561 research outputs found

    Unsupervised Learning from Shollow to Deep

    Get PDF
    Machine learning plays a pivotal role in most state-of-the-art systems in many application research domains. With the rising of deep learning, massive labeled data become the solution of feature learning, which enables the model to learn automatically. Unfortunately, the trained deep learning model is hard to adapt to other datasets without fine-tuning, and the applicability of machine learning methods is limited by the amount of available labeled data. Therefore, the aim of this thesis is to alleviate the limitations of supervised learning by exploring algorithms to learn good internal representations, and invariant feature hierarchies from unlabelled data. Firstly, we extend the traditional dictionary learning and sparse coding algorithms onto hierarchical image representations in a principled way. To achieve dictionary atoms capture additional information from extended receptive fields and attain improved descriptive capacity, we present a two-pass multi-resolution cascade framework for dictionary learning and sparse coding. This cascade method allows collaborative reconstructions at different resolutions using only the same dimensional dictionary atoms. The jointly learned dictionary comprises atoms that adapt to the information available at the coarsest layer, where the support of atoms reaches a maximum range, and the residual images, where the supplementary details refine progressively a reconstruction objective. Our method generates flexible and accurate representations using only a small number of coefficients, and is efficient in computation. In the following work, we propose to incorporate the traditional self-expressiveness property into deep learning to explore better representation for subspace clustering. This architecture is built upon deep auto-encoders, which non-linearly map the input data into a latent space. Our key idea is to introduce a novel self-expressive layer between the encoder and the decoder to mimic the ``self-expressiveness'' property that has proven effective in traditional subspace clustering. Being differentiable, our new self-expressive layer provides a simple but effective way to learn pairwise affinities between all data points through a standard back-propagation procedure. Being nonlinear, our neural-network based method is able to cluster data points having complex (often nonlinear) structures. However, Subspace clustering algorithms are notorious for their scalability issues because building and processing large affinity matrices are demanding. We propose two methods to tackle this problem. One method is based on kk-Subspace Clustering, where we introduce a method that simultaneously learns an embedding space along subspaces within it to minimize a notion of reconstruction error, thus addressing the problem of subspace clustering in an end-to-end learning paradigm. This in turn frees us from the need of having an affinity matrix to perform clustering. The other way starts from using a feed forward network to replace the spectral clustering and learn the affinities of each data from "self-expressive" layer. We introduce the Neural Collaborative Subspace Clustering, where it benefits from a classifier which determines whether a pair of points lies on the same subspace under supervision of "self-expressive" layer. Essential to our model is the construction of two affinity matrices, one from the classifier and the other from a notion of subspace self-expressiveness, to supervise training in a collaborative scheme. In summary, we make constributions on how to perform the unsupervised learning in several tasks in this thesis. It starts from traditional sparse coding and dictionary learning perspective in low-level vision. Then, we exploit how to incorporate unsupervised learning in convolutional neural networks without label information and make subspace clustering to large scale dataset. Furthermore, we also extend the clustering on dense prediction task (saliency detection)

    Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational 1-Norm Regularization in the Derivative Domain

    Get PDF
    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field
    corecore