287 research outputs found

    Electrophysiological evidence for memory schemas in the rat hippocampus

    Full text link
    According to Piaget and Bartlett, learning involves both assimilation of new memories into networks of preexisting knowledge and alteration of existing networks to accommodate new information into existing schemas. Recent evidence suggests that the hippocampus integrates related memories into schemas that link representations of separately acquired experiences. In this thesis, I first review models for how memories of individual experiences become consolidated into the structure of world knowledge. Disruption of consolidated memories can occur during related learning, which suggests that consolidation of new information is the reconsolidation of related memories. The accepted role of the hippocampus during memory consolidation and reconsolidation suggests that it is also involved in modifying appropriate schemas during learning. To study schema development, I trained rats to retrieve rewards at different loci on a maze while recording hippocampal calls. About a quarter of cells were active at multiple goal sites, though the ensemble as a whole distinguished goal loci from one another. When new goals were introduced, cells that had been active at old goal locations began firing at the new locations. This initial generalization decreased in the days after learning. Learning also caused changes in firing patterns at well-learned goal locations. These results suggest that learning was supported by modification of an active schema of spatially related reward loci. In another experiment, I extended these findings to explore a schema of object and place associations. Ensemble activity was influenced by a hierarchy of task dimensions which included: experimental context, rat's spatial location, the reward potential and the identity of sampled objects. As rats learned about new objects, the cells that had previously fired for particular object-place conjunctions generalized their firing patterns to new conjunctions that similarly predicted reward. In both experiments, I observed highly structured representations for a set of related experiences. This organization of hippocampal activity counters key assumptions in standard models of hippocampal function that predict relative independence between memory traces. Instead, these findings reveal neural mechanisms for how the hippocampus develops a relational organization of memories that could support novel, inferential judgments between indirectly related events

    Attractors, memory and perception

    Get PDF
    In this Thesis, the first three introductory chapters are devoted to the review of literature on contextual perception, its neural basis and network modeling of memory. In chapter 4, the first two sections give the definition of our model; and the next two sections, 4.3 and 4.4, report the original work of mine on retrieval properties of different network structures and network dynamics underlying the response to ambiguous patterns, respectively. The reported work in chapter 5 has been done in collaboration with Prof Bharathi Jagadeesh in University of Washington, and is already published in the journal \u201dCerebral Cortex\u201d. In this collaboration, Yan Liu, from the group in Seattle, carried out the recording experiments and I did the data analysis and network simulations. Chapter 6, which represents a network model for \u201dpriming\u201d and \u201dadaptation aftereffect\u201d is done by me. The works reported in 4.3, 4.5, and the whole chapter 6 are in preparation for publication

    Variable binding by synaptic strength change

    Get PDF
    Variable binding is a difficult problem for neural networks. Two new mechanisms for binding by synaptic change are presented, and in both, bindings are erased and can be reused. The first is based on the commonly used learning mechanism of permanent change of synaptic weight, and the second on synaptic change which decays. Both are biologically motivated models. Simulations of binding on a paired association task are shown with the first mechanism succeeding with a 97.5% F-Score, and the second performing perfectly. Further simulations show that binding by decaying synaptic change copes with cross talk, and can be used for compositional semantics. It can be inferred that binding by permanent change accounts for these, but it faces the stability plasticity dilemma. Two other existing binding mechanism, synchrony and active links, are compatible with these new mechanisms. All four mechanisms are compared and integrated in a Cell Assembly theory

    An incremental clustering and associative learning architecture for intelligent robotics

    Get PDF
    The ability to learn from the environment and memorise the acquired knowledge is essential for robots to become autonomous and versatile artificial companions. This thesis proposes a novel learning and memory architecture for robots, which performs associative learning and recall of sensory and actuator patterns. The approach avoids the inclusion of task-specific expert knowledge and can deal with any kind of multi-dimensional real-valued data, apart from being tolerant to noise and supporting incremental learning. The proposed architecture integrates two machine learning methods: a topology learning algorithm that performs incremental clustering, and an associative memory model that learns relationship information based on the co-occurrence of inputs. The evaluations of both the topology learning algorithm and the associative memory model involved the memorisation of high-dimensional visual data as well as the association of symbolic data, presented simultaneously and sequentially. Moreover, the document analyses the results of two experiments in which the entire architecture was evaluated regarding its associative and incremental learning capabilities. One experiment comprised an incremental learning task with visual patterns and text labels, which was performed both in a simulated scenario and with a real robot. In a second experiment a robot learned to recognise visual patterns in the form of road signs and associated them with di erent con gurations of its arm joints. The thesis also discusses several learning-related aspects of the architecture and highlights strengths and weaknesses of the proposed approach. The developed architecture and corresponding ndings contribute to the domains of machine learning and intelligent robotics

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Genes and Gene Networks Related to Age-associated Learning Impairments

    Get PDF
    The incidence of cognitive impairments, including age-associated spatial learning impairment (ASLI), has risen dramatically in past decades due to increasing human longevity. To better understand the genes and gene networks involved in ASLI, data from a number of past gene expression microarray studies in rats are integrated and used to perform a meta- and network analysis. Results from the data selection and preprocessing steps show that for effective downstream analysis to take place both batch effects and outlier samples must be properly removed. The meta-analysis undertaken in this research has identified significant differentially expressed genes across both age and ASLI in rats. Knowledge based gene network analysis shows that these genes affect many key functions and pathways in aged compared to young rats. The resulting changes might manifest as various neurodegenerative diseases/disorders or syndromic memory impairments at old age. Other changes might result in altered synaptic plasticity, thereby leading to normal, non-syndromic learning impairments such as ASLI. Next, I employ the weighted gene co-expression network analysis (WGCNA) on the datasets. I identify several reproducible network modules each highly significant with genes functioning in specific biological functional categories. It identifies a “learning and memory” specific module containing many potential key ASLI hub genes. Functions of these ASLI hub genes link a different set of mechanisms to learning and memory formation, which meta-analysis was unable to detect. This study generates some new hypotheses related to the new candidate genes and networks in ASLI, which could be investigated through future research

    Identification and Characterization of electrical patterns underlying stereotyped behaviours in the semi-intact leech

    Get PDF
    Neuroscience aims at understanding the mechanisms underlying perception, learning, memory, consciousness and acts. The present Ph.D. thesis aims to elucidate some principles controlling actions, which in a more scientific and technical language is referred to as motor control. This concept has been studied in a variety of preparations in vertebrate and invertebrate species. In this PhD thesis, the leech has been the subject of choice, because it is a well known preparation, highly suitable for relating functional and behavioural properties to the underlying neuronal networks. The semi-intact leech preparation (Kristan et al., 1974) has been the main methodological strategy performed in the experiments. Its importance lies in the fact that it gives the possibility to access the information from the leech\u2019s central nervous system (CNS) and compare simultaneously some stereotyped behaviours. Thus, entering in this work it is necessary to make a brief summary of the steps followed before arriving to the conclusions written ahead. The main objective followed in this work has been the analysis, identification and characterization of electrical patterns underlying different behaviours in Hirudo medicinalis. This main objective has been reached focusing the project on three particular objectives, which have been pursued during the author\u2019s Philosophical Doctorate course

    Professional or amateur? The phonological output buffer as a working memory operator

    Get PDF
    The Phonological Output Buffer (POB) is thought to be the stage in language production where phonemes are held in working memory and assembled into words. The neural implementation of the POB remains unclear despite a wealth of phenomenological data. Individuals with POB impairment make phonological errors when they produce words and non-words, including phoneme omissions, insertions, transpositions, substitutions and perseverations. Errors can apply to different kinds and sizes of units, such as phonemes, number words, morphological affixes, and function words, and evidence from POB impairments suggests that units tend to substituted with units of the same kind-e.g., numbers with numbers and whole morphological affixes with other affixes. This suggests that different units are processed and stored in the POB in the same stage, but perhaps separately in different mini-stores. Further, similar impairments can affect the buffer used to produce Sign Language, which raises the question of whether it is instantiated in a distinct device with the same design. However, what appear as separate buffers may be distinct regions in the activity space of a single extended POB network, connected with a lexicon network. The self-consistency of this idea can be assessed by studying an autoassociative Potts network, as a model of memory storage distributed over several cortical areas, and testing whether the network can represent both units of word and signs, reflecting the types and patterns of errors made by individuals with POB impairment
    corecore