2,263 research outputs found

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Harvesting Discriminative Meta Objects with Deep CNN Features for Scene Classification

    Get PDF
    Recent work on scene classification still makes use of generic CNN features in a rudimentary manner. In this ICCV 2015 paper, we present a novel pipeline built upon deep CNN features to harvest discriminative visual objects and parts for scene classification. We first use a region proposal technique to generate a set of high-quality patches potentially containing objects, and apply a pre-trained CNN to extract generic deep features from these patches. Then we perform both unsupervised and weakly supervised learning to screen these patches and discover discriminative ones representing category-specific objects and parts. We further apply discriminative clustering enhanced with local CNN fine-tuning to aggregate similar objects and parts into groups, called meta objects. A scene image representation is constructed by pooling the feature response maps of all the learned meta objects at multiple spatial scales. We have confirmed that the scene image representation obtained using this new pipeline is capable of delivering state-of-the-art performance on two popular scene benchmark datasets, MIT Indoor 67~\cite{MITIndoor67} and Sun397~\cite{Sun397}Comment: To Appear in ICCV 201

    Occlusion-Aware Instance Segmentation via BiLayer Network Architectures

    Full text link
    Segmenting highly-overlapping image objects is challenging, because there is typically no distinction between real object contours and occlusion boundaries on images. Unlike previous instance segmentation methods, we model image formation as a composition of two overlapping layers, and propose Bilayer Convolutional Network (BCNet), where the top layer detects occluding objects (occluders) and the bottom layer infers partially occluded instances (occludees). The explicit modeling of occlusion relationship with bilayer structure naturally decouples the boundaries of both the occluding and occluded instances, and considers the interaction between them during mask regression. We investigate the efficacy of bilayer structure using two popular convolutional network designs, namely, Fully Convolutional Network (FCN) and Graph Convolutional Network (GCN). Further, we formulate bilayer decoupling using the vision transformer (ViT), by representing instances in the image as separate learnable occluder and occludee queries. Large and consistent improvements using one/two-stage and query-based object detectors with various backbones and network layer choices validate the generalization ability of bilayer decoupling, as shown by extensive experiments on image instance segmentation benchmarks (COCO, KINS, COCOA) and video instance segmentation benchmarks (YTVIS, OVIS, BDD100K MOTS), especially for heavy occlusion cases. Code and data are available at https://github.com/lkeab/BCNet.Comment: Extended version of "Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers", CVPR 2021 (arXiv:2103.12340

    Deep Learning based 3D Segmentation: A Survey

    Full text link
    3D object segmentation is a fundamental and challenging problem in computer vision with applications in autonomous driving, robotics, augmented reality and medical image analysis. It has received significant attention from the computer vision, graphics and machine learning communities. Traditionally, 3D segmentation was performed with hand-crafted features and engineered methods which failed to achieve acceptable accuracy and could not generalize to large-scale data. Driven by their great success in 2D computer vision, deep learning techniques have recently become the tool of choice for 3D segmentation tasks as well. This has led to an influx of a large number of methods in the literature that have been evaluated on different benchmark datasets. This paper provides a comprehensive survey of recent progress in deep learning based 3D segmentation covering over 150 papers. It summarizes the most commonly used pipelines, discusses their highlights and shortcomings, and analyzes the competitive results of these segmentation methods. Based on the analysis, it also provides promising research directions for the future.Comment: Under review of ACM Computing Surveys, 36 pages, 10 tables, 9 figure
    • …
    corecore