38,882 research outputs found

    Stabilized profunctors and stable species of structures

    Full text link
    We introduce a bicategorical model of linear logic which is a novel variation of the bicategory of groupoids, profunctors, and natural transformations. Our model is obtained by endowing groupoids with additional structure, called a kit, to stabilize the profunctors by controlling the freeness of the groupoid action on profunctor elements. The theory of generalized species of structures, based on profunctors, is refined to a new theory of \emph{stable species} of structures between groupoids with Boolean kits. Generalized species are in correspondence with analytic functors between presheaf categories; in our refined model, stable species are shown to be in correspondence with restrictions of analytic functors, which we characterize as being stable, to full subcategories of stabilized presheaves. Our motivating example is the class of finitary polynomial functors between categories of indexed sets, also known as normal functors, that arises from kits enforcing free actions. We show that the bicategory of groupoids with Boolean kits, stable species, and natural transformations is cartesian closed. This makes essential use of the logical structure of Boolean kits and explains the well-known failure of cartesian closure for the bicategory of finitary polynomial functors between categories of set-indexed families and cartesian natural transformations. The paper additionally develops the model of classical linear logic underlying the cartesian closed structure and clarifies the connection to stable domain theory.Comment: FSCD 2022 special issue of Logical Methods in Computer Science, minor changes (incorporated reviewers comments

    Grothendieck quasitoposes

    Full text link
    A full reflective subcategory E of a presheaf category [C*,Set] is the category of sheaves for a topology j on C if and only if the reflection preserves finite limits. Such an E is called a Grothendieck topos. More generally, one can consider two topologies, j contained in k, and the category of sheaves for j which are separated for k. The categories E of this form, for some C, j, and k, are the Grothendieck quasitoposes of the title, previously studied by Borceux and Pedicchio, and include many examples of categories of spaces. They also include the category of concrete sheaves for a concrete site. We show that a full reflective subcategory E of [C*,Set] arises in this way for some j and k if and only if the reflection preserves monomorphisms as well as pullbacks over elements of E.Comment: v2: 24 pages, several revisions based on suggestions of referee, especially the new theorem 5.2; to appear in the Journal of Algebr

    Algebraic K-theory of quasi-smooth blow-ups and cdh descent

    Get PDF
    We construct a semi-orthogonal decomposition on the category of perfect complexes on the blow-up of a derived Artin stack in a quasi-smooth centre. This gives a generalization of Thomason's blow-up formula in algebraic K-theory to derived stacks. We also provide a new criterion for descent in Voevodsky's cdh topology, which we use to give a direct proof of Cisinski's theorem that Weibel's homotopy invariant K-theory satisfies cdh descent.Comment: 24 pages; to appear in Annales Henri Lebesgu

    Kan extensions and the calculus of modules for ∞\infty-categories

    Full text link
    Various models of (∞,1)(\infty,1)-categories, including quasi-categories, complete Segal spaces, Segal categories, and naturally marked simplicial sets can be considered as the objects of an ∞\infty-cosmos. In a generic ∞\infty-cosmos, whose objects we call ∞\infty-categories, we introduce modules (also called profunctors or correspondences) between ∞\infty-categories, incarnated as as spans of suitably-defined fibrations with groupoidal fibers. As the name suggests, a module from AA to BB is an ∞\infty-category equipped with a left action of AA and a right action of BB, in a suitable sense. Applying the fibrational form of the Yoneda lemma, we develop a general calculus of modules, proving that they naturally assemble into a multicategory-like structure called a virtual equipment, which is known to be a robust setting in which to develop formal category theory. Using the calculus of modules, it is straightforward to define and study pointwise Kan extensions, which we relate, in the case of cartesian closed ∞\infty-cosmoi, to limits and colimits of diagrams valued in an ∞\infty-category, as introduced in previous work.Comment: 84 pages; a sequel to arXiv:1506.05500; v2. new results added, axiom circularity removed; v3. final journal version to appear in Alg. Geom. To
    • …
    corecore