251 research outputs found

    Cascading Power Outages Propagate Locally in an Influence Graph that is not the Actual Grid Topology

    Get PDF
    In a cascading power transmission outage, component outages propagate non-locally, after one component outages, the next failure may be very distant, both topologically and geographically. As a result, simple models of topological contagion do not accurately represent the propagation of cascades in power systems. However, cascading power outages do follow patterns, some of which are useful in understanding and reducing blackout risk. This paper describes a method by which the data from many cascading failure simulations can be transformed into a graph-based model of influences that provides actionable information about the many ways that cascades propagate in a particular system. The resulting "influence graph" model is Markovian, in that component outage probabilities depend only on the outages that occurred in the prior generation. To validate the model we compare the distribution of cascade sizes resulting from n2n-2 contingencies in a 28962896 branch test case to cascade sizes in the influence graph. The two distributions are remarkably similar. In addition, we derive an equation with which one can quickly identify modifications to the proposed system that will substantially reduce cascade propagation. With this equation one can quickly identify critical components that can be improved to substantially reduce the risk of large cascading blackouts.Comment: Accepted for publication at the IEEE Transactions on Power System

    Failure Localization in Power Systems via Tree Partitions

    Get PDF
    Cascading failures in power systems propagate non-locally, making the control and mitigation of outages extremely hard. In this work, we use the emerging concept of the tree partition of transmission networks to provide an analytical characterization of line failure localizability in transmission systems. Our results rigorously establish the well perceived intuition in power community that failures cannot cross bridges, and reveal a finer-grained concept that encodes more precise information on failure propagations within tree-partition regions. Specifically, when a non-bridge line is tripped, the impact of this failure only propagates within well-defined components, which we refer to as cells, of the tree partition defined by the bridges. In contrast, when a bridge line is tripped, the impact of this failure propagates globally across the network, affecting the power flow on all remaining transmission lines. This characterization suggests that it is possible to improve the system robustness by temporarily switching off certain transmission lines, so as to create more, smaller components in the tree partition; thus spatially localizing line failures and making the grid less vulnerable to large-scale outages. We illustrate this approach using the IEEE 118-bus test system and demonstrate that switching off a negligible portion of transmission lines allows the impact of line failures to be significantly more localized without substantial changes in line congestion

    Dual theory of transmission line outages

    Full text link
    A new graph dual formalism is presented for the analysis of line outages in electricity networks. The dual formalism is based on a consideration of the flows around closed cycles in the network. After some exposition of the theory is presented, a new formula for the computation of Line Outage Distribution Factors (LODFs) is derived, which is not only computationally faster than existing methods, but also generalizes easily for multiple line outages and arbitrary changes to line series reactance. In addition, the dual formalism provides new physical insight for how the effects of line outages propagate through the network. For example, in a planar network a single line outage can be shown to induce monotonically decreasing flow changes, which are mathematically equivalent to an electrostatic dipole field.Comment: 8 pages, 3 figures, 1 table; Accepted at IEEE Transactions on Power System

    Failure Localization in Power Systems via Tree Partitions

    Get PDF
    Cascading failures in power systems propagate non-locally, making the control and mitigation of outages extremely hard. In this work, we use the emerging concept of the tree partition of transmission networks to provide an analytical characterization of line failure localizability in transmission systems. Our results rigorously establish the well perceived intuition in power community that failures cannot cross bridges, and reveal a finer-grained concept that encodes more precise information on failure propagations within tree-partition regions. Specifically, when a non-bridge line is tripped, the impact of this failure only propagates within well-defined components, which we refer to as cells, of the tree partition defined by the bridges. In contrast, when a bridge line is tripped, the impact of this failure propagates globally across the network, affecting the power flow on all remaining transmission lines. This characterization suggests that it is possible to improve the system robustness by temporarily switching off certain transmission lines, so as to create more, smaller components in the tree partition; thus spatially localizing line failures and making the grid less vulnerable to large-scale outages. We illustrate this approach using the IEEE 118-bus test system and demonstrate that switching off a negligible portion of transmission lines allows the impact of line failures to be significantly more localized without substantial changes in line congestion
    corecore