.1163/156855309X452485Liu, Y., Meng, X., & Zhang, M., 2008. Research on mobile manipulator tip-over stability and compensation. 8th WSEAS International Conference on Robotics, control and Manufacturing Technology, (págs. 114-120). Hangzhou.Luo, Z., Shang, J., Wei, G., & Ren, L., 2018. Module-based structure design of wheeled mobile robot. Mechanical Sciences , 9 (1), 103-121. https://doi.org/10.5194/ms-9-103-2018Mihon, L., & Lontiș, N., 2019. Modeling and analysis of a vehicle suspension. En N. Burnete, & B. Varga (Ed.), Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018), (págs. 113-121). https://doi.org/10.1007/978-3-319-94409-8_14Moosavian, A., Alipour, K., & Bahramzadeh, Y., 2007. Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms. IEEE/RSJ International Conference on Intelligent Robots and Systems, (págs. 1210-1215). San Diego. https://doi.org/10.1109/IROS.2007.4398999Reid, W., Pérez-Grau, F., Göktogan, A., & Sukkarieh, S., 2016. Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface. IEEE International Conference on Robotics and Automation (ICRA), (págs. 5596-5602). Stockholm. https://doi.org/10.1109/ICRA.2016.7487777Sert, E., & Boyraz, P., 2017. Optimization of suspension system and sensitivity analysis for improvement of stability in a midsize heavy vehicle. Engineering Science and Technology, an International Journal , 20, 997-1012. https://doi.org/10.1016/j.jestch.2017.03.007Suresh, A., Ajithkumar, N., Kalathil, S., Simon, A., Unnikrishnan, V., Mathew, D., y otros., 2017. An advanced spider-like rocker-bogie suspension system for mars exploration rovers. En J. Kim, F. Karray, P. Sincak, & G. Myung (Ed.), Robot Intelligence Technology and Applications 4. Advances in Intelligent Systems and Computing. 447, págs. 423-447. Springer. https://doi.org/10.1007/978-3-319-31293-4_34Yang, L., Cai, B., Zhang, R., Li, K., & Wang, R., 2018. A new type design of lunar rover suspension structure and its neural network control system. Journal of Intelligent & Fuzzy Systems , 35 (1), 269-281. https://doi.org/10.3233/JIFS-169586Zhang, J., Jia, X., Zhao, Z., & Gao, R., 2015. Optimization of Positioning Parameters for McPherson Front Suspension based on ADAMS/Car. International Conference on Computer Science and Mechanical Automation (CSMA), (págs. 297-301). Hangzhou. https://doi.org/10.1109/CSMA.2015.66Zhang, S., Zhao, X., Su, W., Wu, H., Dai, Z., & Chen, Z., 2019. The design of suspension mechanism and analysis of obstacle ability to rescue robots. En K. Deng, Z. Yu, S. Patnaik, & J. Wang (Ed.), Recent Developments in Mechatronics and Intelligent Robotics. ICMIR 2018. Advances in Intelligent Systems and Computing. 856, págs. 677-685. Cham: Springer. https://doi.org/10.1007/978-3-030-00214-5_8
    corecore