173 research outputs found

    Cascaded deep monocular 3D human pose estimation with evolutionary training data

    Full text link
    End-to-end deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation, yet these models may fail for unseen poses with limited and fixed training data. This paper proposes a novel data augmentation method that: (1) is scalable for synthesizing massive amount of training data (over 8 million valid 3D human poses with corresponding 2D projections) for training 2D-to-3D networks, (2) can effectively reduce dataset bias. Our method evolves a limited dataset to synthesize unseen 3D human skeletons based on a hierarchical human representation and heuristics inspired by prior knowledge. Extensive experiments show that our approach not only achieves state-of-the-art accuracy on the largest public benchmark, but also generalizes significantly better to unseen and rare poses. Code, pre-trained models and tools are available at this HTTPS URL.Comment: Accepted to CVPR 2020 as Oral Presentatio

    DH-AUG: DH Forward Kinematics Model Driven Augmentation for 3D Human Pose Estimation

    Full text link
    Due to the lack of diversity of datasets, the generalization ability of the pose estimator is poor. To solve this problem, we propose a pose augmentation solution via DH forward kinematics model, which we call DH-AUG. We observe that the previous work is all based on single-frame pose augmentation, if it is directly applied to video pose estimator, there will be several previously ignored problems: (i) angle ambiguity in bone rotation (multiple solutions); (ii) the generated skeleton video lacks movement continuity. To solve these problems, we propose a special generator based on DH forward kinematics model, which is called DH-generator. Extensive experiments demonstrate that DH-AUG can greatly increase the generalization ability of the video pose estimator. In addition, when applied to a single-frame 3D pose estimator, our method outperforms the previous best pose augmentation method. The source code has been released at https://github.com/hlz0606/DH-AUG-DH-Forward-Kinematics-Model-Driven-Augmentation-for-3D-Human-Pose-Estimation

    Augmenting Vision-Based Human Pose Estimation with Rotation Matrix

    Full text link
    Fitness applications are commonly used to monitor activities within the gym, but they often fail to automatically track indoor activities inside the gym. This study proposes a model that utilizes pose estimation combined with a novel data augmentation method, i.e., rotation matrix. We aim to enhance the classification accuracy of activity recognition based on pose estimation data. Through our experiments, we experiment with different classification algorithms along with image augmentation approaches. Our findings demonstrate that the SVM with SGD optimization, using data augmentation with the Rotation Matrix, yields the most accurate results, achieving a 96% accuracy rate in classifying five physical activities. Conversely, without implementing the data augmentation techniques, the baseline accuracy remains at a modest 64%.Comment: 24 page

    Global Adaptation meets Local Generalization: Unsupervised Domain Adaptation for 3D Human Pose Estimation

    Full text link
    When applying a pre-trained 2D-to-3D human pose lifting model to a target unseen dataset, large performance degradation is commonly encountered due to domain shift issues. We observe that the degradation is caused by two factors: 1) the large distribution gap over global positions of poses between the source and target datasets due to variant camera parameters and settings, and 2) the deficient diversity of local structures of poses in training. To this end, we combine \textbf{global adaptation} and \textbf{local generalization} in \textit{PoseDA}, a simple yet effective framework of unsupervised domain adaptation for 3D human pose estimation. Specifically, global adaptation aims to align global positions of poses from the source domain to the target domain with a proposed global position alignment (GPA) module. And local generalization is designed to enhance the diversity of 2D-3D pose mapping with a local pose augmentation (LPA) module. These modules bring significant performance improvement without introducing additional learnable parameters. In addition, we propose local pose augmentation (LPA) to enhance the diversity of 3D poses following an adversarial training scheme consisting of 1) a augmentation generator that generates the parameters of pre-defined pose transformations and 2) an anchor discriminator to ensure the reality and quality of the augmented data. Our approach can be applicable to almost all 2D-3D lifting models. \textit{PoseDA} achieves 61.3 mm of MPJPE on MPI-INF-3DHP under a cross-dataset evaluation setup, improving upon the previous state-of-the-art method by 10.2\%

    The Visual Social Distancing Problem

    Get PDF
    One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, workplaces, public institutions, transports and schools will likely adopt restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is crucial to massively measure the compliance to such physical constraint in our life, in order to figure out the reasons of the possible breaks of such distance limitations, and understand if this implies a possible threat given the scene context. All of this, complying with privacy policies and making the measurement acceptable. To this end, we introduce the Visual Social Distancing (VSD) problem, defined as the automatic estimation of the inter-personal distance from an image, and the characterization of the related people aggregations. VSD is pivotal for a non-invasive analysis to whether people comply with the SD restriction, and to provide statistics about the level of safety of specific areas whenever this constraint is violated. We then discuss how VSD relates with previous literature in Social Signal Processing and indicate which existing Computer Vision methods can be used to manage such problem. We conclude with future challenges related to the effectiveness of VSD systems, ethical implications and future application scenarios.Comment: 9 pages, 5 figures. All the authors equally contributed to this manuscript and they are listed by alphabetical order. Under submissio

    Back to Optimization: Diffusion-based Zero-Shot 3D Human Pose Estimation

    Full text link
    Learning-based methods have dominated the 3D human pose estimation (HPE) tasks with significantly better performance in most benchmarks than traditional optimization-based methods. Nonetheless, 3D HPE in the wild is still the biggest challenge of learning-based models, whether with 2D-3D lifting, image-to-3D, or diffusion-based methods, since the trained networks implicitly learn camera intrinsic parameters and domain-based 3D human pose distributions and estimate poses by statistical average. On the other hand, the optimization-based methods estimate results case-by-case, which can predict more diverse and sophisticated human poses in the wild. By combining the advantages of optimization-based and learning-based methods, we propose the Zero-shot Diffusion-based Optimization (ZeDO) pipeline for 3D HPE to solve the problem of cross-domain and in-the-wild 3D HPE. Our multi-hypothesis ZeDO achieves state-of-the-art (SOTA) performance on Human3.6M as minMPJPE 51.451.4mm without training with any 2D-3D or image-3D pairs. Moreover, our single-hypothesis ZeDO achieves SOTA performance on 3DPW dataset with PA-MPJPE 42.642.6mm on cross-dataset evaluation, which even outperforms learning-based methods trained on 3DPW
    corecore