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  ملخص الأطروحة

  محمد حارث خالد :الاسم
تشخيص الخطأ باستخدام دمج متتابع للمناهج الخالية من نموذج و المناهج المعتمدة على  :العنوان
  نموذج
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  2009أبريل  :تاريخ الدرجة العلمية

  
فرزها عن طريق الدمج تشخيص للكشف عن الأخطاء الأولية ولل مخططٌ يقترح ،في هذه الأطروحة

، المناهج المعتمدة على نموذجذج والمناهج الخالية من نمو: من المناهج مختلفين كليا وعينالمتتابع لن
أيضا كشف ، وأو وجود الخطأ في أقصر وقت ممكن غيابالحاسمة عن بالتالي ضمان مراقبة المعلومة و

أيضا حص الحد وفحص المعقولية وج تشمل فالمناهج الخالية من نموذ. الحالة الكلية للخطأ مع الوقت
" مرشح كالمان"مل على تبينما المناهج المعتمدة على نموذج فتش. التحليل القائم على المعرفة

(Kalman Filter) لات النموذج لفرز الأخطاء، ولكشف الأخطاءالتحليل . على التعرف على معام
يكشف عن " انمرشح كالم"ما، في حين أن  يدل بسرعة على امكانية بداية خطإٍ الخالي من نموذج

للحصول على صورة . بفرز أي خطأ مكتشفالتعرف على المعاملات  يقوم، ووجود أو غياب الخطأ
يحدد عن طريق تحليل  كهذا نموذج. شاملة للتشخيص هناك حاجة أساسية لنموذج دقيق و موثوق

نة الاستجابة الترددية ، و عن طريق ، و عن طريق مقار بين قيم القياسات و قيم النموذج الفرق
طريقة جديدة للتعرف . على موقع أقطاب النموذج المُعرف اعتماداَالتحديد الدقيق لبنية النموذج 

. أنظمة فعلية بشكل موسع على ميقيالمخطط المقترح . على بنية النموذج تعتمد على موقع الأقطاب
المخطط . تصميم استراتيجية فعالة للصيانة الوقائية قد يستخدم في إجمالاتنفيذ المخطط المقترح 
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Chapter 1 

Basic Definitions 

Overview 

This chapter discusses the definitions of the terminologies which are used 

in this thesis. 

 

As a step towards a unified terminology, the IFAC Technical Committee 

SAFEPROCESS suggested preliminary definitions of some terms in the field of 

fault diagnosis. Some of these definitions are given here as a way to introduce the 

field. Most of these terms will be defined more formally later in this thesis. 

The following list of definitions is a subset of the IFAC list: 

 Fault: Unpermitted deviation of at least one characteristic property or 

variable of the system from acceptable/usual/standard behavior. 

 Failure: Permanent interruption of a system’s ability to perform a required 

function under specified operating conditions. 

 Fault Detection: Determination of faults present in a system, and its time of 

detection. 

 Fault Isolation: Determination of kind, location, and time of detection of a 

fault. Follows fault detection. 

 Fault Identification: Determination of the size and time-variant behavior of 

a fault. Follows fault isolation. 

 Fault Diagnosis: Determination of kind, size, location, and time of 
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detection of a fault. Follows fault detection. Includes fault isolation and 

identification. For the term fault diagnosis, one slightly different definition 

also exists in the literature, for example in Gertler (1991) and it says that 

fault diagnosis also includes fault detection. 

 Fault Evaluation: to estimate the size and type or nature of the fault. 

If fault detection is excluded from the term diagnosis, as in the 

SAFEPROCESS, one faces the problem of finding a word to describe the whole 

area. This is partly solved by introducing the abbreviation FDI (Fault Detection 

and Isolation), which is commonly used in many papers. 

The relative importance of these tasks is obviously subjective. However, 

detection is an absolute must for any practical system, and isolation is almost 

equally important. Fault evaluation, on the other hand, may not be essential if no 

reconfiguration action is involved. Hence, in the literature, fault diagnosis is very 

often considered as fault detection and isolation, abbreviated as FDI. 

1.1 Dictionary Definitions 

In this context, it is also interesting to see how the word diagnosis is defined 

in a general dictionary such as Webster: 

diagnosis 

Etymology: New Latin, from Greek diagnōsis, from diagignōskein to 

distinguish, from dia- + gignōskein to know. 

Date: circa 1681 

1 a : the art or act of identifying a disease from its signs and symptoms  
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b : the decision reached by diagnosis 

2 a : investigation or analysis of the cause or nature of a condition, situation,    

        or problem <diagnosis of engine trouble> 

b : a statement or conclusion from such an analysis. 
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Chapter 2 

Introduction 

Overview 

This chapter introduces the context of the thesis. It briefly describes related 

topics such as model-based and model-free approaches, system 

identification and fault diagnosis. The last sections present the summary of 

the proposed schemes, and the thesis organization will also be discussed in 

this chapter.  

 

2.1 Literature Survey 
 

Fault diagnosis is continuously gaining importance for process monitoring 

because of the increasing demand for higher performance as well as for increased 

safety and reliability of dynamic systems. Early diagnosis of process faults, while 

the system is still operating in a controllable region, can help avoid abnormal event 

progression. It can reduce (or possibly avoid) productivity loss, which in turn can 

help avoid major system breakdowns and catastrophes. Hence, fault diagnosis is a 

major research topic, attracting considerable interest from industrial practitioners 

as well as academic researchers. The survey [1] revealed that the US-based 

petrochemical industry could save up to $10 billion annually if abnormal process 

behavior could be detected, diagnosed, and appropriately dealt with. Studies 

suggest [2] that the petrochemical industry alone loses over $20 billion annually 

due to inappropriate reactions to abnormal behavior. 

There is an abundance of literature on process fault diagnosis, ranging from 

analytical methods to artificial intelligence and statistical approaches. From a 
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modeling perspective, there are methods that require accurate process models, 

semi-quantitative models, or qualitative models. At the other end of the spectrum, 

there are methods that do not assume any form of model information but rely only 

on historic process data. In addition, given the process knowledge, there are 

different search techniques that can be used for diagnosis. Fault diagnosis methods 

surveyed in [15], [16] and [17] can be classified into 2 general categories, model-

based and model-free (also termed data-based or signal-based) depending upon the 

a priori knowledge of the process.. The hierarchy of fault diagnosis approaches is 

shown in Fig. 1.1. 

 

Figure 1 Taxonomy of Fault Diagnosis Methods 
 

The type of a-priori process knowledge used is the most important 

distinguishing feature for classifying fault diagnosis systems. The basic a-priori 

knowledge that is needed for fault diagnosis is the set of faults and the relationship 

between the observations (symptoms) and the faults themselves. A diagnostic 

system may show these relationships explicitly (as in a table lookup), or it may 

infer them from some source of domain knowledge. The a-priori domain 

knowledge may be developed from a fundamental understanding of the process by 
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using first-principles knowledge. Such knowledge is referred to in [18] as deep, 

causal or model-based knowledge. On the other hand, knowledge may be obtained 

from a past experience with the process. This knowledge is referred to as shallow, 

evidential or process history-based knowledge.  

For model-based methods, the a-priori knowledge can be broadly classified 

as qualitative or quantitative. The model is usually based on fundamental 

understanding of the physics of the process. In quantitative models, this 

understanding is expressed in terms of mathematical functional relationships 

between the inputs and outputs of the system. In qualitative model equations, these 

relationships are expressed in terms of qualitative functions. 

For model-free approaches, only the availability of a large amount of 

historical process data is assumed. There are different ways in which this data can 

be transformed and presented as a-priori knowledge to a diagnostic system. This is 

known as the feature extraction process from the process history data, and it is 

done to facilitate later diagnosis. This extraction process can proceed mainly as 

either a quantitative or a qualitative feature extraction process. Quantitative feature 

extraction can be either statistical or non-statistical.  

There might be some overlap between the model-based and model-free 

approaches. This is just one classification, based on whether or not the knowledge 

about process characteristics is required. 
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2.1.1 Model-based Fault Diagnosis Approaches 

2.1.1.1 Quantitative Model-based Methods 

Most of the work on quantitative model-based approaches has been based on 

using general input-output and state space models to generate residuals. These 

approaches can be classified into observer, parity space and frequency domain 

methods. Good survey papers include [23], [24], and [25]. The mathematical 

model-based approach adopted in this thesis falls into the observer category. 

 Observer or filter-based approaches: The basic idea behind the 

observer or filter-based approaches is to estimate the outputs of the 

system from the measurements (or a subset of measurements) by using 

either observers in a deterministic setting [26-31] or statistical filters 

(e.g. the Kalman filter) in a stochastic setting [32-35]. Then, the 

weighted output estimation errors (or innovations in the stochastic case) 

are used as the residuals. Depending on the circumstances, one may use 

linear [36] or nonlinear [37-39], full or reduced-order, fixed or adaptive 

observers (or Kalman filters) [40-41].  

 Parity space approaches: Parity equations are rearranged and usually 

transformed variants of input-output or state space models of the plant 

[43]. The basic idea is to check the parity (consistency) of the plant 

models with sensor outputs (measurements) and known process inputs. 

The idea of this approach is to rearrange the model structure so as to get 

the best fault isolation. Dynamic parity relations were introduced by 

Willsky [44]. Redundancy provides freedom in the design of residual 

generating equations so that further fault isolation can be achieved. 
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Fault isolation requires the ability to generate residual vectors which are 

orthogonal to each other for different faults. Gertler et al. [45-46] 

suggested a so-called “orthogonal parity equation” approach in 

designing structured residual sets. The design of directional residual 

vectors using parity relations is not straightforward. The systematic 

approaches of designing parity equations with directional properties are 

presented in [47] and [48]. Chow and Willsky [49] proposed a 

procedure to generate parity equations from the state space 

representation of a dynamic system. Several researchers showed that 

some correspondence exists between observer-based and parity relation 

approaches. A full derivation of this structure equivalence can be found 

in [50].  

 Parametric Approach: The parametric approach [8, 9, 13] is based on 

analyzing a feature vector which is computed by using on-line recursive 

identification. The feature vector usually represents the coefficients of a 

system transfer function.  A failure is detected when the estimated 

value of the feature vector migrates from its nominal value.  In practice 

the estimated value of feature vector may not converge properly as a 

result of model uncertainty and measurement noise. The choice of the 

order of the identified model and requirements for persistency of 

excitation are important considerations. Also, if the system represents 

an overall transfer function that consists of an interconnection of 

component transfer functions, then a change in one of the (diagnostic) 

parameters within the subsystem will, in general, affect all of the 
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elements of the feature vector. Therefore the relationship between the 

diagnostic parameter vector and the feature vector [10] must be known 

or determined beforehand if such a fault is to be isolated. 

2.1.1.2 Qualitative Model-based Methods 

Based on various forms of qualitative knowledge used in fault diagnosis, 

qualitative model-based approaches can be classified into digraphs, fault trees and 

qualitative physics methods. 

 Causal model approaches using digraphs: Cause-effect relations or 

models can be represented in the form of signed digraphs (SDG). A digraph 

is a graph with directed arcs between the nodes and SDG in which the 

directed arcs have a positive or negative sign attached to them. The directed 

arcs lead from the ‘cause’ nodes to the ‘effect’ nodes. SDGs provide a very 

efficient way of representing qualitative models graphically, and they are 

the most widely used form of causal knowledge for process fault diagnosis. 

Iri et al. [54] were the first to use SDG for fault diagnosis. From SDG, they 

derived what is called a cause-effect graph (CE graph). Umeda et al. [55] 

showed how SDG can be obtained from differential algebraic equations for 

the process. Shiozaki et al. [56] addressed the issue of conditional arcs in 

their SDG representation. Shiozaki et al. [57] also extended the idea of 

SDG to include five-range patterns instead of the usual three-range pattern 

used in the standard SDG. Kokawa et al. [58] used partial system dynamics, 

statistical information about equipment failure, and digraphs to represent 

the failure propagation network for identifying fault location.  

Rule-based methods using SDG have been used for fault diagnosis by 
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Kramer and Palowitch [59]. An important work in the field of steady-state 

qualitative simulation (QSIM) using SDG has been presented by Oyeleye 

and Kramer [60]. In recent years, Wilcox and Himmelblau [61] [62] have 

approached the problem of fault diagnosis using what is called possible 

cause and effect graph (PCEG) models. Vaidhyanathan and 

Venkatasubramanian [63] have used digraph-based models for automated 

HAZOP analysis. Use of SDGs for multiple fault detection is demonstrated 

by Vedam and Venkatasubramanian [64]. Improvement of fault resolution 

in SDG models through the use of fuzzy set theory is discussed by Han et 

al. [65]. Genovesi et al. [66] have presented a framework for process 

supervision using fuzzy logic-based fault diagnosis. Li and Wang [67] have 

shown how fuzzy digraphs can be used for qualitative and quantitative 

simulation of the temporal behavior of process systems.  

 Fault trees approaches: Fault trees are used in analyzing system reliability 

and safety. Fault tree analysis was originally developed at Bell Telephone 

Laboratories in 1961. A fault tree is a logic tree that propagates primary 

events or faults to the top level event or a hazard. The tree usually has 

layers of nodes. At each node different logic operations such as AND OR 

are performed for propagation. Fault-trees have been used in a variety of 

risk assessment and reliability analysis studies by Kelly and Lees [68].  

 Qualitative physics approaches: Qualitative physics knowledge in fault 

diagnosis has been represented in mainly two ways. The first approach is to 

derive qualitative equations from the differential equations termed as 

confluence equations. Considerable work has been done in this area of 
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qualitative modeling of systems and representation of causal knowledge, 

including [69], [70] and [71]. The other approach in qualitative physics was 

the derivation of qualitative behavior from the ordinary differential 

equations (ODEs). These qualitative behaviors for different failures can be 

used as a knowledge source. Sacks [72] examined piece-wise linear 

approximations of nonlinear differential equations through the use of a 

qualitative mathematical reasoner to deduce the qualitative properties of the 

system. Kuipers [73] predicted qualitative behavior by using qualitative 

differential equations (QDEs) that are an abstraction of the ODEs that 

represent the state of the system. In terms of applications of qualitative 

models in fault diagnosis, qualitative simulation (QSIM) and qualitative 

process theory (QPT) are the popular approaches. Examples of research 

work in QSIM include [74], [75], and [76]. Examples of using the QPT 

framework in process fault diagnosis include [77], [78] and [79]. 

  2.1.2 Model-Free Fault Diagnosis Approaches 

 Expert system approaches: Rule-based feature extraction has been widely 

used in expert systems for many applications. An expert system is generally 

a very specialized system that solves problems in a narrow domain of 

expertise. Initial attempts at the application of expert systems for fault 

diagnosis can be found in the work of Henley [80] and Niida [81]. 

Structuring the knowledge-base through hierarchical classification can be 

found in [82]. Ideas on knowledge-based diagnostic systems based on the 

task framework can be found in [83]. A rule-based expert system for fault 
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diagnosis in a cracker unit is described in [84]. More work on expert 

systems in chemical process fault diagnosis can be found in [85] and [86].  

A number of other researchers have also worked on the application of 

expert systems to diagnostic problems. Basila et al. [87] developed a 

supervisory expert system that uses object-based knowledge representation 

to represent heuristic and model-based knowledge. Zhang and Roberts [88] 

presented a methodology for formulating diagnostic rules from the 

knowledge of system structures and component functions. Becraft and Lee 

[89] proposed an integrated framework comprising of a neural network and 

an expert system. Tarifa and Scenna [90] proposed a hybrid system that 

uses signed directed graphs (SDG) and fuzzy logic. Zhao et al. [91] 

presented a wavelet sigmoid basis neural network and expert system based 

integrated framework for fault diagnosis of a hydrocracking process. Wo et 

al. [92] presented an expert fault diagnostic system that uses rules with 

certainty factors. Leung and Romagnoli [93] presented a probabilistic 

model-based expert system for fault diagnosis. An expert system approach 

for fault diagnosis in batch processes was discussed in Scenna [94]. 

 Neural Networks approaches: Considerable interest was shown in the 

literature regarding the application of neural networks for fault diagnosis. 

In general, neural networks that was used for fault diagnosis can be 

classified along two dimensions: (i) the architecture of the network such as 

sigmoidal, radial basis and so on; and (ii) the learning strategy such as 

supervised and unsupervised learning. 
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The most popular supervised learning strategy in neural networks has 

been the back-propagation algorithm. A number of papers address the 

problem of fault diagnosis using back-propagation neural networks. In 

chemical engineering, Watanabe et al. [95], Venkatasubramanian and Chan 

[96], Ungar et al. [97] and Hoskins et al. [98] were among the first 

researchers to demonstrate the usefulness of neural networks for fault 

diagnosis. A detailed and thorough analysis of neural networks for fault 

diagnosis in steady-state processes was presented by Venkatasubramanian 

et al. [99]. This work was later extended to utilize dynamic process data by 

Vaidyanathan and Venkatasubramanian [100]. A hierarchical neural 

network architecture for the detection of multiple faults was proposed by 

Watanabe et al. [101].  

Most of the work on improvement of performance of standard back-

propagation neural networks for fault diagnosis is based on the idea of 

explicit feature presentation to the neural networks by Fan et al. [102], 

Farell and Roat [103], Tsai and Chang [104], and Maki and Loparo [105]. 

Modifications to the selection of basis functions have also been suggested 

to the standard back-propagation network. For example, Leonard and 

Kramer [106] suggested the use of radial basis function networks for fault 

diagnosis applications. Kavuri and Venkatasubramanian ([107]; [108]; 

[109]) generalized radial units to Gaussian units and proposed methods to 

solve the hidden node problem.  

 [117] discuss the integration of wavelets with ART networks for the 

development of diagnostic systems. 
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 Fuzzy Logic approaches: In recent years the application of fuzzy logic to 

model-based fault diagnosis approaches has gained increasing attention in 

both fundamental research and application. Symptoms can be generated 

using observers based on the estimation of the output from the system. The 

first methods used fuzzy set theory to express cause-effect relations in 

expert systems. The key idea of model-based methods is the generation of 

signals, termed residuals. These are usually generated by using  

mathematical methods (based on state observers, parameter estimation or 

parity equations). The models correspond to the monitored system (Chen & 

Patton, 1999).  

Residuals are signals representing inconsistencies between the model 

and the actual system being monitored, but the deviation between the 

model and the plant is influenced not only by the presence of the fault but 

also modeling uncertainty. One solution is for the observer and controller 

parameters to be tuned via estimation from the real system for fault 

isolation and threshold adaptation (Schneider & Frank, 1994). The 

introduction of fuzzy logic can improve the decision-making, and in turn it 

will provide reliable and sufficient FDI, suitable for real industrial 

applications. However, difficulties arise in the training of the algorithm in 

the inference mechanism, where knowledge is hidden in large amounts of 

data and embedded in trained neural networks (Chen et al., 1997).  

A fuzzy feed-forward neural network (FNN) is applied to extract 

rules from an existing data base. Frank et al. (Frank & Kuipel, 1993; Frank 

1993; Frank 1994a; Frank 1996; Schneider & Frank, 1996; Frank & 
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Köppen- Seliger 1997) use fuzzy logic for residual evaluation. This can be 

an important way of taking into account modeling uncertainty at decision-

making rather than during residual generator design. By applying a fuzzy 

rule-based approach, the fault decision process can be made robust to the 

uncertainties so that false and missed alarm rates can be minimized. 

Considering supervisory control (Linkens et al., 1993, Frank & Kuipel, 

1993) with tasks such as system management, process monitoring, 

identification, fault detection, diagnosis and adaptive capability reduces to 

lower level models for developing simpler structures for observers and 

controllers using TS fuzzy models. 

 Multivariate Statistical approaches: The successful applications of 

multivariate statistical methods to fault diagnosis such as Principal 

Component Analysis (PCA) and Partial Least Squares (PLS) have been 

extensively reported in the literature. Overviews of using PCA and PLS in 

fault diagnosis and in process analysis and control were given by 

MacGregor et al. [118] [119], and Wise and Gallagher [120].  

In earlier work, Kresta et al. [121] presented the basic methodology of 

using the multivariate SPC procedure to handle large numbers of process 

and quality variables for continuous processes. Later, Nomikos and 

MacGregor [122] extended the use of multivariate projection methods to 

batch processes by using multiway PCA. To deal with nonlinearity, Qin 

and McAvoy [123] proposed a neural net PLS approach that incorporated 

feed forward networks into the PLS modeling. In order to handle 

nonlinearity in batch processes, Dong and McAvoy [124] utilized a 
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nonlinear PCA method. Raich and Cinar [125] [126] proposed an integral 

statistical methodology combining PCA and discriminate analysis 

techniques, using distance and angle-based discriminants.  

Chemometrics is defined as the science of relating measurements made on 

a chemical system to the state of the system via application of 

mathematical or statistical methods. Chemometric techniques have been 

applied in recent years to chemical engineering processes [127-128]. Dunia 

et al. [130], and Qin and Li [129] used PCA for sensor fault detection, 

identification and reconstruction. Dunia and Qin [131] looked at PCA from 

a geometric point of view and presented a methodology that analyzed the 

fault subspace for process and sensor fault detection.  

A major limitation of conventional PCA monitoring is that the PCA model 

is time-invariant, while most real processes are time-varying. Hence the 

PCA model should also be recursively updated. An adaptive monitoring 

approach using recursive PLS has been presented by Qin [132], and a 

similar recursive PCA approach was proposed by Li et al. [133]. Another 

promising variant of the PCA approach is the multi-scale PCA (MSPCA) 

approach which integrates PCA and wavelet analysis [134-137].  

 Statistical Classifier approaches: Fault diagnosis is essentially a 

classification problem and hence can be cast in a classical statistical pattern 

recognition framework [10]. Fault diagnosis can be considered as a 

problem of combining, over time, the instantaneous estimates of the 

classifier using knowledge about the statistical properties of the failure 

modes of the system ([138]; [139]).  
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2.2 Thesis Summary 

In this thesis, a novel approach to sequential integration for fault diagnosis is 

developed on the basis of [160].  

The faults considered here include sensor, actuator and leakage faults, and 

can be classified broadly as either parametric or additive faults. An additive fault 

manifests itself as an additive exogenous signal in the measured data, while a 

parametric fault induces a variation in the system parameters.  

A fault signature manifests itself as an abrupt jump or a change either in the 

signal profile, or in the signal spectral characteristics (coherence spectrum), or in 

the signal statistics or in any other signal characteristics used. Knowledge-based 

methods employ knowledge gained from experts, data history records, extensive 

experimentation, and physical laws governing the physical system (acknowledged 

from [163]). 

In general, there are two broad classes of fault diagnosis: model-free and 

model-based. The former class includes tools based on limits checking, plausibility 

analysis, neural networks, fuzzy logic, signal coherence spectra, statistical 

inference and artificial intelligence. A model-free approach is capable of detecting 

a possible fault quickly, unraveling its root cause(s) and isolating it. Being free 

from the use of a model, it has an equally attractive freedom from the usual model-

related difficulties, such as identifying the required model, dealing with the 

presence of nonlinearities and structural complexities. However, these advantages 

are realized at a cost that may have various facets depending on the tool used. For 

neural networks, there is a lack of transparency, a need for a sufficient training data 

covering all or most operational scenarios, and a possibly lengthy training time. 
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Fuzzy logic techniques, though less opaque than neural networks, suffer from the 

difficulty of deriving precise rules which distil an expert’s knowledge of the 

application domain and which are necessary to drive the fuzzy inference engine 

[147] (acknowledged from [163]).     

On the other hand, given the availability of an appropriate model, the model- 

based method is transparent, and it provides a complete and accurate diagnostic 

picture by exploiting a wealth of readily available and powerful tools for analysis 

and design. Fortunately, the well-known difficulties in identifying a system model, 

due to its structural complexities and nonlinearities that may render its 

mathematical analysis intractable and its processing slow, can, for a vast number of 

practical systems, be mitigated by resorting to simple linearized models that are 

quite adequate in capturing most of the system dynamics of interest and whose 

predictive and inferential power can be enhanced by a rich repertoire of powerful 

linear analytical tools (acknowledged from [163]). 

The model-based approach is based on the use of Kalman filtering [148-151], 

parity equation [152] system identification [153], and diagnostic model [153, 154]. 

In critical applications such as those involving hazardous leaks, it is important to 

ensure that a fault is detected quickly and reliably [155,156]. 

Therefore, the key advantage of our proposed sequential integration scheme 

is to harness the advantages of both approaches, which confer upon it an enhanced 

capability that neither of the two approaches enjoys. More specifically, the model-

based approach provides not only a confirmation of the quick fault diagnosis made 

by the model-free approach but also an accurate unfolding-in-time of the finer 

details of the fault, thus completing the overall diagnostic picture of the system 
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under test (acknowledged from [163]). 

In this thesis, a novel scheme which combines the advantages of both model-

free and model-based approaches to diagnose an incipient fault quickly and 

accurately is proposed using the framework of [154].  This scheme hinges on the 

sequential integration of model-free and model-based approaches.  

When identifying a model of a physical system, the structure of the model 

may not be identical to that of the mathematical model derived from the physical 

laws due to various factors including the presence of noise and fast dynamics [154, 

157]. A simple approach to estimating the mismatch between these two models is 

to choose as a measure of the goodness-of-fit between the outputs of the system 

and its mathematical model to be the sum of the squares of the residuals, defined as 

the difference between these two outputs. The selection of the model order based 

on this measure may be unsatisfactory. Increasing the order of the system and 

hence the number of estimated parameters may improve the goodness-of-fit. 

However, choosing a higher order model may result in overfitting the data, and 

consequently may include noise artifacts. To overcome the problem of overfitting, 

a number of model order selection criteria have been proposed. These criteria are 

based on penalizing not only the sum of the squares of the residuals but also the 

model order itself. Commonly-used criteria include Akaike Information Criterion 

(AIC), the Bayesian Information Criterion (BIC), and the Minimum Description 

Length (MDL) [149]. These are based on statistical decision theory requiring a 

priori knowledge of the probability distribution function (PDF) of the noise. In 

practical systems, it may not be possible to estimate the required PDF, and hence a 

Gaussian PDF is generally assumed [150-157].  In many cases, the application of 
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these criteria may not always give the correct model order as the estimated model 

may still contain some artifacts due to noise and other causes. 

This work adopts the novel approach to model order selection that was 

proposed in [161] and which directly verifies the presence of various artifacts in 

the estimated model. These artifacts manifest themselves by the presence of 

extraneous poles in the identified model. It is shown here that, for systems 

exhibiting a low-pass nature, which is the case for most practical systems, if the 

sampling frequency is chosen larger than four times the system’s bandwidth (i.e. 

twice the Nyquist rate), the system poles will then be located in the right-half of 

the z-plane. This a-priori knowledge is exploited here to distinguish the system 

poles from the extraneous ones which fall in the left-half of the z-plane. The model 

order is selected so that all the poles of the identified model are in the right half of 

the z-plane, and the resulting identified model will correctly reflect the ‘true 

model’ (acknowledged from [163]). 

A most popular approach to fault detection is based on the residuals 

generated by the Kalman filter [148-151]. A suboptimal steady-state Kalman filter, 

whose structure is similar to that of an observer, is used as it is computationally 

simple and has also been successfully used in a plethora of practical fault diagnosis 

applications [148-151]. A statistical decision-theoretic approach using the 

generalized likelihood ratio is employed to detect the presence or absence of a 

fault.  The mean of the residual vector or the mean of its correlation is compared 

with a specified threshold value, which is determined from both the pre-specified 

value of the false alarm rate, and the variance of the measurement noise.  
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Next, the fault isolation problem is considered. The overall system modeled 

as an interconnection of subsystems, Gi(z), i = 1, 2, … nf , is shown in Fig. 1. Each 

subsystem, Gi(z), is a transfer function that may represent a physical entity such as 

a sensor, actuator, controller or any other system component that is subject to a 

fault [157]. Each subsystem may be affected by some noise or disturbance inputs, 

wi, as illustrated in Fig. 2. The feature vector of a particular Gi(z) forms a (qi×1) 

vector, iγ . The diagnostic parameter,γ , is a (q× 1) vector that augments the feature 

vectors of all subsystems, iγ , i = 1, 2, …, nf . 

 

 

Figure 2 Interconnection of Subsystems 
 

The Kalman filter is generally not suited for parametric fault isolation.  There 

are two approaches to fault isolation. One is based on parameter identification 

where the feature vector, made of the coefficients of the system transfer function, 

is first estimated, and then the known relationship between this feature vector and 

the diagnostic parameter is used to derive the latter [155]. The other method is 

based on a diagnostic model which relates directly the input-output data to the 

diagnostic parameters [156,157]. In this thesis, we employ the diagnostic model 

approach. The proposed scheme is evaluated extensively on a simulated system as 

well as on a benchmarked laboratory-scale two-tank system [158]. 
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The main contributions of the thesis are the sequential integration of model-

free and model-based approaches, the new model order selection criterion and 

finally its impact on both the accuracy and reliability of fault detection based on a 

Kalman filter and on fault isolation using a diagnostic model approach. 

2.3 Thesis Organization 

The thesis is organized as follows: 

A. Chapter 1 gives the Basic Standard Definitions for the terminologies used. 

B. Chapter 2 is the Introduction. It gives a summary of the previous work 

reported in the literature and an overview of the topics discussed in the 

thesis. 

C. Chapter 3 describes the proposed sequential integration approach.  

D. Chapter 4 presents the proposed model-free approach for fault detection. 

E. Chapter 5 presents the proposed model-based approach for Fault Detection 

and Isolation (FDI) which includes a novel model order selection criterion. 

F. Chapter 6 addresses the evaluation of the proposed sequential integration 

of the fault diagnosis scheme on a benchmark two-tank system. 

G. Chapter 7 gives the performance analysis of the proposed scheme for fault 

diagnosis. 

H. Chapter 8 presents the Thesis contributions, conclusions and 

recommendations for future work. 
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Chapter 3 

Proposed Sequential Integration Approach                        
for Fault Diagnosis (FDI) 

Overview 

This chapter gives the main theme of the Proposed Sequential Integration 

Scheme for Fault Diagnosis and discusses its two building blocks, namely 

model-free and model-based approaches, and their various components.   

 

 

Figure 3 Sequential Execution of Tasks 
 

In this thesis, a sequential integration of both model-free and model-based 

approaches is employed so as to meet the requirements for a quick and reliable 

fault detection and isolation scheme. The tasks of our fault diagnosis scheme 

(Fig.3) are executed with an increasing precision accompanied by a gradual 

unfolding-in-time diagnostic picture that reveals the presence of an incipient fault 

[159]. The multistage scheme of Fig. 1 involves three model-free stages followed 
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by two model-based ones. This scheme starts with limit checks and a plausibility 

analysis, then a neural network stage for a quick fault classification, followed by a 

fuzzy logic block to unravel the real cause(s) of the fault. The last two model-based 

stages are used for the twofold purpose of capturing any incipient fault(s) that the 

first three model-free stages may have missed out as well as confirming their 

diagnosis. These two final stages involve a Kalman filter for fault detection and a 

diagnostic parameter identification scheme for fault isolation, thus completing the 

overall diagnostic picture. 
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Chapter 4    

Proposed Fault Detection Scheme                             
using Model-Free Analysis 

 
Overview 

This chapter introduces the proposed fault detection scheme using the 

model-free analysis. It gives a comprehensive view about the famous 

techniques of Fuzzy and Neural Networks and describes the Proposed 

Scheme of Model-Free Fault Detection Isolation comprising of Limits and 

Plausibility Checks, Fuzzy Logic Based FDI, and Neural Networks Based 

FDI. 

 
 4.1 Introductory Background 
 

Model-based fault diagnosis uses mathematical models derived from 

physical principles and is based on parameter estimation or state estimation 

techniques. Unfortunately, comprehensive and robust models for complex 

processes are difficult or impossible to develop and validate in both normal and 

fault modes. The modeling and fault diagnosis development is usually extremely 

time-consuming, and often the models are limited and can not characterize the 

process with all possible faults. Therefore, the Model-Based approach is generally 

limited to those processes that are well understood or lend themselves to a 

combination of physical/empirical modeling approaches. 

Recently, soft computing methods, integrating quantitative and qualitative 

modeling information, have been developed to improve FD reasoning capabilities. 
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In order to develop accurate and robust process control, model-based modern 

control methods and efficient adaptive and learning techniques are required. The 

adoption of effective fault diagnosis techniques is becoming crucial to ensure 

higher levels of safety and reliability in automated plants and autonomous systems. 

Process control is an efficient means of improving the operation of a process, the 

productivity of the plant, and the quality of the products. In process engineering, 

even a small improvement in the operation of the process can have great economic 

and environmental influences. Control problems in the industry are dominated by 

nonlinear and time-varying behaviour, many sensors that measure all kinds of 

variables and many loops and interaction among the control loops. The extraction 

of (fuzzy) information out of raw data is very important and it can potentially save 

time for industrial applications. Fuzzy control can be based on human experience 

and can mimic actions of human operators. 

During recent years, the developments in these fields have introduced new 

tools for use in control engineering: neuro-fuzzy systems, guided random search 

techniques, predictive control, model reference control, etc. In process engineering, 

these new tools have found applications in non-linear process modeling and 

control, plant optimization, monitoring, scheduling, etc. The application area of 

control engineering methods can be extended also to systems beyond the realm of 

traditional process engineering. Modern techniques for control system design, 

including robust design for stochastic and nonlinear systems as well as intelligent 

control, are expected to lead to an increase in quality and productivity of 

manufacturing processes. The manufacturing and industrial sectors of economy are 

increasingly called to produce higher throughput and better quality while operating 
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their processes at maximum yield. As manufacturing facilities become more 

complex and highly sophisticated, the quality of the production phase has become 

more crucial. The manufacture of such typical products as textiles and fibres, 

aircraft, automobiles, appliances, etc, involves a large number of complex 

processes, most of which are characterized by highly nonlinear dynamics 

comprising a variety of physical phenomena in the temporal and spatial domains. It 

is not surprising, therefore, that these processes are not well understood and their 

operation is “tuned” by experience rather than through the application of scientific 

principles. Machine breakdowns are common, thus limiting the uptime in critical 

situations. Failure conditions are difficult and, in certain cases, almost impossible 

to identify and localize in a timely manner. Scheduled maintenance practices tend 

to reduce machine lifetime and increase downtime, resulting in loss of 

productivity. Recent advances in instrumentation, telecommunications and 

computing are making available to manufacturing companies new sensors and 

sensing strategies, plant-wide networking and information technologies that are 

helping to improve substantially the production cycle. 

In many practical situations, uncertainty in the process can affect the 

performance of the system significantly, no matter how the uncertainty is described 

(vagueness or ambiguity). This realization provides the motivation for a possible 

fuzzy logic approach to FDI. This has the ability to directly describe the potential 

failure modes in the parameters while handling a class of nonlinear systems. 

Various approaches utilizing measurement data (model-free) have been 

proposed for fault diagnosis in process operations. Please refer to section 1.1.2 for 

a detailed literature survey about model-free fault diagnosis approaches. 
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4.2 Proposed Model-Free Scheme for Fault Detection and   
Isolation 

 

        

Figure 4 Proposed Model-Free Scheme for FDI 
 

The model-free approach includes limit checks, plausibility analysis, steady-

state values and settling time of the measurements, estimation of power spectral 

density and coherence function between data from the fault-free case and the 

measured data.  A fault may be detected quickly by analyzing whether a measured 

value has violated its upper or lower limit (limit checks), and if so, whether it is 

meaningful when compared with the other measurements (plausibility), and 

whether its settling time or steady-state value or coherence spectral content is 

different from those arising from the fault-free case.  An onset of a fault may also 

be detected by a change in the profile of the measured value of the sensor signal.   

The fault diagnosis scheme can be carried out using neural network and 

fuzzy techniques or a combination of both. A pictorial view of the model-free 

scheme is shown in the Figure 4. Driven by the coherence spectral data, the neural 

network is used to capture the degree of the mismatch between the dynamics of the 
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possibly fault-bearing system and the fault-free one. As such, the neural network 

provides a quick and accurate model-free fault classification scheme. However, it 

lacks transparency and cannot be used to unravel and point out to the root causes of 

the fault. Such a deficiency is then remedied by the use of a fuzzy logic scheme. 

Unlike the neural network, this scheme is driven by the steady-state value of the 

residual, defined by the difference between the measured and the fault-free sensor 

output, and captures the degree of the mismatch in the steady-state behavior of the 

possibly fault-bearing system and the fault-free one. By the very nature of its inner 

inferential workings necessary for the information extraction through the 

processing of intricate rules, the fuzzy logic scheme is slower but more transparent 

than the neural network, and provides not only a confirmation of any fault 

classification arrived at by the neural network but also a backtracking process 

aided by the fuzzy rules, leading to the root causes of the fault. The fuzzy if-and-

then rules are derived and used by a process closely resembling the use of the 

residuals produced by a bank of static Kalman filters for fault classification. The 

synergistic value of this combination will no doubt provide a powerful fault 

diagnosis scheme.   

The model-free approach is geared neither for the estimation of the fault 

magnitude nor for the diagnosis of incipient faults. The model-based approach is 

then used to provide these two important features that will complete the overall 

diagnostic picture of the fault. 

4.2.1 Fuzzy Logic-Based FDI  
 

Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory to 

deal with reasoning that is approximate rather than precise. In binary sets with 
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binary logic, in contrast to fuzzy logic named also crisp logic, the variables may 

have a membership value of only 0 or 1. In fuzzy set theory with fuzzy logic, the 

set membership values can range (inclusively) between 0 and 1. Similarly, in fuzzy 

logic the degree of truth of a statement can range between 0 and 1 and is not 

constrained to the two truth values {true (1), false (0)} as in classic predicate logic. 

And when linguistic variables are used, these degrees may be managed by specific 

functions.  

The fuzzy diagnostic system takes features as inputs, and then it outputs any 

indications that a failure mode may have occurred in the plant. The fuzzy logic 

system structure is composed of four blocks: fuzzification, the fuzzy inference 

engine, the fuzzy rule base, and defuzzification, as shown in the Figure 5. 

 

Figure 5 Fuzzy Logic Diagnostic System 

The fuzzification block converts features to degrees of membership in a 

linguistic label set such as low, high, etc. The fuzzy rule base is constructed from 

symptoms that indicate a potential failure mode. 

An example of Fuzzy Reasoning: Fuzzy Set Theory defines Fuzzy 

Operators on Fuzzy Sets. The problem in applying this is that the appropriate 
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Fuzzy Operator may not be known. For this reason, Fuzzy logic usually uses IF-

THEN rules, or constructs that are equivalent, such as fuzzy associative matrices. 

Rules are usually expressed in the form: 

IF variable IS property THEN action 

For example, an extremely simple temperature regulator that uses a fan might 

look like this:  

IF temperature IS very cold THEN stop fan 

IF temperature IS cold THEN turn down fan 

IF temperature IS normal THEN maintain level 

IF temperature IS hot THEN speed up fan. 

Notice there is no "ELSE". All of the rules are evaluated, because the 

temperature might be "cold" and "normal" at the same time to different degrees 

[165]. 

 4.2.2 Fuzzy Logic (FL) Fault Classifier  
 

In this work, the system whose fault is to be diagnosed is expressed in the 

form of a sensor network shown in the Fig. 6. Consider a cascade-feedback 

combination of N systems, iG  with sensor outputs, iy  as shown in the figure. Let 

sensor gains and bias be sik  and iv  respectively.  

The fuzzy fault diagnosis scheme uses the steady-state values of the sensor 

outputs iy  and the input u which are denoted by ss
iy and ssu  respectively. A change 

in the gain sik or in the steady-state gain of the transfer function iG , denoted by ig , is 

indicative of a fault in the i-th sensor and i-th subsystem respectively. In the case 
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of sensors, the presence or absence of a fault is defined below (using a fuzzy-like 

definition of 1sik =  for a no-fault case and 1sik ≤  for a faulty case): 

1
1

si th

si th

k no fault
k a fault

σ
σ

⎧ − ≤⎪
⎨ − >⎪⎩

 
 

(1) 

 

where thσ is some pre-specified threshold value. Similarly, in the case of 

subsystems, fault-free and faulty cases are defined as follows: 

0

0

i i th

i i th

g g no fault

g g a fault

σ

σ

⎧ − ≤⎪
⎨

− >⎪⎩
 

 

(2) 

 

where 0
ig is the fault-free steady-state gain of the subsystem iG  . 

 

Figure 6 Sensor Network 
 
An expression for the steady-state p-th sensor output, ss

py , in terms of the steady-

state input ssu is: 

0

p
ss ss
p i sp

i

y g k u
=

=∏  (3) 



 43

The expression of the fault-free sensor output is given by: 

0 0
0

ss ss
p py g u=  (4) 

  

where 0 0
0

0

p

p i
i

g g
=

=∏  is the fault-free steady-state equivalent gain for the p cascaded 

subsystems from 0G  to pG  since the sensor gains are all unity for a fault-free case. 

Assuming that the noise term pv  is subsumed in the fuzzy membership function the 

deviation in the in steady-state output is: 

0
0

0

p
ss ss
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=

⎛ ⎞
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⎝ ⎠
∏  
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Let us now define two fuzzy sets, namely Z (zero) and NZ (non-zero). For 

simplicity, we will consider the case of a single fault, i.e. when only one device can 

be faulty at any given time. In this case, the fuzzy rules may take the following 

form: 

Rule 1: If ss
iy NZ∆ ∈ , then there is a fault in the subsystem iG or the sensor sik . 

Rule II: If ss
iy Z∆ ∈ , then there is no fault in the subsystem iG or in the sensor sik . 

Rule III: If  ss
iy Z∆ ∈  and 1

ss
iy NZ+∆ ∈  then there is a fault in the subsystem 1iG + or the 

sensor ( )1s ik + . 

Rule IV: If  ss
iy NZ∆ ∈  and 1

ss
iy Z+∆ ∈  then there is a fault in the sensor sik . 

Proposition 1:   

If there are (N+1) subsystems, 0,1, 2,...iG i N= , in a sensor network, then a 

single fault occurring in any one of the (N+1) subsystems at any one time can be 

detected and isolated. 
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If multiple faults occurring simultaneously in the sensors, that is 

[ ]1 2,sik i i i∈  are faulty where 1i and 2 1i i≥  are integers, then all the multiple 

sensor faults can be detected and isolated if the sensor following the last faulty 

sensor namely ( )2 1s ik +  is not faulty. 

None of the subsystems are faulty. 

Proof: Define binary variables iα  and iβ  to indicate a fault in a subsystem and a 

sensor respectively according to the following definitions: 

0
1

ss
i

i ss
i

if y Z
if y NZ

α
⎧ ∆ ∈

= ⎨
∆ ∈⎩

 
 

(6) 
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Consider a cascade connection of (p+1) subsystems formed of , 0,1, 2,..iG i p=  

with the corresponding gains ig . Then the steady-state output ss
py  of the last 

subsystem pG is given by: 

0

p
ss ss
p i sp

i

y g k u
=

=∏  
 

(8) 

 

In view of the assumptions that (a) only a single fault can occur at the sensor 

output, and (b) ss
py is a cascade connection of 0ig such that i p≤ ≤ , a fault in a 

subsystem pG will affect the p-th sensor output  ss
py  but also all subsequent  sensor 

outputs 1, 2,...ss
jy such that j p p N= + + . That is, if there is a fault in pG then the 
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change in the steady-state value of the sensor output ss
iy∆  will belong to either the 

fuzzy set Z or the fuzzy set NZ as given below:    

ss
i

Z i p
y

NZ p i N
<⎧

∆ ∈ ⎨ ≤ ≤⎩
 

 

(9) 

 

In this case, the subsystem binary fault indicator iα  becomes: 

1
0i

i p
or X i p

α
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(10) 

 

However, as the sensors, unlike the subsystems, are not connected in cascade, the 

sensor binary fault indicator iβ  becomes: 

1
i

i p
X i p

β
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(11) 

 

where  X is a don’t care value (0 or 1).  

Let us express the results of our analysis of the sensor outputs in a tabular 

form as shown below in Table 1 . The columns of Table 1 give the binary values of 

iα and iβ  while the rows indicate the status of the fault. For example, when i-th 

sensor output ss
iy  is analyzed, and if ss

iy NZ∆ ∈ , then a 1 will be entered in the   i-

th row and in the two columns corresponding to iα and iβ . The rest of the elements 

of the i-th row will take on the (don’t care) binary value X, as we cannot decide on 

their fault status.  For a clearer display of the structure of Table 1, we will restrict 

the number of subsystems to N=5 . We will consider first a subsystem fault and 
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then a fault in a sensor. The table will have (N+1) =6 rows and 2(N+1)=12 

columns. 

Case 1: A single fault in a subsystem 2G . Table 1 below gives the status of 

both the subsystems’ and sensors’ faults: 

The columnwise intersection of the (N+1) elements of the above binary matrix 

amounts to a columnwise logical ANDing of their binary values. This yields the 

following vector d: 

       d  =   [   0         0          1          1           1          1          0            0           1             

1         1       1    ] 

From an analysis of the first half of the vector d, it can be deduced that there 

is a fault in 2G or 3G  or 4G or 5G or 2sk or 3pk  or 4sk  or 5sk . Exploiting (1) the fact 

that, because of the cascade connection of the subsystems in the sensor network, a 

single fault occurring in any particular subsystem pG will always propagate from 

this subsystem onwards and (2) the assumption that only one fault can occur at any 

given time instant,  we can then reach the irrevocable conclusion that 2G is the only 

faulty subsystem in the entire sensor network.  

Table 1 Subsystem and sensor fault indicators when a subsystem 2G is faulty 
 
 status of a  fault in the subsystem status of a  fault in the sensor 

 0α 1α  2α  3α 4α 5α 0β 1β 2β 3β  4β  5β

0
ssy Z∆ ∈  0 X X X X X 0 X X X X X 

1
ssy Z∆ ∈  X 0 X X X X X 0 X X X X 

2
ssy NZ∆ ∈  X X 1 X X X X X 1 X X X 

3
ssy NZ∆ ∈  X X X 1 X X X X X 1 X X 
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4
ssy NZ∆ ∈  X X X X 1 X X X X X 1 X 

5
ssy N∆ ∈  X X X X X 1 X X X X X 1 

 

Table 2 Subsystem and sensor fault indicators when sensors 2sk , 3sk  and 4sk  are faulty. 
 
 status of a  fault in the subsystem status of a  fault in the sensor 

 0α 1α  2α  3α 4α 5α 0β 1β 2β 3β  4β  5β

0
ssy Z∆ ∈  0 X X X X X 0 X X X X X 

1
ssy Z∆ ∈  X 0 X X X X X 0 X X X X 

2
ssy NZ∆ ∈  X X 1 X X X X X 1 X X A 

3
ssy NZ∆ ∈  X X X 1 X X X X X 1 X X 

4
ssy NZ∆ ∈  X X X X 1 X X X X X 1 X 

5
ssy N∆ ∈  X X X X X 1 X X X X X 0 

 

Case 2: Multiple faults in sensors: 2sk , 3sk  and 4sk  are faulty. Table 2 gives the 

status of faults: 

The column-wise intersection of the (N+1) elements of the above binary matrix 

amounts to a columnwise logical ANDing of their binary values. This yields the 

following vector d: 

       d  =   [   0         0          1          1           1          1            0           0           1           

1          1          0 ] 

From an analysis of the first half of the vector d, it can be deduced that there is a 

fault in 2G or 3G  or 4G or 5G or 2sk or 3pk  or 4sk  or 5sk . Exploiting (1) the fact that, 

because of the cascade connection of the subsystems in the sensor network, a 
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single fault occurring in any particular subsystem pG will always propagate from 

this subsystem onwards and (2) the assumption that only one fault can occur at any 

given time instant, we can then reach the irrevocable conclusion that the sensors 

2sk , 3sk  and 4sk  are faulty in the entire sensor network. For detection of multiple 

faults in sensors, the last sensor 5sk cannot be faulty.  

4.2.3 Neural Network Based FDI 
 

Artificial neural networks are made up of interconnecting artificial neurons 

(programming constructs that mimic the properties of biological neurons). 

Artificial neural networks may be used either to gain an understanding of 

biological neural networks, or for solving artificial intelligence problems without 

necessarily creating a model of a real biological system. The real biological 

nervous system is highly complex and includes some features that may seem 

superfluous based on an understanding of artificial networks. A simple neuron is 

shown in the figure (See Fig. 6) [165]. 

 

Figure 7 Simple Neural Network 
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An artificial neuron model is inspired from our understanding of biological 

nervous systems in its simplest form.  

0
1

n

i i
i

x f w u b
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑      (12) 

where { }iw  are the synaptic weights, 0b  is the bias or a firing threshold, and 

x is the output of the neuron, and (.)f is an activation function. The function (.)f  

is some nonlinear such as threshold, Gaussian, sigmoid, or other. An artificial 

neuron model is completely described by the weights, the bias, and the nonlinear 

function [165]. 

An artificial neural network is an interconnection of a number of artificial 

neurons. A biological neuron is viewed as an elementary unit for information 

processing. 

For convenience of representation, the bias term is included in as one of the 

weights with a unit input.  
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Figure 8 Artificial neuron model with the bias terms  
replaced by an Input and a Synaptic Weight 
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Generically, the multilayer feedforward ANN is restricted with the following 

structure: 

• Input layer 

• One hidden layer 

• Output layer 

The neurons forming the hidden layer have nonlinear activation functions, whereas 

the neurons forming the output layer has linear activation function, (.) 1f =  [165]. 
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Figure 9 Neuron forming the hidden layer has a nonlinear activation function 
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Figure 10 Neuron forming the output layer has a linear activation function (.) 1=f  
 
A typical multilayer feedforward ANN has one input, one hidden and one output 

layer. A detailed picture of the multilayer feedforward ANN is shown below:   
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Figure 11 Neural Network with its input, hidden and output layers 
 

The weights of the ANN are determined by presenting the ANN with a number of 

known input-output pairs as training set,  

{ }, , 1, 2,...,q qT u d q N= =  

1 2 3 i

Tq q q q q
nu u u u u⎡ ⎤= ⎣ ⎦K  

1 2 3 l

Tq q q q q
nx x x x x⎡ ⎤= ⎣ ⎦K  

1 2 3 o

Tq q q q q
ny y y y y⎡ ⎤= ⎣ ⎦K  

1 2 3 o

Tq q q q q
nd d d d d⎡ ⎤= ⎣ ⎦K  

where qu , qx , qy and qd are respectively the input, hidden layer output, the 

output of the ANN and the desired output of the ANN. The number of neurons in 

the input, hidden and the output layers are respectively in  , ln and on . The weights 

{ }1 1
ijw w= are associated with the in  input nodes and nl hidden layer nodes and the 

weights { }2 2
ijw w=  are associated with nl hidden layer nodes, and the no output 

nodes [165]. 
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Mathematical model 

Let us relate the hidden layer states x and the input u in terms of the weights, 

{ }1 1
ijw w=  

1

0
, 1, 2,..,

ni

i ij j
j

x f w u i nl
=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑  

Expressing in matrix form we get 

( )1x f W u=  

where 1W is a (nl x ni)  matrix formed of the weights { }1 1
ijw w= and f(.) is 

activation function. 

Let us relate the output y to the hidden layer states x in terms of the weights, 

{ }2 2
ijw w=  

( ) 2

1

, 1, 2,...
nl

i i i i ij j
j

y f z z w x i no
=

= = =∑  

Expressing in matrix form we get 

2y W x=  

where 2W is a (nm x nl) matrix formed of the weights { }2 2
ijw w= and f(.) is 

activation function [165]. 

Artificial Neural Networks (ANNs) have been intensively studied during the 

last two decades and successfully applied to dynamic system modelling and fault 

diagnosis [3][4][5][6][7][8][9]. Neural networks stand for an interesting and 

valuable alternative to the classical methods, because they can deal with very 

complex situations which are not sufficiently defined for deterministic algorithms. 

They are especially useful when there is no mathematical model of a process being 
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considered. In such situations, the classical approaches, such as observers or 

parameter estimation methods, cannot be applied. Neural networks provide 

excellent mathematical tools for dealing with nonlinear problems [10][11][12]. 

They have an important property whereby any nonlinear function can be 

approximated with an arbitrary accuracy using a neural network with a suitable 

architecture and weight parameters. For continuous mappings, one hidden layer 

based ANN is sufficient, but in other cases two hidden layers should be 

implemented. ANNs are parallel data-processing tools capable of learning 

functional dependencies of the data. This feature is extremely useful for solving 

various pattern recognition problems. Another attractive property is the self-

learning ability. A neural network can extract the system features from historical 

training data by using a learning algorithm, requiring little or no a priori 

knowledge about the process. This makes ANNs nonlinear modelling tools of a 

great flexibility. Neural networks are also robust with respect to incorrect or 

missing data. Protective relaying based on ANNs is not affected by a change in the 

system operating conditions. Neural networks also have high computation rates, 

substantial input error tolerance, and adaptive capability. These features allow 

neural networks to be applied effectively to the modeling and identification of 

complex nonlinear dynamic processes and fault diagnosis [13] [14]. 
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4.2.4 Artificial Neural Network (ANN) Fault Classifier   
 

 A fault in the sensor sik   and/or in a subsystem iG  can also be diagnosed by 

using a ANN. The inputs to the ANN are the spectrum of the coherence between 

the fault-free and measured sensor outputs. 

( )( ) ( ) ( ) 20 *
0

2 20
, ( )

( ) ( )

i i
i i

i i

y j y j
c y j y j

y j y j

ω ω
ω ω

ω ω
=  

 

(13) 

 

where ω  is the frequency in rad/sec, and ( )( )0 ( )ic y j y jω ω  is the coherence spectrum 

and the output of the ANN will  the fault type, i.e. either a fault in a subsystem or 

in a sensor.  

If there is no fault at all, then ( )( )0 ( ) 1ic y j y jω ω =  for all frequencies. If the 

measured and fault-free outputs are incoherent with each other at some 

frequencies, then the coherence spectrum will be less than 1 at those frequencies. 

Unlike the case of a FL classifier, the dynamic characteristics of the sensor outputs 

are employed in the fault diagnosis. Hence it can detect and classify a fault when 

the dynamic behavior deviates from that of a fault-free case.  
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Chapter 5 

Proposed Fault Diagnosis (FDI) Scheme                     
using Model-Based Analysis 

Overview 

This chapter introduces the proposed fault detection scheme using the 

model-Based analysis. This approach consists essentially of the following three 

components: model order selection to pick out the most appropriate model from a 

class of candidate models, Kalman filtering for fault detection, and fault isolation 

using diagnostic model. 

 

Model-based fault diagnosis means to perform fault diagnosis by using 

models. An important question is how to use the models to construct a diagnosis 

system. To develop a theory for this is important as it is one of the main 

components in the Sequential Integration Approach. 

In this chapter, the objective detection and diagnosis of certain faults is 

tackled by using the model-based approach. A fault can be defined as an 

unexpected deviation of at least one characteristic property or parameters of the 

system from the acceptable, usual or standard condition. Three types of faults can 

be encountered in a system given by the three parts in which a system can be split.  

 Actuator Faults, which can be viewed as malfunction of the equipment 

that actuates the system, e.g. a malfunction in a solenoid valve.  

 System Dynamics Faults/Leakage Faults (or Component Faults), which 

occur when some changes in the system make the dynamic relation 

invalid, e.g. leak in a tank in a two-tank system.  

 Sensor Faults, which can be viewed as serious measurements variations.  
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This chapter starts, in Section 5.1, by giving an introductory background and 

a general motivation to the field of fault diagnosis. In Section 5.2, some 

fundamental definitions are reviewed. Then Section 5.3 contains an overview to 

some present approaches to fault diagnosis. Finally, Section 5.4 summarizes the 

thesis and explains the main contributions. 

5.1 Introductory Background 
 

From a general perspective, including for example process control, medical 

and technical applications, fault diagnosis can be explained as follows. For a 

process there are observed variables or behavior, for which there is knowledge of 

what is expected or normal. The task of fault diagnosis is to use the observations 

and the knowledge in order to generate a diagnosis statement, i.e. to decide 

whether there is a fault or not and also to identify the fault. Thus the basic 

problems in the area of fault diagnosis are: the procedure for generating the 

diagnosis statement, the parameters or behavior that are relevant to study, and the 

way to derive and represent the knowledge of what is expected or normal. 

This thesis focuses on diagnosis of technical systems, and typical faults 

considered are for example leakage faults, sensor faults and actuator faults. The 

observations are mainly flow signal, height signal and output signal obtained from 

the sensors, but can also be observations made by a human, such as level of noise 

and vibrations. The knowledge of what is expected or normal is derived from 

commanded inputs together with models of the system. The term model based fault 

diagnosis refers to the fact that the knowledge of what is expected or normal is 

represented in an explicit model of the system. 
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Model based diagnosis of technical systems has gained much industrial 

interest lately. The reason is that it has possibilities to improve for example safety, 

environment protection, machine protection, availability, and repairability. 

Some important applications that have been discussed in the literature are: 

 Nearly all subsystems of aircrafts, e.g. aircraft control system, navigation 

system, and engines. 

 Emission control systems in automotive vehicles. 

 Nuclear power plants. 

 Chemical plants 

 Gas turbines 

 Industrial robots 

 Electrical motors 

Manual diagnosis of technical systems has been performed as long as 

technical systems have existed, but automatic diagnosis started to appear first when 

computers became available. In the beginning of the 70's, the first research reports 

on model based diagnosis were published. Some of the earliest investigations were 

on chemical plants and aerospace applications. The research on model based 

diagnosis has since then been intensified during both the 80s and the 90s. Today, 

this is still an expansive research area with many unsolved questions. Some 

references to books in the area are Patton, Frank and Clark, 1989; Basseville and 

Nikiforov, 1993; Gertler, 1998; Chen and Patton, 1999. 

Up to now, numerous methods for doing diagnosis have been published, but 

many approaches are more ad hoc than systematic. It is fair to say that few general 

theories exist, and a complete understanding of the relations between different 

methods has been missing. This is reflected in the fact that few books exist and that 
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no general terminology has yet been widely accepted. However, the importance of 

diagnosis is unquestioned. This can be exemplified by the computerized 

management systems for automotive engines. For these systems, as much as 50% 

of the software is dedicated to diagnosis, and the other 50% is for other purposes 

such as control. 

5.1.1 Traditional vs. Model Based Diagnosis 
 

Traditionally diagnosis has been performed mainly by limit checking. For 

example, when a sensor signal level leaves its normal range, an alarm is generated. 

The normal range is predefined by using thresholds. This normal range can be 

dependent on the operating conditions. For example, in an aircraft, the thresholds 

for different operating points, defined by altitude and speed, can be stored in a 

table. This use of thresholds as functions of some other variables can actually be 

viewed as a kind of model based diagnosis. 

Another traditional approach is duplication (or triplication or more) of 

hardware. This is usually called hardware redundancy and the typical example is 

to use redundant sensors. At least three problems are associated with the use of 

hardware redundancy: hardware is expensive, it requires space, and adds weight to 

the system. In addition, extra components increase the complexity of the system 

which in turn may introduce extra diagnostic requirements. 

5.1.2 Model-Based Fault Diagnosis 
 

Increased usage of explicit models in fault diagnosis has a large potential to 

have the following advantages: 

 Higher diagnosis performance can be obtained, for example smaller and 
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also more varied faults can be detected, and the detection time is shorter. 

 Diagnosis can be performed over a larger operating range. 

 Diagnosis can be performed passively without disturbing the operation of 

the process. 

 Increased possibilities to perform isolation. 

 Disturbances can be compensated for, which implies that high diagnosis 

performance can be obtained in spite of the presence of disturbances. 

 Reliance on hardware redundancy can be reduced, which means that cost 

and weight can be reduced. 

The model can be of any type, from logic based models to differential 

equations. Depending on the type of model, different approaches to model based 

diagnosis can be used, for example statistical approaches, AI-based approaches, or 

approaches within the framework of control theory. It is sometimes believed that 

model based diagnosis is very complex. This is not true since, for example, 

traditional limit checking is also a kind of model based diagnosis. 

The disadvantage of model based diagnosis is quite naturally the need for a 

reliable model and possibly a more complex design procedure. In the actual design 

of a model based diagnosis system, it is likely that the major part of the work is 

spent on building the model. This model can however be reused, e.g. in control 

design. Someone may argue that a disadvantage of increasing the usage of models 

is that more computing power is needed to perform the diagnosis. 

However, this conclusion is not fair. Actually, for the same level of 

performance it can be the case that an increasingly used model is less 

computationally intensive than the traditional approach. 
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The accuracy of the model is usually the major limiting factor of the 

performance of a model based diagnosis system. Compared to the area of model 

based control, the quality of the model is much more important in diagnosis. 

The reason for is that the feedback, used in closed-loop control, tends to be 

forgiving against model errors. Diagnosis should be compared to open-loop control 

since no feedback is involved. All model errors propagate through the diagnosis 

system and degrade the diagnosis performance. 

 

 
 

Figure 12 Spark Ignited Combustion Engine 
 

Following is an example of a successful industrial application of model-

based diagnosis. 

 
Example: 
 

Consider Figure 12, containing an illustration to the principles of a spark-

ignited combustion engine. The air enters at the left side, passes the throttle and the 

manifold, and finally enters the cylinders. The engine in the figure has three 

sensors measuring the physical variables air mass-flow, manifold pressure, and 

engine speed. 
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The air flow 
.

m  into the cylinders can be modeled as a function of manifold 

pressure p and engine speed n, i.e. 
.

m = g(p , n). The physics behind the function 

g is involved and it is therefore usually modeled by a black-box model. In engine 

management systems, one common solution is to represent the function g as a 

lookup-table. By using this lookup-table, an estimation of the air mass-flow can be 

obtained. When the measured air mass-flow significantly differs from the 

estimation, it can be concluded that a fault must be present somewhere in the 

engine. The fault can, for example, be that one of the three sensors is faulty or that 

a leakage has occurred somewhere between the air mass-flow sensor and the 

cylinder. This is an example of model based diagnosis that is commonly used in 

the production of cars today. 

5.2 Main theme behind Model-Based Technique 
 

In model-based diagnosis (de Kleer and Williams, 1987), a library of models 

can be used to perform the diagnosis of a system (Struss, 2007). The core objective 

of the model-based diagnosis is to find candidate diagnoses that explain 

observations (de Kleer, 2006). In system identification the aim is to find the state 

of the system (whether there is a fault or not), but the model-based diagnosis 

objective is to diagnose the system, i.e. find the problem (Balakrishnan and 

Honavar, 1998). However, diagnosis goes beyond the task of finding the problem. 

As written in Struss (2007), "Diagnosis is only relevant if it supports a decision 

[...] ". Thus, the final aim of diagnosis is not only to identify the problem, but also 

to find a possible remedy. Examples of remedy are replacement of components, 

reconfiguration, etc. Examples of applications of model-based diagnosis are 
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automotive industry (Struss and Price, 2004), autonomous mobile robots 

(Steinbauer and Wotawa, 2005) and software debugging (Kob and Wotawa, 2004). 

A possible way to perform fault diagnosis is through parameter estimation 

(Isermann, 1993). Using static and dynamic process models as well as 

measurements, relationships and redundancies are used to detect faults.  

System identification is a complex process and can, for example, be 

supported by qualitative reasoning-based approaches (Trave-Massuyes et al., 

2003). However, in the latter, a single model is iteratively updated. The paper by 

Addanki et al. (1991) introduces the concept of graphs of models. However, in 

their work, models are generated manually and they work with only one model at a 

time. Traditionally, system identification is treated as an optimization problem in 

which the difference between model predictions and measurements is minimized. 

Values of model parameters for which model responses best match measured data 

are determined by this approach1. This approach is not reliable because different 

types of modeling and measurement errors are present (Banan et al., 1994; Sanayei 

et al., 1997; Catbas et al., 2007). Moreover, they can compensate each other such 

that the global minimum indicates models that are far away from predictions of the 

model representing the correct state of the system (Robert-Nicoud et al., 2005c). 

           1 Approach: In conventional system identification, a suitable model is identified by matching 
measurement data with model predictions. Model calibration involves minimization of the 
difference between predictions and measurement data through identification of good values of 
model parameters. This strategy is based on the assumption that the model that best fits the 
observations is the most reliable model. This assumption is flawed; there are several factors that 
could cause the best fit to be the wrong model. Errors influence the reliability of system 
identification. Various types of errors may compensate each other such that bad model predictions 
match measured values. The following definitions are used in this description: measurement error (e 

meas) is the difference between real and measured quantities in a single measurement. Modeling 
error (emod) is the difference between the prediction of a given model and that of the model that 
accurately represents the real behavior. Modeling errors have three principal sources e1, e2 and e3 
(Raphael and Smith, 2003b). Source e1 is the error due to the discrepancy between the behavior of 
the mathematical model and that of the real structure. Source e2 is introduced during the numerical 
computation of the solution of the partial differential equations representing the mathematical 
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model. Source e3 is the error due to the assumptions that are made during the simulation of the 
numerical model. Typical assumptions are related to the choice of boundary conditions and model 
parameters such as material properties, for example E and I. All these errors as well as the 
abductive aspect of the system identification task justify the use of a multiple model approach since 
many models may have equal validity under these conditions. 

 
Therefore, instead of optimizing one model, a set of candidate models is 

identified, such that their prediction errors lie below a certain threshold value. A 

model is defined in Robert-Nicoud et al. (2005c) as a distinct set of values for a set 

of parameters. The threshold is computed using an estimate of the upper bound of 

errors due to modeling assumptions (e mod) as well as measurements (e meas). The 

set of candidate models is iteratively filtered using subsequent measurements for 

system identification. This approach could generate either a unique model for the 

structure or a set of models which are equally capable of representing the structure. 

This depends on parameters chosen for the identification problem and errors. 

Modeling assumptions define the parameters for the identification problem. The set 

of model parameters may consist of quantities such as elastic modulus, connection 

stiffness and moment of inertia. Each set of values for the model parameters 

corresponds to a model of the structure. An objective function is used to evaluate 

the quality of candidate models. An exemplary objective function E is defined as 

follows: 

2
i i

if
E with (m )

0 if
ε ε τ

ε γ
ε τ
>⎧ ⎫

= = Σ −⎨ ⎬≤⎩ ⎭
 

where ε  is the error which is calculated as the difference between predictions iγ  

and measurements mi. The threshold value τ  is evaluated from measurement and 

modeling errors in the identification process. The set of models that have E = 0 

form the set of candidate models for the structure. An important aspect of the 

methodology is the use of a stochastic global search and optimization algorithm for 



 64

the selection of a population of candidate models whose predictions are close to 

measurements (Robert-Nicoud et al., 2000). Mathematical optimization techniques 

that make use of derivatives and sensitivity equations are not used because search 

is performed among sets of model classes that contain varying numbers of 

parameters and multiple local minima have been observed in the search space. 

5.3 Present Approaches to Model-Based Fault Diagnosis 
 

This section is included for two reasons. The first is to point out some 

problems with present approaches to fault diagnosis. The second is to give 

newcomers to the field of fault diagnosis a short background to some of the 

approaches present in literature. 

By reading recent books (Gertler, 1998; Chen and Patton, 1999) about fault 

diagnosis of technical processes, or survey papers (Patton, 1994; Gertler, 1991; 

Frank, 1993; Isermann, 1993), one can come to the conclusion that the two most 

common systematic approaches to fault diagnosis are either residual view or 

parameter estimation. Below these two approaches are presented shortly. 
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Figure 13 Diagnosis system based on the "residual view" 

5.3.1 The "Residual View"  
 

With this approach, faults are modeled by signals f(t). Central is the residual 

r(t) which is a scalar or vector signal that is 0 or small in the fault free case, i.e. 

f(t)=0, and is ≠  0 when a fault occurs, i.e. f(t) ≠ 0. The diagnosis system is then 

separated into two parts: residual generation and residual evaluation. 

This view of how to design a diagnosis system is well established among 

fault diagnosis researchers. This is emphasized by the following quotation from the 

most recent book in the field (Chen and Patton, 1999): 

"Chow and Willsky (1984) first defined the model-based FDI as a 

two-stage process: (1) residual generation, (2) decision making (including 

residual evaluation). This two-stage  process is accepted as 

a standard procedure for model-based FDI nowadays." 

A large part of all fault-diagnosis research has been to find methods to design 
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residual generators. Of this large part, most results are concerned with linear 

systems. 

A limitation with this approach to fault diagnosis is that faults are modeled as 

signals. This is very general and might therefore seem to be a good solution. 

However, the generality of this fault model is actually its drawback. Many faults 

can be modeled by less general models, and we will see in this thesis that to 

facilitate isolation this is necessary in many situations [164]. 

5.3.2 Parameter Estimation 
 

The other main approach to model-based fault-diagnosis is to model faults as 

deviations in constant parameters. To illustrate the concept, consider a system with 

a model ( )θΜ , where θ  is a parameter having the nominal (i.e. fault-free) value 0θ . 

By using general parameter estimation techniques, an estimate 
^
θ  can be formed 

and then compared to 0θ . If 
^
θ  deviates too much from 0θ , then the conclusion is 

that a fault has occurred [164]. 

The most severe limitation with this approach is its quite restricted way of 

modeling faults. To model many realistic faults, more general fault models must be 

used. 

Another limitation is that when the number of diagnosed faults grows, the 

parameter vector θ  grows in dimension. This is a serious problem because the 

computations needed to calculate 
^
θ  can become quite difficult [164]. 

 
 
 



 67

5.4 Proposed Model-Based Approach Scheme 
 

Most physical systems are structurally complex and nonlinear with their 

modeling, analysis and design requiring sophisticated tools which may be neither 

available nor possible because of the mathematical intractability involved in their 

study. This in effect is what gives the prime motivation for the use of the model-

free approach based on neural networks or fuzzy logic. However, the fact that a 

large number of these complex and nonlinear systems can be linearized around 

some operating points gives us access to a vast and rich repository of linear 

analysis and design tools for these systems, while preserving most of their 

dynamical features of interest. This is the key reason why the study of the model-

based approach to fault diagnosis and isolation is undertaken here.  This approach 

consists essentially of the following three components: model order selection to 

pick out the most appropriate model from a class of candidate models, Kalman 

filtering for fault detection, and fault isolation using diagnostic model. These are 

described next.  

5.4.1 Model-Order Selection Criteria 

5.4.1.1 Introduction 
 

Science is the systematic study of the universe—through observation and 

experiment—in the pursuit of knowledge that allows us to generalize. Although 

considered bad form in the current climate of political correctness (Lind 1998, 

2004; Ellis 2004; Browne 2006; Sewell 2007b), the ability to generalize is a 

distilled version of what science is all about. Given some data, there will always be 

an infinite number of models or hypotheses that fit the data equally well and 
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without making further assumptions there is no reason to prefer one model or 

hypothesis over another. Therefore, one is forced to make assumptions that provide 

an inductive bias. 

Model selection is the task of choosing a model with the correct inductive 

bias, which in practice means selecting parameters in an attempt to create a model 

of optimal complexity for the given (finite) data. For a good book on model 

selection, see Burnham and Anderson (2002). Many methods of model selection 

employ some form of parsimony: that is, if they fit the data equally well, they 

prefer a simpler model (see Zellner, Keuzenkamp and McAleer (2001)). For 

example, Occam’s razor advises us that, when competing theories have equal 

predictive power, one should choose the theory that introduces the fewest 

assumptions. For more details on Occam’s razor, see Hoffmann, Minkin and 

Carpenter (1997) and the references therein. Bayesians use probability to choose 

among hypotheses, (hypothesis|data, background information) (Howson and 

Urbach 1989). Popperians choose among hypotheses that are equally consistent 

with the observations by preferring those which are more falsifiable (Popper 1934, 

1959). Likelihoodists understand the plausibility of a hypothesis in terms of 

evidential support and they consider (data|hypothesis) (Edwards 1992). Minimum 

description length (MDL) (Rissanen 1978) is a technique from algorithmic 

information theory which dictates that the best hypothesis for a given set of data is 

the one that leads to the largest compression of the data. One seeks to minimize the 

sum of the length, in bits, of an effective description of the model and the length, in 

bits, of an effective description of the data when encoded with the help of the 

model. Classical Neyman–Pearson hypothesis testing considers (data|null 
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hypothesis) but this method is flawed (see Atkins and Jarrett (1979); Minka 

(1998); Gabor (2004); Sewell (2008b)). The Akaike information criterion (AIC) 

(Akaike 1973) proposes that one should trade off the complexity of the model with 

its goodness of fit to the sample data. The model with the lowest AIC should be 

preferred. AIC = −2 log L + 2k, where log L is the maximum log-likelihood and k 

is the number of parameters. 

5.4.1.2 New Model-Order Selection Criteria 
 

In recent years there has been a strong emphasis on model evaluation criteria. 

This is recognized as one of the important area in model identification [13, 14]. It 

consists of choosing a criterion and using it to select the best approximating model 

among a class of competing models for a given data set.  

Criteria based on statistical decision theory require an a priori knowledge of 

the probability distribution function (PDF) of the residuals. In practical systems, it 

may not be possible to estimate this PDF and hence a Gaussian PDF is generally 

assumed [13].  In many cases, the application of these criteria, assuming a 

Gaussian PDF, may not always give the correct model order as the estimated 

model may still contain some artifacts such as noise nonlinearities, sampling rate 

selection and pole-zero cancellation effects.   

In [12], a two-stage identification scheme is proposed. First a high-order 

model is employed to capture both the system dynamics and any artifacts (from 

noise or other sources). Then in the second stage, these artifacts are removed by 

using a frequency-weighted estimation scheme. A different two-stage approach is 

proposed herein. It quickly verifies the presence of any artifacts directly from the 

estimated model. In the first stage, a conventional model structure selection 
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criterion such as AIC, BIC or MDL is employed to select an initial model order. In 

the second stage, the presence of any artifacts in the selected model order is then 

quickly verified. If any artifacts are present in the estimated model order, the 

selected order is then discarded and a lower order chosen instead. The extraneous 

poles may arise due to a number of causes including an improper selection of the 

sampling rate, the presence of colored noise, pole-zero cancellation when the 

selected order is large, and oscillations due to nonlinearity in the physical system, 

e.g. hysteresis in the valve [15]. 

The models of most physical systems are continuous while the identified 

ones are discrete. We shall now derive a necessary and sufficient condition which 

guarantees that the discrete poles belong to the right half of the z-plane. 

Proposition 2:  Given that the process to be identified is of a lowpass nature, 

then the poles of its discrete-time equivalent will lie in the right half of the z-plane 

( Z + ) if and only if  the sampling frequency is more than twice the Nyquist rate. 

Proof: The poles of the discrete-time model (i.e. λd ) are related to those of 

the continuous-time model (i.e. λc ) by : 

c sT
d e λλ =  (14) 

 

where 1/s sT f=  is the sampling period and sf is the corresponding sampling 

frequency. Given that: 

2c c c c cj where fλ α ω ω π= + = (15) 

 

where cf is the frequency of oscillation,  we now get: 
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( ) ( )cos 2 / sin 2 /c s c sT T
d c s c sf f e j f f eα αλ π π= + (16) 

                                                              

 From the above equation, we deduce the following: 

( ) 1 1cos 2 / 0
4 4

c sT c
d c s

s

f
Z f f e

f
αλ π+∈ ⇔ ≥ ⇔ − ≤ ≤ (17) 

 

Or equivalently, 

4 4
s s

c
d

f f
Z f

Z else
λ

+

−

⎧ − ≤ ≤⎪∈⎨
⎪⎩

 
 

(18) 

 

This shows that the discrete-time poles lie in the right half plane if the 

sampling rate ( sf ) is more than twice the  Nyquist rate ( 2 cf ). Otherwise, the poles 

lie in the left-half of the z-plane Z −  if the inequality / 4 / 4s c sf f f− ≤ ≤ is violated.  

5.4.2 Fault Detection using Kalman Filter 
 

The Kalman filter is designed for the normal fault-free operation. The fault-

free model of the system, which is obtained from the system identification process 

described in the previous section, is given by: 

0 0( 1) ( ) ( ) ( )x k A x k B u k d w k+ = + - +
 

0( ) ( ) ( )y k C x k ku= +  

 
(19) 

 

where ( )y k  is the output, e.g., the height of the water in a tank, ( )0 0 0, ,A B C  are 

obtained from the discretized model of ( ), ,A B C  for the ideal fault-free case ( )w k  
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and ( )v k  are zero-mean white plant and measurement noise signals respectively, 

with covariances: 

( ) ( )TQ E w k w ké ù= ë û, and ( ) ( )TR E v k v ké ù= ë û 
 
(20) 

 

The plant noise ( )w k  is a mathematical artifice introduced to account for the 

uncertainty in the a-priori knowledge of the plant model. The larger the covariance 

Q  is, the less accurate the model ( )0 0 0, ,A B C  is and vice versa.   

The Kalman filter is given by: 

( )0 0 0 0ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )x k Ax k B u k d K y k C x k+ = + - + -  

0 ˆ( ) ( ) ( )e k y k C x k= -  

 
(21) 

 

where d is the delay and e (k) the residual.  

The system model has a pure time delay which is incorporated in the Kalman 

filter formulation. The Kalman filter estimates the states by fusing the information 

provided by the measurement ( )y k  and the a priori information contained in the 

model ( )0 0 0, ,A B C . This fusion is based on the a priori information of the plant and 

the measurement noise covariances Q and R respectively. When Q is small, 

implying that the model is accurate, the state estimate is obtained by weighting the 

plant model more than the measurement one. The Kalman gain 0K  will then be 

small. On the other hand, when R is small implying that the measurement model is 

accurate, the state estimate is then obtained by weighting the measurement model 

more than the plant one. The Kalman gain, 0K , will then be large in this case. 

The larger 0K  is, the faster the response of the filter will be and the larger the 

variance of the estimation error becomes. Thus, there is a trade-off between a fast 
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filter response and a small covariance of the residual. An adaptive on-line scheme 

is employed to tweak the a- priori choice of the covariance matrices so that an 

acceptable trade-off between the Kalman filter performance and the covariance of 

the residual is reached.  

A statistical decision-theoretic approach was used to decide between two 

hypotheses [1-5]. If the absolute mean of the residual is less than a specified 

threshold value thr , then a fault is asserted. The threshold value is calculated from 

the pre-specified false alarm rate, and the variance of the residual. 

5.4.3 Fault Isolation using Diagnostic Model 
 

There are two approaches to the estimation of the diagnostic parameters, 

namely the system identification and the diagnostic model approach. In [6], a fault 

is isolated by using a two-stage approach. First, the feature vector θ  is estimated. 

Then, the diagnostic parameter γ  is estimated from the identified θ  using the a 

priori known relation, ( )θ ϕ γ=  where ϕ  is some nonlinear function [6].  

The second approach [7], employed in this paper, is based on a diagnostic 

model, which directly relates the diagnostic parameters to the input and output. 

The diagnositic parameters are identified offline by performing a number of 

experiments. The diagnostic model relating the reference input r the diagnostic 

parameter γ and the residual ( )e k , is given by: 

0 (1)

1
( ) ( ) ( ) ( 1) ( )

q
T

i i
i

e k y k y k k v kψ θ γ
=

= − = − ∆ +∑
 
(22) 
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where, 0
i iγ γ γ∆ = −  is the perturbation in γ ; 0 ( )y k  and 0

iγ  are the fault-free 

(nominal) output and parameter, respectively, (1)
i

i

δθθ
δγ

= , and ψ  is the data vector 

formed of the past outputs and past reference inputs. The gradient (1)
iθ  is estimated 

by performing a number of offline experiments which consist of perturbing the 

diagnostic parameters, one at a time. The input-output data from all the perturbed 

parameter experiments is then used to identify the gradients (1)
iθ . The hypothesis 

iH corresponding to the perturbation of the ith diagnostic parameter is given by: 

(1): ( ) ( 1) ( )T
i i iH e k k v kψ θ γ= − ∆ +

 
(23) 

 

If v (k) is assumed to be a zero-mean Gaussian random variable, then the 

Bayes strategy suggests that the most likely hypothesis jH  is the one whose index 

satisfies 

{ }2(1)arg min ( ) ( 1)T
i ii

j e k kψ θ γ= − − ∆
 
(24) 

 

Since the size of the fault, denoted by the perturbation ( )j kγ∆ , is unknown, a 

composite hypothesis testing scheme is used in which we substitute the unknown 

( )j kγ∆  by its least-squares estimate. Substituting the estimate of ( )j kγ∆  and 

simplifying the fault isolation strategy yields: 

{ }
(1)

2
(1)

,arg max cos cos ψ θϕ ϕ
ψ θ

〈 〉
= =

T
i

i i Ti
i

ej where
e

 
 
(25) 
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That is, jγ   is asserted to be faulty if the measured residual e(k) and its 

hypothesized residual estimate (1)( 1)T
jkψ θ−  are maximally aligned. A measure of 

isolability of faults in iγ and jγ  is defined by the cosine of the angle between 

(1)
iθ and (1)

jθ  denoted by (1)cos ijθ . The smaller (1)cos ijθ  is, the larger the isolability gets. 
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Chapter 6 

Evaluation of the Proposed Sequential                  
Integration Approach for Fault Diagnosis 

Overview 

This chapter demonstrates the evaluation of the proposed sequential 

integration approach for fault diagnosis. The evaluation of both the 

Proposed Model-Free and Model-Based Approaches has been done on a 

benchmark laboratory-scale process control system.  

 

An evaluation of the proposed scheme for fault diagnosis was performed on a 

benchmark laboratory-scale process control system using National Instruments 

LABVIEW as shown below in Fig 4.  

 

oQ

i ω
iQ

1H 2H

Ql

 
Figure 14 Two-tank fluid System 
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Fault diagnosis in fluid systems has become increasingly important in recent 

years from the points of view of economy, safety, pollution, and conservation of 

scarce resources [9, 16]. The proposed scheme is used to detect and isolate a fault 

by a sequential integration of model-free and model-based approaches. The sensor 

fault is simulated by including a gain term sγ in the measured output m sy yγ= . The 

actuator fault is simulated by including a gain term aγ in the control input to the 

actuator, namely the motor-pump sub-system, a au uγ= . Finally the leakage fault is 

simulated by controlling the amount by which the drain valve in the tank is opened. 

This is equivalent to introducing a gain term lγ  to the height of the tank, l lq hγ= . 

A fault-free case corresponds to 1s aγ γ= =  and 0lγ =  as is easily shown in Fig. 5. 

 

Figure 15 Fault Simulation in the Fluid System 

6.1   Fault diagnosis using Model-Free Approach  

A sequential integration of an artificial neural network (ANN) and a fuzzy 

logic (FL) scheme is employed here to isolate faults.   

Fuzzy-logic approach: The features were chosen to be the steady-state 

values of the control input, ssu , measured flow ssflw and height ssh values and their 

corresponding ones in the fault-free case, namely 0u , 0flw and 0h . Fuzzy logic rules 

given in Section 3.2 are used to detect and isolate faults. The  Adaptive Network 

Fuzzy Inference System (ANFIS), based on Sugeno’s method, is employed here to 

implement the fuzzy classifier [17].  
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The elements of the output vector [ ]1 2 3 4d d d d d=  are the decisions 

defined by: 

1
0

th

i
i device is faulty

d
else

⎧
= ⎨
⎩

 
 

(26) 

 

where the values of the index i =1, 2, 3, and 4 correspond to the actuator, flow 

sensor, level sensor and the leakage fault. The fuzzy rules using Sugeno’s method 

[17] are:  

If  ssflw non zero∆ ∈ − and ssh non zero∆ ∈ −   then 1 1d =  

If  ssflw non zero∆ ∈ − and ssh zero∆ ∈    then 2 1d =  

If  ssflw zero∆ ∈ and ssh non zero∆ ∈ −    then 3 1d =  

If ssu small positive∆ ∈ −    then 4 1d =  

If ssflw zero∆ ∈  and ssh zero∆ ∈   then 0id for all i=  

where zero , small positive− and non zero−  are fuzzy sets.  

A neural network, driven by the coherence spectrum between the measured 

height and the fault-free height, produces classes of four possible faults, namely a 

fault in the actuator, the level sensor, the flow sensor, and a leakage fault. 

The fuzzy approach is then integrated sequentially with the neural network- 

based fault classification to complete the required fault isolation scheme. The 

ANN-based classifier precedes the FL-based one, with the former providing a fast 

classification and the latter both confirming this classification and providing a way 

of pinpointing the real root cause(s) for the occurrence of this fault.  
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The fault magnitude is qualitatively estimated by the changes in the settling 

time 0
s ss sst t t∆ = −  whereas its onset is indicated by the location of the change in the 

height profile.  
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Figure 16 Height/Flow Profile and Coherence Spectrum under Leakage faults 
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Figure 17 Height/Flow Profile and Coherence Spectrum under Actuator Faults 
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Figure 18 Height/Flow Profile and Coherence Spectrum under Sensor Faults 
 

Figs 16-18 give the profiles of the flow and height and the coherence spectra, 

whereas Fig. 19 shows height profiles in the presence of leakages of different 

magnitudes occurring when the fluid level system is operated in a closed-loop or 



 81

open-loop configuration. For the open-loop case, one can readily deduce both the 

onset and amount of the leakage from the height/flow profile. The leakage flow has 

five sections corresponding to the following five degrees of no-leakage, small, 

medium, large and very large leakage. However, by virtue of its control design 

objective, the closed-loop PI controller will hide any fault that may occur in the 

system and hence will make it difficult to detect it.  

 

 
Figure 19 Plots of Various leakages with closed and open loop control 

6.2   Model of the Fluid System   

A benchmark model of a cascade connection of a dc motor and a pump relating 

the input to the motor u and the flow iQ  is a first-order time-delay system 

expressed by: 

( )i m i mQ a Q b uφ= − +&  (27) 

 

where ma and mb are the parameters of the motor-pump system and ( )uφ is a dead-

band and saturation type of nonlinearity. The Proportional and Integral (PI) 

controller is given by: 

3 2

3p I

x e r h
u k e k x

= = −

= +

&
  

(28) 
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where pk and Ik are gains and r is the reference input. 

With the inclusion of the leakage, the liquid level system is modeled by [16]: 

( ) ( )1
1 12 1 2 1i

dH
A Q C H H C H

dt
ϕ ϕ= − − − l

 

( ) ( )2
2 12 1 2 0 2

dH
A C H H C H

dt
ϕ ϕ= − −  

 

 

(29) 

 

where (.) (.) 2 (.)sign gϕ = , ( )1Q C Hϕ=l l is the leakage flow rate,  

( )0 0 2Q C Hϕ= is the output flow rate,  

1H is the height of the liquid in tank 1,  

2H is the height of the liquid in tank 2,  

1A  and 2A  are the cross-sectional areas of the 2 tanks,  

g=980 2/ seccm  is the gravitational constant,  

12C  and oC  are the discharge coefficient of the inter-tank and output valves, 

respectively.  

The linearized model of the entire system formed by the motor, pump, and the 

tanks is given by: 

x Ax Br y Cx= + =& (30) 
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1 1 11

2 22

3

0
0 0

, ,
1 0 0 0

0

0 0 1 , [1 0 0 0]

m p m I mi

T

m p
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x A
x
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B b k C
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⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥ −
⎢ ⎥⎢ ⎥ − −⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= =⎣ ⎦

 

 

 

(31) 

 

Where iq ,ql , 0q , 1h a nd 2h are respectively the increments in iQ ,Ql , oQ , 

0
1H and 0

2H , whereas 1a , 2a ,α and β are parameters associated with linearization, 

α is associated with leakage, 1q hα=l , and β is the output flow rate, 2oq hβ= . 

6.3   Evaluation of the Proposed Model-Order Selection 
Criteria 

The model of the physical system, based on the physical laws, is given in 

Section 6.2. It is of a fourth order for a PI controller, of a third order for a P 

controller, and of a second order for an on-off controller.   

Various orders of the model of the fluid system ranging from 1 to 6 were 

initially selected, and for each order the corresponding model was identified using 

a least-squares method. The following quantities were computed: 

♦ Poles of the identified model 

♦ The loss function, [ ]
21

0

1 ˆ( ) ( )
N

k
J y k y k

N

−

=

= −∑   where ŷ is the estimate of the 

system output y, and  N is the number of data samples. 

♦ AIC measure  

6.3.1 Case 1: PI controller 
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Table 3 below shows that, for the selected model orders 1 to 3, all the poles 

are on the right half plane. The vital question arises now is how to select the 

appropriate model order out of these three order values. The loss function and the 

AIC measures are used only as initial guidelines. We selected a second order as it 

was found to be the smallest order which yielded an acceptable performance, as 

shown in Fig. 10. 

 

 

Table 3 PI Controller: Poles of the identified model for different ‘1’,’2’,..,’6’  selected orders 
 

order 1 order 2 order 3 order 4 order 5 order 6 

0.9850 0.9847 0.9847 0.9845 0.9845 0.9845 

 0.0712 0.0340 ± 

j0.5910 

0.0915 0.3301 ± 

j0.5549 

0.4726 

   -0.0189 ± 

j0.6197 

-0.3058 ± 

j0.5938 

0.2429 ± 

j0.6847 

     -0.4400 ± 

j0.5933 
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Figure 20 Loss Function and AIC versus Order and Step Response Versus Order. 
Order ‘0’ = actual data and ‘1’,’2’,..,’6’= selected orders. 
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6.3.2 Case 2: On-off controller 
 

Table 4 below shows that, for the selected model order of 1, all the poles are 

on the right-half plane. Figure 11 shows that the performance related to model 

order 1 is acceptable. 

 

Table 4  On-Off Controller: Poles of the identified  
model  for different ‘1’,’2’,..,’6’ selected orders 

 
order 1 order 2 order 3 order 4 order 5 order 6 

0.9996    0.9996 0.9996    0.9996 0.9996 0.9996   

 -0.1839 -0.1230 ± 

j0.5358 

0.1147 0.4118 ± 

j0.6558 

0.5400 

   -0.1731 ± 

j0.5491 

-0.5280 ± 

j0.6373 

0.2898 ± 

j0.7560 

     -0.6182 ± 

j0.6456 
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Figure 21 Loss Function and AIC versus Order and Step Response versus Order. 
Order ‘0’ = actual data and ‘1’,’2’,..,’6’= selected orders. 

The proposed model order selection criterion (Section IV), which was 

thoroughly tested through extensive simulation runs and an evaluation on the 

physical system, was found to be very reliable. It has the ability to capture the 

input-output dynamic behavior, and not the dynamics resulting from the effect of 

noise and other artifacts.  

 

6.4   Evaluation of Fault Detection Using Kalman Filter      

First the fault-free model of the system is identified using a recursive least-

squares identification scheme. An acceptable model order was then selected using 

the proposed model order selection criterion. 
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Figure 22 Kalman Filter results for an ON-OFF and PI Controller used  
for Flow and Height under various leakage magnitudes 
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The identified model is essentially a second-order system with a delay 

although the theoretical model is of a fourth order. Such a discrepancy is due to the 

inability of the identification scheme to capture the system’s fast dynamics, 

especially in low-SNR scenarios. Using the fault-free model together with the 

covariance of the measurement noise R, and the plant noise covariance, Q, the 

Kalman filter model was finally derived. As it is difficult to obtain an estimate of 

the plant covariance Q a number of experiments were performed under different 

plant scenarios to tune the Kalman gain 0K . 

( )0 0 0 0ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )x k A x k B u k d K y k C x k+ = + - + -

0 ˆ( ) ( ) ( )e k y k C x k= -  

 

(32) 

The Kalman filter was evaluated under different fault scenarios for an on-off 

controller and a PI controller, as shown in Fig.12.    

Comments: The model of the fluid system is nonlinear, complex and stochastic. 

A simplified linearized model which contains only the dominant poles (as it was 

difficult to identify the fast dynamics) was used in the design of the Kalman filter. 

Results from the evaluation on the physical system show that the Kalman filter is 

robust in modelling uncertainties including nonlinearities and neglected fast 

dynamics, while at the same time being sensitive to incipient faults.   

6.5   Evaluation of Fault Isolation Scheme           

The diagnostic model of the fluid system becomes: 

3
(1)

1
( ) ( 1) ( )T

i i
i

e k k v kψ θ γ
=

= − ∆ +∑  
 

(33) 
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where  [ ]( ) ( 1) ( 2) ( 1) ( 2)T k y k y k u k u kψ = − − − − − − , 

1γ γ= l , 2 aγ γ=  and 3 sγ γ=  

A number of experiments were performed offline by varying the diagnostic 

parameters, one at a time. Each of the γ parameters was varied one at a time, 

spanning three different values of 0.25, 0.5 and 0.75 of their maximum. From these 

experiments, the gradients (1)
iθ  were estimated: 

    The measure of isolability (1)cos ijθ is given below: 

(1)
12cos 0.8560θ = , (1)

13cos 0.8379θ = , (1)
23cos 0.7757θ =

 

(34) 

Using the composite hypothesis testing scheme, a fault is isolated by 

determining which hypothesis gives the maximal alignment between the estimated 

and measured residuals. The results of the isolation scheme are encouraging.  

Comments: The physical two-tank fluid system is nonlinear with a dead-band 

nonlinearity and fast dynamics. The identified model order is different from that of 

the model derived from the physical laws. The conventional two-stage 

identification scheme [6], based on first identifying θ  and then deriving ( )1γ ϕ θ−= , 

is not possible because of the irreversible collapse of the model structure from a 

fourth-order one to a second-order one. This difficulty is avoided by adopting the 

scheme proposed in [7] wherein a number of offline experiments on the physical 

system are performed by varying the diagnostic parameters so as to capture the 

influence of the diagnostic parameters on the input-output behaviour reliably. This 

in essence mirrors the use of a neural network in approximating a nonlinear map.   
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Chapter 7 

Performance Analysis of the Proposed Scheme 

Overview 

This chapter gives the performance analysis of the proposed fault diagnosis 

scheme. The fault signatures are analyzed from the step response parameters, 

namely settling time and steady-state error, power spectral density profiles, model-

order selection criteria, Kalman filter graphs for a complete fault diagnostic 

scheme.  
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Index Diagram: 

 
Figure 23 Evaluation on Physical System 
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Fault Data 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 25 Height Profile of a leakage-fault data 
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Figure 26 Height Profile of a Actuator-Fault Data 
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Figure 27 Height Profile of a Sensor-Fault Data 
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Figure 28 Height Profile of fault-free/actuator-fault and sensor-fault Data 

7.2   Power Spectral Density Step Response  

The fault signatures are analyzed from the step response parameters, namely 

settling time and steady-state error, and the power spectral density. Figures 19-22 

show the step response power spectral density profiles under various types of faults 

when a proportional controller is employed. There is a change in the time constant, 

steady state value of the step responses and the power spectral density when the 

system is subjected to a fault.  
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Figure 29 Height/Flow Profile under various Leakage magnitudes 
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Figure 30 Spectra under various Leakage magnitudes 
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Figure 31Height/Flow Profile under various actuator faults 
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Figure 32 Spectra under various actuator faults 
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Figure 33 Height/Flow Profile under various sensor faults 
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Figure 34 Spectra under various sensor faults 
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Figure 35  Input flow rate and tank height under various degrees of leakage 
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Figure 36 Input flow rate and tank height under various degrees of leakage 

7.3   Coherence Spectral Density Step Response  

Figs 33-35 give the profiles of the flow and height and the coherence spectra, 

whereas Fig. 23 shows height profiles in the presence of leakages of different 

magnitudes and when the fluid level system is operated in both open-loop and 

closed-loop configurations. For the open-loop case, one can readily deduce both 

the onset and amount of the leakage from the height/flow profile. The leakage flow 

has five sections corresponding to the following five degrees of no-leakage, small, 

medium, large and very large leakage. However, by its very nature, the closed-loop 

PI controller hides the fault and hence makes it difficult to visually detect the fault.  
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Figure 37 Height/Flow Profile and coherence under leakage faults 
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Figure 38 Height/Flow Profile and coherence under actuator faults 
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Figure 39 Height/Flow Profile and coherence under sensor faults 

7.4   Model Order Selection Criteria: AIC Measure   

Case 1: PI Controller 

Table 5 PI Controller: Poles of the identified model for different selected orders 
 

order 1 order 2 order 3 order 4 order 5 order 6 

0.9850 0.9847 0.9847 0.9845 0.9845 0.9845 

 0.0712 0.0340 ± 

j0.5910 

0.0915 0.3301 ± 

j0.5549 

0.4726 

   -0.0189 ± 

j0.6197 

-0.3058 ± 

j0.5938 

0.2429 ± 

j0.6847 

     -0.4400 ± 

j0.5933 
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Figure 40 Loss function and AIC versus Order. Order ‘0’ indicates the actual data and 
‘1’,’2’,..,’6’ indicates the selected order. 
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Figure 41 Step response vs. order. Order ‘0’ indicates the actual data  
and ‘1’,’2’,..,’6’ indicates the selected order. 

 
For the selected model orders 1 to 3, all the poles are on the right half plane. 

The question arises as how to selected an appropriate order. We use the loss 

function and the AIC measures as guide lines. We selected a second order as it was 

found to be of minimal order which yielded acceptable performance.  

Case 2: Proportional controller 
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Figure 42 Loss function and AIC versus order. Order ‘0’ indicates the actual data and 
‘1’,’2’,..,’6’ indicates the selected order. 
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Figure 43.Step response vs. order. Order ‘0’ indicates the actual data 
 and ‘1’,’2’,..,’6’ indicates the selected order. 

 
 

Table 6 Proportional Controller: Poles of the identified model for different selected orders 
 

order 1 order 2 order 3 order 4 order 5 order 6 
0.9797  0.9796 0.9798  0.9800 0.9799  0.9799  

 -0.1022 -0.0596  
± j0.6064

-0.2215  
± j0.6608

-0.3701 ± 
j0.6607 

0.6519 

  0.1858 ± 
0.7008i 

  -0.5087 
±j0.6557 
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Case 3: On-off controller 
 

Table 7 On-Off Controller: Poles of the identified model for different selected orders 
 

order 1 order 2 order 3 order 4 order 5 order 6 
0.9996    0.9996 0.9996    0.9996 0.9996 0.9996   
 -0.1839 -0.1230 ± 

j0.5358 
0.1147 0.4118 ± 

j0.6558 
0.5400 

   -0.1731 ± 
j0.5491 

-0.5280 ± 
j0.6373 

0.2898 ± 
j0.7560 

     -0.6182 ± 
j0.6456 
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Figure 44 Loss function and AIC versus order. Order ‘0’ indicates the actual data and 
‘1’,’2’,..,’6’ indicates the selected order. 
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Figure 45 Step response vs. order. Order ‘0’ indicates the actual data  
and ‘1’,’2’,..,’6’ indicates the selected order. 
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Figure 46 AIC: On/Off Controller 

 
Figure 47 AIC: P Controller 

 
Figure 48 AIC: PI Controller 
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Figure 49 AIC: PID Controller 

7.5   Kalman Filter Evaluation 

The Kalman filter was evaluated under different fault scenarios for an on-off 

controller, a P controller, and a PI controller. (See Fig.13-14).    

                        

Figure 50 Kalman filter results for On-Off Controller: for Flow and  
Height under various leakage magnitudes 
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Figure 51 Height profiles and the residual when 
there is no fault and when there is a leakage fault. 
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Chapter 8 

Conclusion 

Overview 

This chapter starts with the discussion of results from this thesis. It 

discusses the conclusion drawn from the research done.     

 

The proposed fault diagnostic scheme based on (i) a sequential integration of 

model-free and model-based approach and (ii) the use of a new model selection 

criterion for system identification, was found  promising when applied to a 

benchmarked laboratory-scale two-tank system. Through an integration of ANN 

and FL, the model-free approach quickly and reliably detects a presence of a 

possible fault from the profiles of the sensor outputs. The ANN is driven by the 

coherence spectrum of the residuals whereas the FL is fed with steady-state sensor 

output values. The model-free approach is also capable of providing a quick visual 

detection of the onset of any fault from the changes in the fault signatures such as 

settling time, steady-state sensor output values, and the coherence spectrum of the 

residuals. The fault indications obtained by the model-free approach are 

subsequently confirmed by the model-based approach which, through the use of a 

Kalman filter followed by a fault isolation scheme, provides a further necessary 

stage for capturing any faults, especially incipient ones, which may have escaped 

capture by the ANN-FL combination due to either insufficient training or 

incomplete fuzzy rules. Based on extensive simulations and an evaluation on a 

physical system, the proposed model order selection criterion was shown to be 

reliable and efficient. It has the ability to capture the input-output dynamic 
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behavior accurately.  

8.1 Recommendations for Future Work 
 

 Results from the evaluation on the physical system shows that the Kalman 

filter is robust in modeling uncertainties including nonlinearities and 

neglected fast dynamics, while retaining its sensitivity to incipient faults. 

The fault isolation scheme, based on offline perturbed parameters 

experiments, was also found promising. Moreover this scheme bears a 

close resemblance to a neural network-based fault isolation scheme. 

However, this resemblance, though interesting, is currently undergoing 

further analysis. 

 Hybrid model-based and soft computing techniques will be implemented to 

fault diagnosis problem. The model-based is built upon a pure but 

representative model of the plant. Based on the outcomes of this step, a 

neuro-fuzzy system is built. Once the neuro-fuzzy structure (rules number 

and premise and consequence membership function parameters) is 

identified and optimized, it is used in a generalization phase to achieve 

near-optimal online detection and identification with a reasonable 

computational complexity.   
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